Tag Archives: mit

#437345 Moore’s Law Lives: Intel Says Chips ...

If you weren’t already convinced the digital world is taking over, you probably are now.

To keep the economy on life support as people stay home to stem the viral tide, we’ve been forced to digitize interactions at scale (for better and worse). Work, school, events, shopping, food, politics. The companies at the center of the digital universe are now powerhouses of the modern era—worth trillions and nearly impossible to avoid in daily life.

Six decades ago, this world didn’t exist.

A humble microchip in the early 1960s would have boasted a handful of transistors. Now, your laptop or smartphone runs on a chip with billions of transistors. As first described by Moore’s Law, this is possible because the number of transistors on a chip doubled with extreme predictability every two years for decades.

But now progress is faltering as the size of transistors approaches physical limits, and the money and time it takes to squeeze a few more onto a chip are growing. There’ve been many predictions that Moore’s Law is, finally, ending. But, perhaps also predictably, the company whose founder coined Moore’s Law begs to differ.

In a keynote presentation at this year’s Hot Chips conference, Intel’s chief architect, Raja Koduri, laid out a roadmap to increase transistor density—that is, the number of transistors you can fit on a chip—by a factor of 50.

“We firmly believe there is a lot more transistor density to come,” Koduri said. “The vision will play out over time—maybe a decade or more—but it will play out.”

Why the optimism?

Calling the end of Moore’s Law is a bit of a tradition. As Peter Lee, vice president at Microsoft Research, quipped to The Economist a few years ago, “The number of people predicting the death of Moore’s Law doubles every two years.” To date, prophets of doom have been premature, and though the pace is slowing, the industry continues to dodge death with creative engineering.

Koduri believes the trend will continue this decade and outlined the upcoming chip innovations Intel thinks can drive more gains in computing power.

Keeping It Traditional
First, engineers can further shrink today’s transistors. Fin field effect transistors (or FinFET) first hit the scene in the 2010s and have since pushed chip features past 14 and 10 nanometers (or nodes, as such size checkpoints are called). Korduri said FinFET will again triple chip density before it’s exhausted.

The Next Generation
FinFET will hand the torch off to nanowire transistors (also known as gate-all-around transistors).

Here’s how they’ll work. A transistor is made up of three basic components: the source, where current is introduced, the gate and channel, where current selectively flows, and the drain. The gate is like a light switch. It controls how much current flows through the channel. A transistor is “on” when the gate allows current to flow, and it’s off when no current flows. The smaller transistors get, the harder it is to control that current.

FinFET maintained fine control of current by surrounding the channel with a gate on three sides. Nanowire designs kick that up a notch by surrounding the channel with a gate on four sides (hence, gate-all-around). They’ve been in the works for years and are expected around 2025. Koduri said first-generation nanowire transistors will be followed by stacked nanowire transistors, and together, they’ll quadruple transistor density.

Building Up
Growing transistor density won’t only be about shrinking transistors, but also going 3D.

This is akin to how skyscrapers increase a city’s population density by adding more usable space on the same patch of land. Along those lines, Intel recently launched its Foveros chip design. Instead of laying a chip’s various “neighborhoods” next to each other in a 2D silicon sprawl, they’ve stacked them on top of each other like a layer cake. Chip stacking isn’t entirely new, but it’s advancing and being applied to general purpose CPUs, like the chips in your phone and laptop.

Koduri said 3D chip stacking will quadruple transistor density.

A Self-Fulfilling Prophecy
The technologies Koduri outlines are an evolution of the same general technology in use today. That is, we don’t need quantum computing or nanotube transistors to augment or replace silicon chips yet. Rather, as it’s done many times over the years, the chip industry will get creative with the design of its core product to realize gains for another decade.

Last year, veteran chip engineer Jim Keller, who at the time was Intel’s head of silicon engineering but has since left the company, told MIT Technology Review there are over a 100 variables driving Moore’s Law (including 3D architectures and new transistor designs). From the standpoint of pure performance, it’s also about how efficiently software uses all those transistors. Keller suggested that with some clever software tweaks “we could get chips that are a hundred times faster in 10 years.”

But whether Intel’s vision pans out as planned is far from certain.

Intel’s faced challenges recently, taking five years instead of two to move its chips from 14 nanometers to 10 nanometers. After a delay of six months for its 7-nanometer chips, it’s now a year behind schedule and lagging other makers who already offer 7-nanometer chips. This is a key point. Yes, chipmakers continue making progress, but it’s getting harder, more expensive, and timelines are stretching.

The question isn’t if Intel and competitors can cram more transistors onto a chip—which, Intel rival TSMC agrees is clearly possible—it’s how long will it take and at what cost?

That said, demand for more computing power isn’t going anywhere.

Amazon, Microsoft, Alphabet, Apple, and Facebook now make up a whopping 20 percent of the stock market’s total value. By that metric, tech is the most dominant industry in at least 70 years. And new technologies—from artificial intelligence and virtual reality to a proliferation of Internet of Things devices and self-driving cars—will demand better chips.

There’s ample motivation to push computing to its bitter limits and beyond. As is often said, Moore’s Law is a self-fulfilling prophecy, and likely whatever comes after it will be too.

Image credit: Laura Ockel / Unsplash Continue reading

Posted in Human Robots

#437303 The Deck Is Not Rigged: Poker and the ...

Tuomas Sandholm, a computer scientist at Carnegie Mellon University, is not a poker player—or much of a poker fan, in fact—but he is fascinated by the game for much the same reason as the great game theorist John von Neumann before him. Von Neumann, who died in 1957, viewed poker as the perfect model for human decision making, for finding the balance between skill and chance that accompanies our every choice. He saw poker as the ultimate strategic challenge, combining as it does not just the mathematical elements of a game like chess but the uniquely human, psychological angles that are more difficult to model precisely—a view shared years later by Sandholm in his research with artificial intelligence.

“Poker is the main benchmark and challenge program for games of imperfect information,” Sandholm told me on a warm spring afternoon in 2018, when we met in his offices in Pittsburgh. The game, it turns out, has become the gold standard for developing artificial intelligence.

Tall and thin, with wire-frame glasses and neat brow hair framing a friendly face, Sandholm is behind the creation of three computer programs designed to test their mettle against human poker players: Claudico, Libratus, and most recently, Pluribus. (When we met, Libratus was still a toddler and Pluribus didn’t yet exist.) The goal isn’t to solve poker, as such, but to create algorithms whose decision making prowess in poker’s world of imperfect information and stochastic situations—situations that are randomly determined and unable to be predicted—can then be applied to other stochastic realms, like the military, business, government, cybersecurity, even health care.

While the first program, Claudico, was summarily beaten by human poker players—“one broke-ass robot,” an observer called it—Libratus has triumphed in a series of one-on-one, or heads-up, matches against some of the best online players in the United States.

Libratus relies on three main modules. The first involves a basic blueprint strategy for the whole game, allowing it to reach a much faster equilibrium than its predecessor. It includes an algorithm called the Monte Carlo Counterfactual Regret Minimization, which evaluates all future actions to figure out which one would cause the least amount of regret. Regret, of course, is a human emotion. Regret for a computer simply means realizing that an action that wasn’t chosen would have yielded a better outcome than one that was. “Intuitively, regret represents how much the AI regrets having not chosen that action in the past,” says Sandholm. The higher the regret, the higher the chance of choosing that action next time.

It’s a useful way of thinking—but one that is incredibly difficult for the human mind to implement. We are notoriously bad at anticipating our future emotions. How much will we regret doing something? How much will we regret not doing something else? For us, it’s an emotionally laden calculus, and we typically fail to apply it in quite the right way. For a computer, it’s all about the computation of values. What does it regret not doing the most, the thing that would have yielded the highest possible expected value?

The second module is a sub-game solver that takes into account the mistakes the opponent has made so far and accounts for every hand she could possibly have. And finally, there is a self-improver. This is the area where data and machine learning come into play. It’s dangerous to try to exploit your opponent—it opens you up to the risk that you’ll get exploited right back, especially if you’re a computer program and your opponent is human. So instead of attempting to do that, the self-improver lets the opponent’s actions inform the areas where the program should focus. “That lets the opponent’s actions tell us where [they] think they’ve found holes in our strategy,” Sandholm explained. This allows the algorithm to develop a blueprint strategy to patch those holes.

It’s a very human-like adaptation, if you think about it. I’m not going to try to outmaneuver you head on. Instead, I’m going to see how you’re trying to outmaneuver me and respond accordingly. Sun-Tzu would surely approve. Watch how you’re perceived, not how you perceive yourself—because in the end, you’re playing against those who are doing the perceiving, and their opinion, right or not, is the only one that matters when you craft your strategy. Overnight, the algorithm patches up its overall approach according to the resulting analysis.

There’s one final thing Libratus is able to do: play in situations with unknown probabilities. There’s a concept in game theory known as the trembling hand: There are branches of the game tree that, under an optimal strategy, one should theoretically never get to; but with some probability, your all-too-human opponent’s hand trembles, they take a wrong action, and you’re suddenly in a totally unmapped part of the game. Before, that would spell disaster for the computer: An unmapped part of the tree means the program no longer knows how to respond. Now, there’s a contingency plan.

Of course, no algorithm is perfect. When Libratus is playing poker, it’s essentially working in a zero-sum environment. It wins, the opponent loses. The opponent wins, it loses. But while some real-life interactions really are zero-sum—cyber warfare comes to mind—many others are not nearly as straightforward: My win does not necessarily mean your loss. The pie is not fixed, and our interactions may be more positive-sum than not.

What’s more, real-life applications have to contend with something that a poker algorithm does not: the weights that are assigned to different elements of a decision. In poker, this is a simple value-maximizing process. But what is value in the human realm? Sandholm had to contend with this before, when he helped craft the world’s first kidney exchange. Do you want to be more efficient, giving the maximum number of kidneys as quickly as possible—or more fair, which may come at a cost to efficiency? Do you want as many lives as possible saved—or do some take priority at the cost of reaching more? Is there a preference for the length of the wait until a transplant? Do kids get preference? And on and on. It’s essential, Sandholm says, to separate means and the ends. To figure out the ends, a human has to decide what the goal is.

“The world will ultimately become a lot safer with the help of algorithms like Libratus,” Sandholm told me. I wasn’t sure what he meant. The last thing that most people would do is call poker, with its competition, its winners and losers, its quest to gain the maximum edge over your opponent, a haven of safety.

“Logic is good, and the AI is much better at strategic reasoning than humans can ever be,” he explained. “It’s taking out irrationality, emotionality. And it’s fairer. If you have an AI on your side, it can lift non-experts to the level of experts. Naïve negotiators will suddenly have a better weapon. We can start to close off the digital divide.”

It was an optimistic note to end on—a zero-sum, competitive game yielding a more ultimately fair and rational world.

I wanted to learn more, to see if it was really possible that mathematics and algorithms could ultimately be the future of more human, more psychological interactions. And so, later that day, I accompanied Nick Nystrom, the chief scientist of the Pittsburgh Supercomputing Center—the place that runs all of Sandholm’s poker-AI programs—to the actual processing center that make undertakings like Libratus possible.

A half-hour drive found us in a parking lot by a large glass building. I’d expected something more futuristic, not the same square, corporate glass squares I’ve seen countless times before. The inside, however, was more promising. First the security checkpoint. Then the ride in the elevator — down, not up, to roughly three stories below ground, where we found ourselves in a maze of corridors with card readers at every juncture to make sure you don’t slip through undetected. A red-lit panel formed the final barrier, leading to a small sliver of space between two sets of doors. I could hear a loud hum coming from the far side.

“Let me tell you what you’re going to see before we walk in,” Nystrom told me. “Once we get inside, it will be too loud to hear.”

I was about to witness the heart of the supercomputing center: 27 large containers, in neat rows, each housing multiple processors with speeds and abilities too great for my mind to wrap around. Inside, the temperature is by turns arctic and tropic, so-called “cold” rows alternating with “hot”—fans operate around the clock to cool the processors as they churn through millions of giga, mega, tera, peta and other ever-increasing scales of data bytes. In the cool rows, robotic-looking lights blink green and blue in orderly progression. In the hot rows, a jumble of multicolored wires crisscrosses in tangled skeins.

In the corners stood machines that had outlived their heyday. There was Sherlock, an old Cray model, that warmed my heart. There was a sad nameless computer, whose anonymity was partially compensated for by the Warhol soup cans adorning its cage (an homage to Warhol’s Pittsburghian origins).

And where does Libratus live, I asked? Which of these computers is Bridges, the computer that runs the AI Sandholm and I had been discussing?

Bridges, it turned out, isn’t a single computer. It’s a system with processing power beyond comprehension. It takes over two and a half petabytes to run Libratus. A single petabyte is a million gigabytes: You could watch over 13 years of HD video, store 10 billion photos, catalog the contents of the entire Library of Congress word for word. That’s a whole lot of computing power. And that’s only to succeed at heads-up poker, in limited circumstances.

Yet despite the breathtaking computing power at its disposal, Libratus is still severely limited. Yes, it beat its opponents where Claudico failed. But the poker professionals weren’t allowed to use many of the tools of their trade, including the opponent analysis software that they depend on in actual online games. And humans tire. Libratus can churn for a two-week marathon, where the human mind falters.

But there’s still much it can’t do: play more opponents, play live, or win every time. There’s more humanity in poker than Libratus has yet conquered. “There’s this belief that it’s all about statistics and correlations. And we actually don’t believe that,” Nystrom explained as we left Bridges behind. “Once in a while correlations are good, but in general, they can also be really misleading.”

Two years later, the Sandholm lab will produce Pluribus. Pluribus will be able to play against five players—and will run on a single computer. Much of the human edge will have evaporated in a short, very short time. The algorithms have improved, as have the computers. AI, it seems, has gained by leaps and bounds.

So does that mean that, ultimately, the algorithmic can indeed beat out the human, that computation can untangle the web of human interaction by discerning “the little tactics of deception, of asking yourself what is the other man going to think I mean to do,” as von Neumann put it?

Long before I’d spoken to Sandholm, I’d met Kevin Slavin, a polymath of sorts whose past careers have including founding a game design company and an interactive art space and launching the Playful Systems group at MIT’s Media Lab. Slavin has a decidedly different view from the creators of Pluribus. “On the one hand, [von Neumann] was a genius,” Kevin Slavin reflects. “But the presumptuousness of it.”

Slavin is firmly on the side of the gambler, who recognizes uncertainty for what it is and thus is able to take calculated risks when necessary, all the while tampering confidence at the outcome. The most you can do is put yourself in the path of luck—but to think you can guess with certainty the actual outcome is a presumptuousness the true poker player foregoes. For Slavin, the wonder of computers is “That they can generate this fabulous, complex randomness.” His opinion of the algorithmic assaults on chance? “This is their moment,” he said. “But it’s the exact opposite of what’s really beautiful about a computer, which is that it can do something that’s actually unpredictable. That, to me, is the magic.”

Will they actually succeed in making the unpredictable predictable, though? That’s what I want to know. Because everything I’ve seen tells me that absolute success is impossible. The deck is not rigged.

“It’s an unbelievable amount of work to get there. What do you get at the end? Let’s say they’re successful. Then we live in a world where there’s no God, agency, or luck,” Slavin responded.

“I don’t want to live there,’’ he added “I just don’t want to live there.”

Luckily, it seems that for now, he won’t have to. There are more things in life than are yet written in the algorithms. We have no reliable lie detection software—whether in the face, the skin, or the brain. In a recent test of bluffing in poker, computer face recognition failed miserably. We can get at discomfort, but we can’t get at the reasons for that discomfort: lying, fatigue, stress—they all look much the same. And humans, of course, can also mimic stress where none exists, complicating the picture even further.

Pluribus may turn out to be powerful, but von Neumann’s challenge still stands: The true nature of games, the most human of the human, remains to be conquered.

This article was originally published on Undark. Read the original article.

Image Credit: José Pablo Iglesias / Unsplash Continue reading

Posted in Human Robots

#437282 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
OpenAI’s Latest Breakthrough Is Astonishingly Powerful, But Still Fighting Its Flaws
James Vincent | The Verge
“What makes GPT-3 amazing, they say, is not that it can tell you that the capital of Paraguay is Asunción (it is) or that 466 times 23.5 is 10,987 (it’s not), but that it’s capable of answering both questions and many more beside simply because it was trained on more data for longer than other programs. If there’s one thing we know that the world is creating more and more of, it’s data and computing power, which means GPT-3’s descendants are only going to get more clever.”

TECHNOLOGY
I Tried to Live Without the Tech Giants. It Was Impossible.
Kashmir Hill | The New York Times
“Critics of the big tech companies are often told, ‘If you don’t like the company, don’t use its products.’ My takeaway from the experiment was that it’s not possible to do that. It’s not just the products and services branded with the big tech giant’s name. It’s that these companies control a thicket of more obscure products and services that are hard to untangle from tools we rely on for everything we do, from work to getting from point A to point B.”

ROBOTICS
Meet the Engineer Who Let a Robot Barber Shave Him With a Straight Razor
Luke Dormehl | Digital Trends
“No, it’s not some kind of lockdown-induced barber startup or a Jackass-style stunt. Instead, Whitney, assistant professor of mechanical and industrial engineering at Northeastern University School of Engineering, was interested in straight-razor shaving as a microcosm for some of the big challenges that robots have faced in the past (such as their jerky, robotic movement) and how they can now be solved.”

LONGEVITY
Can Trees Live Forever? New Kindling in an Immortal Debate
Cara Giaimo | The New York Times
“Even if a scientist dedicated her whole career to very old trees, she would be able to follow her research subjects for only a small percentage of their lives. And a long enough multigenerational study might see its own methods go obsolete. For these reasons, Dr. Munné-Bosch thinks we will never prove’ whether long-lived trees experience senescence…”

BIOTECH
There’s No Such Thing as Family Secrets in the Age of 23andMe
Caitlin Harrington | Wired
“…technology has a way of creating new consequences for old decisions. Today, some 30 million people have taken consumer DNA tests, a threshold experts have called a tipping point. People conceived through donor insemination are matching with half-siblings, tracking down their donors, forming networks and advocacy organizations.”

ETHICS
The Problems AI Has Today Go Back Centuries
Karen Hao | MIT Techology Review
“In 2018, just as the AI field was beginning to reckon with problems like algorithmic discrimination, [Shakir Mohamed, a South African AI researcher at DeepMind], penned a blog post with his initial thoughts. In it he called on researchers to ‘decolonise artificial intelligence’—to reorient the field’s work away from Western hubs like Silicon Valley and engage new voices, cultures, and ideas for guiding the technology’s development.”

INTERNET
AI-Generated Text Is the Scariest Deepfake of All
Renee DiResta | Wired
“In the future, deepfake videos and audiofakes may well be used to create distinct, sensational moments that commandeer a press cycle, or to distract from some other, more organic scandal. But undetectable textfakes—masked as regular chatter on Twitter, Facebook, Reddit, and the like—have the potential to be far more subtle, far more prevalent, and far more sinister.”

Image credit: Adrien Olichon / Unsplash Continue reading

Posted in Human Robots

#437276 Cars Will Soon Be Able to Sense and ...

Imagine you’re on your daily commute to work, driving along a crowded highway while trying to resist looking at your phone. You’re already a little stressed out because you didn’t sleep well, woke up late, and have an important meeting in a couple hours, but you just don’t feel like your best self.

Suddenly another car cuts you off, coming way too close to your front bumper as it changes lanes. Your already-simmering emotions leap into overdrive, and you lay on the horn and shout curses no one can hear.

Except someone—or, rather, something—can hear: your car. Hearing your angry words, aggressive tone, and raised voice, and seeing your furrowed brow, the onboard computer goes into “soothe” mode, as it’s been programmed to do when it detects that you’re angry. It plays relaxing music at just the right volume, releases a puff of light lavender-scented essential oil, and maybe even says some meditative quotes to calm you down.

What do you think—creepy? Helpful? Awesome? Weird? Would you actually calm down, or get even more angry that a car is telling you what to do?

Scenarios like this (maybe without the lavender oil part) may not be imaginary for much longer, especially if companies working to integrate emotion-reading artificial intelligence into new cars have their way. And it wouldn’t just be a matter of your car soothing you when you’re upset—depending what sort of regulations are enacted, the car’s sensors, camera, and microphone could collect all kinds of data about you and sell it to third parties.

Computers and Feelings
Just as AI systems can be trained to tell the difference between a picture of a dog and one of a cat, they can learn to differentiate between an angry tone of voice or facial expression and a happy one. In fact, there’s a whole branch of machine intelligence devoted to creating systems that can recognize and react to human emotions; it’s called affective computing.

Emotion-reading AIs learn what different emotions look and sound like from large sets of labeled data; “smile = happy,” “tears = sad,” “shouting = angry,” and so on. The most sophisticated systems can likely even pick up on the micro-expressions that flash across our faces before we consciously have a chance to control them, as detailed by Daniel Goleman in his groundbreaking book Emotional Intelligence.

Affective computing company Affectiva, a spinoff from MIT Media Lab, says its algorithms are trained on 5,313,751 face videos (videos of people’s faces as they do an activity, have a conversation, or react to stimuli) representing about 2 billion facial frames. Fascinatingly, Affectiva claims its software can even account for cultural differences in emotional expression (for example, it’s more normalized in Western cultures to be very emotionally expressive, whereas Asian cultures tend to favor stoicism and politeness), as well as gender differences.

But Why?
As reported in Motherboard, companies like Affectiva, Cerence, Xperi, and Eyeris have plans in the works to partner with automakers and install emotion-reading AI systems in new cars. Regulations passed last year in Europe and a bill just introduced this month in the US senate are helping make the idea of “driver monitoring” less weird, mainly by emphasizing the safety benefits of preemptive warning systems for tired or distracted drivers (remember that part in the beginning about sneaking glances at your phone? Yeah, that).

Drowsiness and distraction can’t really be called emotions, though—so why are they being lumped under an umbrella that has a lot of other implications, including what many may consider an eerily Big Brother-esque violation of privacy?

Our emotions, in fact, are among the most private things about us, since we are the only ones who know their true nature. We’ve developed the ability to hide and disguise our emotions, and this can be a useful skill at work, in relationships, and in scenarios that require negotiation or putting on a game face.

And I don’t know about you, but I’ve had more than one good cry in my car. It’s kind of the perfect place for it; private, secluded, soundproof.

Putting systems into cars that can recognize and collect data about our emotions under the guise of preventing accidents due to the state of mind of being distracted or the physical state of being sleepy, then, seems a bit like a bait and switch.

A Highway to Privacy Invasion?
European regulations will help keep driver data from being used for any purpose other than ensuring a safer ride. But the US is lagging behind on the privacy front, with car companies largely free from any enforceable laws that would keep them from using driver data as they please.

Affectiva lists the following as use cases for occupant monitoring in cars: personalizing content recommendations, providing alternate route recommendations, adapting environmental conditions like lighting and heating, and understanding user frustration with virtual assistants and designing those assistants to be emotion-aware so that they’re less frustrating.

Our phones already do the first two (though, granted, we’re not supposed to look at them while we drive—but most cars now let you use bluetooth to display your phone’s content on the dashboard), and the third is simply a matter of reaching a hand out to turn a dial or press a button. The last seems like a solution for a problem that wouldn’t exist without said… solution.

Despite how unnecessary and unsettling it may seem, though, emotion-reading AI isn’t going away, in cars or other products and services where it might provide value.

Besides automotive AI, Affectiva also makes software for clients in the advertising space. With consent, the built-in camera on users’ laptops records them while they watch ads, gauging their emotional response, what kind of marketing is most likely to engage them, and how likely they are to buy a given product. Emotion-recognition tech is also being used or considered for use in mental health applications, call centers, fraud monitoring, and education, among others.

In a 2015 TED talk, Affectiva co-founder Rana El-Kaliouby told her audience that we’re living in a world increasingly devoid of emotion, and her goal was to bring emotions back into our digital experiences. Soon they’ll be in our cars, too; whether the benefits will outweigh the costs remains to be seen.

Image Credit: Free-Photos from Pixabay Continue reading

Posted in Human Robots

#437267 This Week’s Awesome Tech Stories From ...

ARTIFICIAL INTELLIGENCE
OpenAI’s New Language Generator GPT-3 Is Shockingly Good—and Completely Mindless
Will Douglas Heaven | MIT Technology Review
“‘Playing with GPT-3 feels like seeing the future,’ Arram Sabeti, a San Francisco–based developer and artist, tweeted last week. That pretty much sums up the response on social media in the last few days to OpenAI’s latest language-generating AI.”

ROBOTICS
The Star of This $70 Million Sci-Fi Film Is a Robot
Sarah Bahr | The New York Times
“Erica was created by Hiroshi Ishiguro, a roboticist at Osaka University in Japan, to be ‘the most beautiful woman in the world’—he modeled her after images of Miss Universe pageant finalists—and the most humanlike robot in existence. But she’s more than just a pretty face: Though ‘b’ is still in preproduction, when she makes her debut, producers believe it will be the first time a film has relied on a fully autonomous artificially intelligent actor.”

VIRTUAL REALITY
My Glitchy, Glorious Day at a Conference for Virtual Beings
Emma Grey Ellis | Wired
“Spectators spent much of the time debating who was real and who was fake. …[Lars Buttler’s] eyes seemed awake and alive in a way that the faces of the other participants in the Zoom call—venture capitalist, a tech founder, and an activist, all of them puppeted by artificial intelligence—were not. ‘Pretty sure Lars is human,’ a (real-person) spectator typed in the in-meeting chat room. ‘I’m starting to think Lars is AI,’ wrote another.”

FUTURE OF FOOD
KFC Is Working With a Russian 3D Bioprinting Firm to Try to Make Lab-Produced Chicken Nuggets
Kim Lyons | The Verge
“The chicken restaurant chain will work with Russian company 3D Bioprinting Solutions to develop bioprinting technology that will ‘print’ chicken meat, using chicken cells and plant material. KFC plans to provide the bioprinting firm with ingredients like breading and spices ‘to achieve the signature KFC taste’ and will seek to replicate the taste and texture of genuine chicken.”

BIOTECH
A CRISPR Cow Is Born. It’s Definitely a Boy
Megan Molteni | Wired
“After nearly five years of research, at least half a million dollars, dozens of failed pregnancies, and countless scientific setbacks, Van Eenennaam’s pioneering attempt to create a line of Crispr’d cattle tailored to the needs of the beef industry all came down to this one calf. Who, as luck seemed sure to have it, was about to enter the world in the middle of a global pandemic.”

GOVERNANCE
Is the Pandemic Finally the Moment for a Universal Basic Income?
Brooks Rainwater and Clay Dillow | Fast Company
“Since February, governments around the globe—including in the US—have intervened in their citizens’ individual financial lives, distributing direct cash payments to backstop workers sidelined by the COVID-19 pandemic. Some are considering keeping such direct assistance in place indefinitely, or at least until the economic shocks subside.”

SCIENCE
How Gödel’s Proof Works
Natalie Wolchover | Wired
“In 1931, the Austrian logician Kurt Gödel pulled off arguably one of the most stunning intellectual achievements in history. Mathematicians of the era sought a solid foundation for mathematics: a set of basic mathematical facts, or axioms, that was both consistent—never leading to contradictions—and complete, serving as the building blocks of all mathematical truths. But Gödel’s shocking incompleteness theorems, published when he was just 25, crushed that dream.”

Image credit: Pierre Châtel-Innocenti / Unsplash Continue reading

Posted in Human Robots