#437182 MIT’s Tiny New Brain Chip Aims for AI ...The human brain operates on roughly 20 watts of power (a third of a 60-watt light bulb) in a space the size of, well, a human head. The biggest machine learning algorithms use closer to a nuclear power plant’s worth of electricity and racks of chips to learn. That’s not to slander machine learning, but nature may have a tip or two to improve the situation. Luckily, there’s a branch of computer chip design heeding that call. By mimicking the brain, super-efficient neuromorphic chips aim to take AI off the cloud and put it in your pocket. The latest such chip is smaller than a piece of confetti and has tens of thousands of artificial synapses made out of memristors—chip components that can mimic their natural counterparts in the brain. In a recent paper in Nature Nanotechnology, a team of MIT scientists say their tiny new neuromorphic chip was used to store, retrieve, and manipulate images of Captain America’s Shield and MIT’s Killian Court. Whereas images stored with existing methods tended to lose fidelity over time, the new chip’s images remained crystal clear. “So far, artificial synapse networks exist as software. We’re trying to build real neural network hardware for portable artificial intelligence systems,” Jeehwan Kim, associate professor of mechanical engineering at MIT said in a press release. “Imagine connecting a neuromorphic device to a camera on your car, and having it recognize lights and objects and make a decision immediately, without having to connect to the internet. We hope to use energy-efficient memristors to do those tasks on-site, in real-time.” A Brain in Your PocketWhereas the computers in our phones and laptops use separate digital components for processing and memory—and therefore need to shuttle information between the two—the MIT chip uses analog components called memristors that process and store information in the same place. This is similar to the way the brain works and makes memristors far more efficient. To date, however, they’ve struggled with reliability and scalability. To overcome these challenges, the MIT team designed a new kind of silicon-based, alloyed memristor. Ions flowing in memristors made from unalloyed materials tend to scatter as the components get smaller, meaning the signal loses fidelity and the resulting computations are less reliable. The team found an alloy of silver and copper helped stabilize the flow of silver ions between electrodes, allowing them to scale the number of memristors on the chip without sacrificing functionality. While MIT’s new chip is promising, there’s likely a ways to go before memristor-based neuromorphic chips go mainstream. Between now and then, engineers like Kim have their work cut out for them to further scale and demonstrate their designs. But if successful, they could make for smarter smartphones and other even smaller devices. “We would like to develop this technology further to have larger-scale arrays to do image recognition tasks,” Kim said. “And some day, you might be able to carry around artificial brains to do these kinds of tasks, without connecting to supercomputers, the internet, or the cloud.” Special Chips for AIThe MIT work is part of a larger trend in computing and machine learning. As progress in classical chips has flagged in recent years, there’s been an increasing focus on more efficient software and specialized chips to continue pushing the pace. Neuromorphic chips, for example, aren’t new. IBM and Intel are developing their own designs. So far, their chips have been based on groups of standard computing components, such as transistors (as opposed to memristors), arranged to imitate neurons in the brain. These chips are, however, still in the research phase. Graphics processing units (GPUs)—chips originally developed for graphics-heavy work like video games—are the best practical example of specialized hardware for AI and were heavily used in this generation of machine learning early on. In the years since, Google, NVIDIA, and others have developed even more specialized chips that cater more specifically to machine learning. The gains from such specialized chips are already being felt. In a recent cost analysis of machine learning, research and investment firm ARK Invest said cost declines have far outpaced Moore’s Law. In a particular example, they found the cost to train an image recognition algorithm (ResNet-50) went from around $1,000 in 2017 to roughly $10 in 2019. The fall in cost to actually run such an algorithm was even more dramatic. It took $10,000 to classify a billion images in 2017 and just $0.03 in 2019. Some of these declines can be traced to better software, but according to ARK, specialized chips have improved performance by nearly 16 times in the last three years. As neuromorphic chips—and other tailored designs—advance further in the years to come, these trends in cost and performance may continue. Eventually, if all goes to plan, we might all carry a pocket brain that can do the work of today’s best AI. Image credit: Peng Lin
This entry was posted in Human Robots and tagged 2017, 2019, ai, algorithms, artificial, Artificial intelligence, based, before, best, better, brain, build, camera, can, car, chip, cloud, come, computer, computers, computing, day, design, developing, device, Digital, energy, engineering, engineers, exist, generation, google, head, human, ibm, intelligence, internet, Investment, kind, latest, law, learn, learning, less, Light, lights, machine, Machine Learning, makes, mechanical, mechanical engineering, memory, might, mimic, mit, nanotechnology, nature, need, network, new, NVIDIA, Off, opposed, own, part, Performance, phones, piece, PLACE, portable, power, practical, Processing, professor, real, recent, recognition, recognize, reliability, reliable, research, say, shuttle, signal, silver, since, software, Space, special, store, super, systems, TAKE, Team, technology, the brain, Three, time, times, tiny, trend, trends, video, way, ways, work, Would, years. Bookmark the permalink.
|
-
Humanoid Gallery
Popular Searches
Copyright © 2024 Android Humanoid - All Rights Reserved
All trademarks and copyrights owned by their respective owners and are used for illustration only