#433634 This Robotic Skin Makes Inanimate ...In Goethe’s poem “The Sorcerer’s Apprentice,” made world-famous by its adaptation in Disney’s Fantasia, a lazy apprentice, left to fetch water, uses magic to bewitch a broom into performing his chores for him. Now, new research from Yale has opened up the possibility of being able to animate—and automate—household objects by fitting them with a robotic skin. Yale’s Soft Robotics lab, the Faboratory, is led by Professor Rebecca Kramer-Bottiglio, and has long investigated the possibilities associated with new kinds of manufacturing. While the typical image of a robot is hard, cold steel and rigid movements, soft robotics aims to create something more flexible and versatile. After all, the human body is made up of soft, flexible surfaces, and the world is designed for us. Soft, deformable robots could change shape to adapt to different tasks. When designing a robot, key components are the robot’s sensors, which allow it to perceive its environment, and its actuators, the electrical or pneumatic motors that allow the robot to move and interact with its environment. Consider your hand, which has temperature and pressure sensors, but also muscles as actuators. The omni-skins, as the Science Robotics paper dubs them, combine sensors and actuators, embedding them into an elastic sheet. The robotic skins are moved by pneumatic actuators or memory alloy that can bounce back into shape. If this is then wrapped around a soft, deformable object, moving the skin with the actuators can allow the object to crawl along a surface. The key to the design here is flexibility: rather than adding chips, sensors, and motors into every household object to turn them into individual automatons, the same skin can be used for many purposes. “We can take the skins and wrap them around one object to perform a task—locomotion, for example—and then take them off and put them on a different object to perform a different task, such as grasping and moving an object,” said Kramer-Bottiglio. “We can then take those same skins off that object and put them on a shirt to make an active wearable device.” The task is then to dream up applications for the omni-skins. Initially, you might imagine demanding a stuffed toy to fetch the remote control for you, or animating a sponge to wipe down kitchen surfaces—but this is just the beginning. The scientists attached the skins to a soft tube and camera, creating a worm-like robot that could compress itself and crawl into small spaces for rescue missions. The same skins could then be worn by a person to sense their posture. One could easily imagine this being adapted into a soft exoskeleton for medical or industrial purposes: for example, helping with rehabilitation after an accident or injury. The initial motivating factor for creating the robots was in an environment where space and weight are at a premium, and humans are forced to improvise with whatever’s at hand: outer space. Kramer-Bottoglio originally began the work after NASA called out for soft robotics systems for use by astronauts. Instead of wasting valuable rocket payload by sending up a heavy metal droid like ATLAS to fetch items or perform repairs, soft robotic skins with modular sensors could be adapted for a range of different uses spontaneously. By reassembling components in the soft robotic skin, a crumpled ball of paper could provide the chassis for a robot that performs repairs on the spaceship, or explores the lunar surface. The dynamic compression provided by the robotic skin could be used for g-suits to protect astronauts when they rapidly accelerate or decelerate. “One of the main things I considered was the importance of multi-functionality, especially for deep space exploration where the environment is unpredictable. The question is: How do you prepare for the unknown unknowns? … Given the design-on-the-fly nature of this approach, it’s unlikely that a robot created using robotic skins will perform any one task optimally,” Kramer-Bottiglio said. “However, the goal is not optimization, but rather diversity of applications.” There are still problems to resolve. Many of the videos of the skins indicate that they can rely on an external power supply. Creating new, smaller batteries that can power wearable devices has been a focus of cutting-edge materials science research for some time. Much of the lab’s expertise is in creating flexible, stretchable electronics that can be deformed by the actuators without breaking the circuitry. In the future, the team hopes to work on streamlining the production process; if the components could be 3D printed, then the skins could be created when needed. In addition, robotic hardware that’s capable of performing an impressive range of precise motions is quite an advanced technology. The software to control those robots, and enable them to perform a variety of tasks, is quite another challenge. With soft robots, it can become even more complex to design that control software, because the body itself can change shape and deform as the robot moves. The same set of programmed motions, then, can produce different results depending on the environment. “Let’s say I have a soft robot with four legs that crawls along the ground, and I make it walk up a hard slope,” Dr. David Howard, who works on robotics at CSIRO in Australia, explained to ABC. “If I make that slope out of gravel and I give it the same control commands, the actual body is going to deform in a different way, and I’m not necessarily going to know what that is.” Despite these and other challenges, research like that at the Faboratory still hopes to redefine how we think of robots and robotics. Instead of a robot that imitates a human and manipulates objects, the objects themselves will become programmable matter, capable of moving autonomously and carrying out a range of tasks. Futurists speculate about a world where most objects are automated to some degree and can assemble and repair themselves, or are even built entirely of tiny robots. The tale of the Sorcerer’s Apprentice was first written in 1797, at the dawn of the industrial revolution, over a century before the word “robot” was even coined. Yet more and more roboticists aim to prove Arthur C Clarke’s maxim: any sufficiently advanced technology is indistinguishable from magic. Image Credit: Joran Booth, The Faboratory
This entry was posted in Human Robots and tagged 3d, 3D printed, accident, advanced technology, applications, astronauts, ATLAS, australia, automated, back, before, body, built, camera, can, challenge, consider, control, create, created, cutting, david, deep, deformed, design, device, different, disney, dr, dream, droid, dynamic, electronics, environment, every, exoskeleton, explained, first, Flexibility, Flexible, fly, future, goal, going, grasping, hand, hard, helping, here, household, human, humans, industrial, interact, lab, LED, legs, locomotion, lunar, makes, manufacturing, many, medical, memory, might, modular, movements, muscles, nasa, nature, new, object, pneumatic, poem, posture, power, production, professor, programmed, rather, remote, rescue, research, robot, robotic, robotics, robots, say, science, Science Robotics, sense, sensors, shape, skin, small, something, Space, spaces, steel, systems, TAKE, technology, think, time, tiny, toy, unknown, videos, walk, way, weight, work, world. Bookmark the permalink.
|
-
Humanoid Gallery
Popular Searches
Copyright © 2025 Android Humanoid - All Rights Reserved
All trademarks and copyrights owned by their respective owners and are used for illustration only