Author Archives: Android

#437466 How Future AI Could Recognize a Kangaroo ...

AI is continuously taking on new challenges, from detecting deepfakes (which, incidentally, are also made using AI) to winning at poker to giving synthetic biology experiments a boost. These impressive feats result partly from the huge datasets the systems are trained on. That training is costly and time-consuming, and it yields AIs that can really only do one thing well.

For example, to train an AI to differentiate between a picture of a dog and one of a cat, it’s fed thousands—if not millions—of labeled images of dogs and cats. A child, on the other hand, can see a dog or cat just once or twice and remember which is which. How can we make AIs learn more like children do?

A team at the University of Waterloo in Ontario has an answer: change the way AIs are trained.

Here’s the thing about the datasets normally used to train AI—besides being huge, they’re highly specific. A picture of a dog can only be a picture of a dog, right? But what about a really small dog with a long-ish tail? That sort of dog, while still being a dog, looks more like a cat than, say, a fully-grown Golden Retriever.

It’s this concept that the Waterloo team’s methodology is based on. They described their work in a paper published on the pre-print (or non-peer-reviewed) server arXiv last month. Teaching an AI system to identify a new class of objects using just one example is what they call “one-shot learning.” But they take it a step further, focusing on “less than one shot learning,” or LO-shot learning for short.

LO-shot learning consists of a system learning to classify various categories based on a number of examples that’s smaller than the number of categories. That’s not the most straightforward concept to wrap your head around, so let’s go back to the dogs and cats example. Say you want to teach an AI to identify dogs, cats, and kangaroos. How could that possibly be done without several clear examples of each animal?

The key, the Waterloo team says, is in what they call soft labels. Unlike hard labels, which label a data point as belonging to one specific class, soft labels tease out the relationship or degree of similarity between that data point and multiple classes. In the case of an AI trained on only dogs and cats, a third class of objects, say, kangaroos, might be described as 60 percent like a dog and 40 percent like a cat (I know—kangaroos probably aren’t the best animal to have thrown in as a third category).

“Soft labels can be used to represent training sets using fewer prototypes than there are classes, achieving large increases in sample efficiency over regular (hard-label) prototypes,” the paper says. Translation? Tell an AI a kangaroo is some fraction cat and some fraction dog—both of which it’s seen and knows well—and it’ll be able to identify a kangaroo without ever having seen one.

If the soft labels are nuanced enough, you could theoretically teach an AI to identify a large number of categories based on a much smaller number of training examples.

The paper’s authors use a simple machine learning algorithm called k-nearest neighbors (kNN) to explore this idea more in depth. The algorithm operates under the assumption that similar things are most likely to exist near each other; if you go to a dog park, there will be lots of dogs but no cats or kangaroos. Go to the Australian grasslands and there’ll be kangaroos but no cats or dogs. And so on.

To train a kNN algorithm to differentiate between categories, you choose specific features to represent each category (i.e. for animals you could use weight or size as a feature). With one feature on the x-axis and the other on the y-axis, the algorithm creates a graph where data points that are similar to each other are clustered near each other. A line down the center divides the categories, and it’s pretty straightforward for the algorithm to discern which side of the line new data points should fall on.

The Waterloo team kept it simple and used plots of color on a 2D graph. Using the colors and their locations on the graphs, the team created synthetic data sets and accompanying soft labels. One of the more simplistic graphs is pictured below, along with soft labels in the form of pie charts.

Image Credit: Ilia Sucholutsky & Matthias Schonlau
When the team had the algorithm plot the boundary lines of the different colors based on these soft labels, it was able to split the plot up into more colors than the number of data points it was given in the soft labels.

While the results are encouraging, the team acknowledges that they’re just the first step, and there’s much more exploration of this concept yet to be done. The kNN algorithm is one of the least complex models out there; what might happen when LO-shot learning is applied to a far more complex algorithm? Also, to apply it, you still need to distill a larger dataset down into soft labels.

One idea the team is already working on is having other algorithms generate the soft labels for the algorithm that’s going to be trained using LO-shot; manually designing soft labels won’t always be as easy as splitting up some pie charts into different colors.

LO-shot’s potential for reducing the amount of training data needed to yield working AI systems is promising. Besides reducing the cost and the time required to train new models, the method could also make AI more accessible to industries, companies, or individuals who don’t have access to large datasets—an important step for democratization of AI.

Image Credit: pen_ash from Pixabay Continue reading

Posted in Human Robots

#437460 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
A Radical New Technique Lets AI Learn With Practically No Data
Karen Hao | MIT Technology Review
“Shown photos of a horse and a rhino, and told a unicorn is something in between, [children] can recognize the mythical creature in a picture book the first time they see it. …Now a new paper from the University of Waterloo in Ontario suggests that AI models should also be able to do this—a process the researchers call ‘less than one’-shot, or LO-shot, learning.”

FUTURE
Artificial General Intelligence: Are We Close, and Does It Even Make Sense to Try?
Will Douglas Heaven | MIT Technology Review
“A machine that could think like a person has been the guiding vision of AI research since the earliest days—and remains its most divisive idea. …So why is AGI controversial? Why does it matter? And is it a reckless, misleading dream—or the ultimate goal?”

HEALTH
The Race for a Super-Antibody Against the Coronavirus
Apoorva Mandavilli | The New York Times
“Dozens of companies and academic groups are racing to develop antibody therapies. …But some scientists are betting on a dark horse: Prometheus, a ragtag group of scientists who are months behind in the competition—and yet may ultimately deliver the most powerful antibody.”

SPACE
How to Build a Spacecraft to Save the World
Daniel Oberhaus | Wired
“The goal of the Double Asteroid Redirection Test, or DART, is to slam the [spacecraft] into a small asteroid orbiting a larger asteroid 7 million miles from Earth. …It should be able to change the asteroid’s orbit just enough to be detectable from Earth, demonstrating that this kind of strike could nudge an oncoming threat out of Earth’s way. Beyond that, everything is just an educated guess, which is exactly why NASA needs to punch an asteroid with a robot.”

TRANSPORTATION
Inside Gravity’s Daring Mission to Make Jetpacks a Reality
Oliver Franklin-Wallis | Wired
“The first time someone flies a jetpack, a curious thing happens: just as their body leaves the ground, their legs start to flail. …It’s as if the vestibular system can’t quite believe what’s happening. This isn’t natural. Then suddenly, thrust exceeds weight, and—they’re aloft. …It’s that moment, lift-off, that has given jetpacks an enduring appeal for over a century.”

FUTURE OF FOOD
Inside Singapore’s Huge Bet on Vertical Farming
Megan Tatum | MIT Technology Review
“…to cram all [of Singapore’s] gleaming towers and nearly 6 million people into a land mass half the size of Los Angeles, it has sacrificed many things, including food production. Farms make up no more than 1% of its total land (in the United States it’s 40%), forcing the small city-state to shell out around $10 billion each year importing 90% of its food. Here was an example of technology that could change all that.”

COMPUTING
The Effort to Build the Mathematical Library of the Future
Kevin Hartnett | Quanta
“Digitizing mathematics is a longtime dream. The expected benefits range from the mundane—computers grading students’ homework—to the transcendent: using artificial intelligence to discover new mathematics and find new solutions to old problems.”

Image credit: Kevin Mueller / Unsplash Continue reading

Posted in Human Robots

#437454 Scientists develop ...

Using a brain-inspired approach, scientists from Nanyang Technological University, Singapore (NTU Singapore) have developed a way for robots to have the artificial intelligence (AI) to recognize pain and to self-repair when damaged. Continue reading

Posted in Human Robots

#437451 Robot swarms follow instructions to ...

What if you could instruct a swarm of robots to paint a picture? The concept may sound far-fetched, but a recent study in open-access journal Frontiers in Robotics and AI has shown that it is possible. The robots in question move about a canvas leaving color trails in their wake, and in a first for robot-created art, an artist can select areas of the canvas to be painted a certain color and the robot team will oblige in real time. The technique illustrates the potential of robotics in creating art, and could be an interesting tool for artists. Continue reading

Posted in Human Robots

#437446 Can the voice of healthcare robots ...

Robots are gradually making their way into hospitals and other clinical facilities, providing basic assistance to doctors and patients. To facilitate their widespread use in health care settings, however, robotics researchers need to ensure that users feel at ease with robots and accept the help they can offer. This could potentially be achieved by developing robots that communicate in empathetic and compassionate ways. Continue reading

Posted in Human Robots