Tag Archives: muscles

#439110 Robotic Exoskeletons Could One Day Walk ...

Engineers, using artificial intelligence and wearable cameras, now aim to help robotic exoskeletons walk by themselves.

Increasingly, researchers around the world are developing lower-body exoskeletons to help people walk. These are essentially walking robots users can strap to their legs to help them move.

One problem with such exoskeletons: They often depend on manual controls to switch from one mode of locomotion to another, such as from sitting to standing, or standing to walking, or walking on the ground to walking up or down stairs. Relying on joysticks or smartphone apps every time you want to switch the way you want to move can prove awkward and mentally taxing, says Brokoslaw Laschowski, a robotics researcher at the University of Waterloo in Canada.

Scientists are working on automated ways to help exoskeletons recognize when to switch locomotion modes — for instance, using sensors attached to legs that can detect bioelectric signals sent from your brain to your muscles telling them to move. However, this approach comes with a number of challenges, such as how how skin conductivity can change as a person’s skin gets sweatier or dries off.

Now several research groups are experimenting with a new approach: fitting exoskeleton users with wearable cameras to provide the machines with vision data that will let them operate autonomously. Artificial intelligence (AI) software can analyze this data to recognize stairs, doors, and other features of the surrounding environment and calculate how best to respond.

Laschowski leads the ExoNet project, the first open-source database of high-resolution wearable camera images of human locomotion scenarios. It holds more than 5.6 million images of indoor and outdoor real-world walking environments. The team used this data to train deep-learning algorithms; their convolutional neural networks can already automatically recognize different walking environments with 73 percent accuracy “despite the large variance in different surfaces and objects sensed by the wearable camera,” Laschowski notes.

According to Laschowski, a potential limitation of their work their reliance on conventional 2-D images, whereas depth cameras could also capture potentially useful distance data. He and his collaborators ultimately chose not to rely on depth cameras for a number of reasons, including the fact that the accuracy of depth measurements typically degrades in outdoor lighting and with increasing distance, he says.

In similar work, researchers in North Carolina had volunteers with cameras either mounted on their eyeglasses or strapped onto their knees walk through a variety of indoor and outdoor settings to capture the kind of image data exoskeletons might use to see the world around them. The aim? “To automate motion,” says Edgar Lobaton an electrical engineering researcher at North Carolina State University. He says they are focusing on how AI software might reduce uncertainty due to factors such as motion blur or overexposed images “to ensure safe operation. We want to ensure that we can really rely on the vision and AI portion before integrating it into the hardware.”

In the future, Laschowski and his colleagues will focus on improving the accuracy of their environmental analysis software with low computational and memory storage requirements, which are important for onboard, real-time operations on robotic exoskeletons. Lobaton and his team also seek to account for uncertainty introduced into their visual systems by movements .

Ultimately, the ExoNet researchers want to explore how AI software can transmit commands to exoskeletons so they can perform tasks such as climbing stairs or avoiding obstacles based on a system’s analysis of a user's current movements and the upcoming terrain. With autonomous cars as inspiration, they are seeking to develop autonomous exoskeletons that can handle the walking task without human input, Laschowski says.

However, Laschowski adds, “User safety is of the utmost importance, especially considering that we're working with individuals with mobility impairments,” resulting perhaps from advanced age or physical disabilities.
“The exoskeleton user will always have the ability to override the system should the classification algorithm or controller make a wrong decision.” Continue reading

Posted in Human Robots

#439077 How Scientists Grew Human Muscles in Pig ...

The little pigs bouncing around the lab looked exceedingly normal. Yet their adorable exterior hid a remarkable secret: each piglet carried two different sets of genes. For now, both sets came from their own species. But one day, one of those sets may be human.

The piglets are chimeras—creatures with intermingled sets of genes, as if multiple entities were seamlessly mashed together. Named after the Greek lion-goat-serpent monsters, chimeras may hold the key to an endless supply of human organs and tissues for transplant. The crux is growing these human parts in another animal—one close enough in size and function to our own.

Last week, a team from the University of Minnesota unveiled two mind-bending chimeras. One was joyous little piglets, each propelled by muscles grown from a different pig. Another was pig embryos, transplanted into surrogate pigs, that developed human muscles for more than 20 days.

The study, led by Drs. Mary and Daniel Garry at the University of Minnesota, had a therapeutic point: engineering a brilliant way to replace muscle loss, especially for the muscles around our skeletons that allow us to move and navigate the world. Trauma and injury, such as from firearm wounds or car crashes, can damage muscle tissue beyond the point of repair. Unfortunately, muscles are also stubborn in that donor tissue from cadavers doesn’t usually “take” at the injury site. For now, there are no effective treatments for severe muscle death, called volumetric muscle loss.

The new human-pig hybrids are designed to tackle this problem. Muscle wasting aside, the study also points to a clever “hack” that increases the amount of human tissue inside a growing pig embryo.

If further improved, the technology could “provide an unlimited supply of organs for transplantation,” said Dr. Mary Garry to Inverse. What’s more, because the human tissue can be sourced from patients themselves, the risk of rejection by the immune system is relatively low—even when grown inside a pig.

“The shortage of organs for heart transplantation, vascular grafting, and skeletal muscle is staggering,” said Garry. Human-animal chimeras could have a “seismic impact” that transforms organ transplantation and helps solve the organ shortage crisis.

That is, if society accepts the idea of a semi-humanoid pig.

Wait…But How?
The new study took a page from previous chimera recipes.

The main ingredients and steps go like this: first, you need an embryo that lacks the ability to develop a tissue or organ. This leaves an “empty slot” of sorts that you can fill with another set of genes—pig, human, or even monkey.

Second, you need to fine-tune the recipe so that the embryos “take” the new genes, incorporating them into their bodies as if they were their own. Third, the new genes activate to instruct the growing embryo to make the necessary tissue or organs without harming the overall animal. Finally, the foreign genes need to stay put, without cells migrating to another body part—say, the brain.

Not exactly straightforward, eh? The piglets are technological wonders that mix cutting-edge gene editing with cloning technologies.

The team went for two chimeras: one with two sets of pig genes, the other with a pig and human mix. Both started with a pig embryo that can’t make its own skeletal muscles (those are the muscles surrounding your bones). Using CRISPR, the gene-editing Swiss Army Knife, they snipped out three genes that are absolutely necessary for those muscles to develop. Like hitting a bullseye with three arrows simultaneously, it’s already a technological feat.

Here’s the really clever part: the muscles around your bones have a slightly different genetic makeup than the ones that line your blood vessels or the ones that pump your heart. While the resulting pig embryos had severe muscle deformities as they developed, their hearts beat as normal. This means the gene editing cut only impacted skeletal muscles.

Then came step two: replacing the missing genes. Using a microneedle, the team injected a fertilized and slightly developed pig egg—called a blastomere—into the embryo. If left on its natural course, a blastomere eventually develops into another embryo. This step “smashes” the two sets of genes together, with the newcomer filling the muscle void. The hybrid embryo was then placed into a surrogate, and roughly four months later, chimeric piglets were born.

Equipped with foreign DNA, the little guys nevertheless seemed totally normal, nosing around the lab and running everywhere without obvious clumsy stumbles. Under the microscope, their “xenomorph” muscles were indistinguishable from run-of-the-mill average muscle tissue—no signs of damage or inflammation, and as stretchy and tough as muscles usually are. What’s more, the foreign DNA seemed to have only developed into muscles, even though they were prevalent across the body. Extensive fishing experiments found no trace of the injected set of genes inside blood vessels or the brain.

A Better Human-Pig Hybrid
Confident in their recipe, the team next repeated the experiment with human cells, with a twist. Instead of using controversial human embryonic stem cells, which are obtained from aborted fetuses, they relied on induced pluripotent stem cells (iPSCs). These are skin cells that have been reverted back into a stem cell state.

Unlike previous attempts at making human chimeras, the team then scoured the genetic landscape of how pig and human embryos develop to find any genetic “brakes” that could derail the process. One gene, TP53, stood out, which was then promptly eliminated with CRISPR.

This approach provides a way for future studies to similarly increase the efficiency of interspecies chimeras, the team said.

The human-pig embryos were then carefully grown inside surrogate pigs for less than a month, and extensively analyzed. By day 20, the hybrids had already grown detectable human skeletal muscle. Similar to the pig-pig chimeras, the team didn’t detect any signs that the human genes had sprouted cells that would eventually become neurons or other non-muscle cells.

For now, human-animal chimeras are not allowed to grow to term, in part to stem the theoretical possibility of engineering humanoid hybrid animals (shudder). However, a sentient human-pig chimera is something that the team specifically addressed. Through multiple experiments, they found no trace of human genes in the embryos’ brain stem cells 20 and 27 days into development. Similarly, human donor genes were absent in cells that would become the hybrid embryos’ reproductive cells.

Despite bioethical quandaries and legal restrictions, human-animal chimeras have taken off, both as a source of insight into human brain development and a well of personalized organs and tissues for transplant. In 2019, Japan lifted its ban on developing human brain cells inside animal embryos, as well as the term limit—to global controversy. There’s also the question of animal welfare, given that hybrid clones will essentially become involuntary organ donors.

As the debates rage on, scientists are nevertheless pushing the limits of human-animal chimeras, while treading as carefully as possible.

“Our data…support the feasibility of the generation of these interspecies chimeras, which will serve as a model for translational research or, one day, as a source for xenotransplantation,” the team said.

Image Credit: Christopher Carson on Unsplash Continue reading

Posted in Human Robots

#438982 Quantum Computing and Reinforcement ...

Deep reinforcement learning is having a superstar moment.

Powering smarter robots. Simulating human neural networks. Trouncing physicians at medical diagnoses and crushing humanity’s best gamers at Go and Atari. While far from achieving the flexible, quick thinking that comes naturally to humans, this powerful machine learning idea seems unstoppable as a harbinger of better thinking machines.

Except there’s a massive roadblock: they take forever to run. Because the concept behind these algorithms is based on trial and error, a reinforcement learning AI “agent” only learns after being rewarded for its correct decisions. For complex problems, the time it takes an AI agent to try and fail to learn a solution can quickly become untenable.

But what if you could try multiple solutions at once?

This week, an international collaboration led by Dr. Philip Walther at the University of Vienna took the “classic” concept of reinforcement learning and gave it a quantum spin. They designed a hybrid AI that relies on both quantum and run-of-the-mill classic computing, and showed that—thanks to quantum quirkiness—it could simultaneously screen a handful of different ways to solve a problem.

The result is a reinforcement learning AI that learned over 60 percent faster than its non-quantum-enabled peers. This is one of the first tests that shows adding quantum computing can speed up the actual learning process of an AI agent, the authors explained.

Although only challenged with a “toy problem” in the study, the hybrid AI, once scaled, could impact real-world problems such as building an efficient quantum internet. The setup “could readily be integrated within future large-scale quantum communication networks,” the authors wrote.

The Bottleneck
Learning from trial and error comes intuitively to our brains.

Say you’re trying to navigate a new convoluted campground without a map. The goal is to get from the communal bathroom back to your campsite. Dead ends and confusing loops abound. We tackle the problem by deciding to turn either left or right at every branch in the road. One will get us closer to the goal; the other leads to a half hour of walking in circles. Eventually, our brain chemistry rewards correct decisions, so we gradually learn the correct route. (If you’re wondering…yeah, true story.)

Reinforcement learning AI agents operate in a similar trial-and-error way. As a problem becomes more complex, the number—and time—of each trial also skyrockets.

“Even in a moderately realistic environment, it may simply take too long to rationally respond to a given situation,” explained study author Dr. Hans Briegel at the Universität Innsbruck in Austria, who previously led efforts to speed up AI decision-making using quantum mechanics. If there’s pressure that allows “only a certain time for a response, an agent may then be unable to cope with the situation and to learn at all,” he wrote.

Many attempts have tried speeding up reinforcement learning. Giving the AI agent a short-term “memory.” Tapping into neuromorphic computing, which better resembles the brain. In 2014, Briegel and colleagues showed that a “quantum brain” of sorts can help propel an AI agent’s decision-making process after learning. But speeding up the learning process itself has eluded our best attempts.

The Hybrid AI
The new study went straight for that previously untenable jugular.

The team’s key insight was to tap into the best of both worlds—quantum and classical computing. Rather than building an entire reinforcement learning system using quantum mechanics, they turned to a hybrid approach that could prove to be more practical. Here, the AI agent uses quantum weirdness as it’s trying out new approaches—the “trial” in trial and error. The system then passes the baton to a classical computer to give the AI its reward—or not—based on its performance.

At the heart of the quantum “trial” process is a quirk called superposition. Stay with me. Our computers are powered by electrons, which can represent only two states—0 or 1. Quantum mechanics is far weirder, in that photons (particles of light) can simultaneously be both 0 and 1, with a slightly different probability of “leaning towards” one or the other.

This noncommittal oddity is part of what makes quantum computing so powerful. Take our reinforcement learning example of navigating a new campsite. In our classic world, we—and our AI—need to decide between turning left or right at an intersection. In a quantum setup, however, the AI can (in a sense) turn left and right at the same time. So when searching for the correct path back to home base, the quantum system has a leg up in that it can simultaneously explore multiple routes, making it far faster than conventional, consecutive trail and error.

“As a consequence, an agent that can explore its environment in superposition will learn significantly faster than its classical counterpart,” said Briegel.

It’s not all theory. To test out their idea, the team turned to a programmable chip called a nanophotonic processor. Think of it as a CPU-like computer chip, but it processes particles of light—photons—rather than electricity. These light-powered chips have been a long time in the making. Back in 2017, for example, a team from MIT built a fully optical neural network into an optical chip to bolster deep learning.

The chips aren’t all that exotic. Nanophotonic processors act kind of like our eyeglasses, which can carry out complex calculations that transform light that passes through them. In the glasses case, they let people see better. For a light-based computer chip, it allows computation. Rather than using electrical cables, the chips use “wave guides” to shuttle photons and perform calculations based on their interactions.

The “error” or “reward” part of the new hardware comes from a classical computer. The nanophotonic processor is coupled to a traditional computer, where the latter provides the quantum circuit with feedback—that is, whether to reward a solution or not. This setup, the team explains, allows them to more objectively judge any speed-ups in learning in real time.

In this way, a hybrid reinforcement learning agent alternates between quantum and classical computing, trying out ideas in wibbly-wobbly “multiverse” land while obtaining feedback in grounded, classic physics “normality.”

A Quantum Boost
In simulations using 10,000 AI agents and actual experimental data from 165 trials, the hybrid approach, when challenged with a more complex problem, showed a clear leg up.

The key word is “complex.” The team found that if an AI agent has a high chance of figuring out the solution anyway—as for a simple problem—then classical computing works pretty well. The quantum advantage blossoms when the task becomes more complex or difficult, allowing quantum mechanics to fully flex its superposition muscles. For these problems, the hybrid AI was 63 percent faster at learning a solution compared to traditional reinforcement learning, decreasing its learning effort from 270 guesses to 100.

Now that scientists have shown a quantum boost for reinforcement learning speeds, the race for next-generation computing is even more lit. Photonics hardware required for long-range light-based communications is rapidly shrinking, while improving signal quality. The partial-quantum setup could “aid specifically in problems where frequent search is needed, for example, network routing problems” that’s prevalent for a smooth-running internet, the authors wrote. With a quantum boost, reinforcement learning may be able to tackle far more complex problems—those in the real world—than currently possible.

“We are just at the beginning of understanding the possibilities of quantum artificial intelligence,” said lead author Walther.

Image Credit: Oleg Gamulinskiy from Pixabay Continue reading

Posted in Human Robots

#438755 Soft Legged Robot Uses Pneumatic ...

Soft robots are inherently safe, highly resilient, and potentially very cheap, making them promising for a wide array of applications. But development on them has been a bit slow relative to other areas of robotics, at least partially because soft robots can’t directly benefit from the massive increase in computing power and sensor and actuator availability that we’ve seen over the last few decades. Instead, roboticists have had to get creative to find ways of achieving the functionality of conventional robotics components using soft materials and compatible power sources.

In the current issue of Science Robotics, researchers from UC San Diego demonstrate a soft walking robot with four legs that moves with a turtle-like gait controlled by a pneumatic circuit system made from tubes and valves. This air-powered nervous system can actuate multiple degrees of freedom in sequence from a single source of pressurized air, offering a huge reduction in complexity and bringing a very basic form of decision making onto the robot itself.

Generally, when people talk about soft robots, the robots are only mostly soft. There are some components that are very difficult to make soft, including pressure sources and the necessary electronics to direct that pressure between different soft actuators in a way that can be used for propulsion. What’s really cool about this robot is that researchers have managed to take a pressure source (either a single tether or an onboard CO2 cartridge) and direct it to four different legs, each with three different air chambers, using an oscillating three valve circuit made entirely of soft materials.

Photo: UCSD

The pneumatic circuit that powers and controls the soft quadruped.

The inspiration for this can be found in biology—natural organisms, including quadrupeds, use nervous system components called central pattern generators (CPGs) to prompt repetitive motions with limbs that are used for walking, flying, and swimming. This is obviously more complicated in some organisms than in others, and is typically mediated by sensory feedback, but the underlying structure of a CPG is basically just a repeating circuit that drives muscles in sequence to produce a stable, continuous gait. In this case, we’ve got pneumatic muscles being driven in opposing pairs, resulting in a diagonal couplet gait, where diagonally opposed limbs rotate forwards and backwards at the same time.

Diagram: Science Robotics

(J) Pneumatic logic circuit for rhythmic leg motion. A constant positive pressure source (P+) applied to three inverter components causes a high-pressure state to propagate around the circuit, with a delay at each inverter. While the input to one inverter is high, the attached actuator (i.e., A1, A2, or A3) is inflated. This sequence of high-pressure states causes each pair of legs of the robot to rotate in a direction determined by the pneumatic connections. (K) By reversing the sequence of activation of the pneumatic oscillator circuit, the attached actuators inflate in a new sequence (A1, A3, and A2), causing (L) the legs of the robot to rotate in reverse. (M) Schematic bottom view of the robot with the directions of leg motions indicated for forward walking.

Diagram: Science Robotics

Each of the valves acts as an inverter by switching the normally closed half (top) to open and the normally open half (bottom) to closed.

The circuit itself is made up of three bistable pneumatic valves connected by tubing that acts as a delay by providing resistance to the gas moving through it that can be adjusted by altering the tube’s length and inner diameter. Within the circuit, the movement of the pressurized gas acts as both a source of energy and as a signal, since wherever the pressure is in the circuit is where the legs are moving. The simplest circuit uses only three valves, and can keep the robot walking in one single direction, but more valves can add more complex leg control options. For example, the researchers were able to use seven valves to tune the phase offset of the gait, and even just one additional valve (albeit of a slightly more complex design) could enable reversal of the system, causing the robot to walk backwards in response to input from a soft sensor. And with another complex valve, a manual (tethered) controller could be used for omnidirectional movement.

This work has some similarities to the rover that JPL is developing to explore Venus—that rover isn’t a soft robot, of course, but it operates under similar constraints in that it can’t rely on conventional electronic systems for autonomous navigation or control. It turns out that there are plenty of clever ways to use mechanical (or in this case, pneumatic) intelligence to make robots with relatively complex autonomous behaviors, meaning that in the future, soft (or soft-ish) robots could find valuable roles in situations where using a non-compliant system is not a good option.

For more on why we should be so excited about soft robots and just how soft a soft robot needs to be, we spoke with Michael Tolley, who runs the Bioinspired Robotics and Design Lab at UCSD, and Dylan Drotman, the paper’s first author.

IEEE Spectrum: What can soft robots do for us that more rigid robotic designs can’t?

Michael Tolley: At the very highest level, one of the fundamental assumptions of robotics is that you have rigid bodies connected at joints, and all your motion happens at these joints. That's a really nice approach because it makes the math easy, frankly, and it simplifies control. But when you look around us in nature, even though animals do have bones and joints, the way we interact with the world is much more complicated than that simple story. I’m interested in where we can take advantage of material properties in robotics. If you look at robots that have to operate in very unknown environments, I think you can build in some of the intelligence for how to deal with those environments into the body of the robot itself. And that’s the category this work really falls under—it's about navigating the world.

Dylan Drotman: Walking through confined spaces is a good example. With the rigid legged robot, you would have to completely change the way that the legs move to walk through a confined space, while if you have flexible legs, like the robot in our paper, you can use relatively simple control strategies to squeeze through an area you wouldn’t be able to get through with a rigid system.

How smart can a soft robot get?

Drotman: Right now we have a sensor on the front that's connected through a fluidic transmission to a bistable valve that causes the robot to reverse. We could add other sensors around the robot to allow it to change direction whenever it runs into an obstacle to effectively make an electronics-free version of a Roomba.

Tolley: Stepping back a little bit from that, one could make an argument that we’re using basic memory elements to generate very basic signals. There’s nothing in principle that would stop someone from making a pneumatic computer—it’s just very complicated to make something that complex. I think you could build on this and do more intelligent decision making, but using this specific design and the components we’re using, it’s likely to be things that are more direct responses to the environment.

How well would robots like these scale down?

Drotman: At the moment we’re manufacturing these components by hand, so the idea would be to make something more like a printed circuit board instead, and looking at how the channel sizes and the valve design would affect the actuation properties. We’ll also be coming up with new circuits, and different designs for the circuits themselves.

Tolley: Down to centimeter or millimeter scale, I don’t think you’d have fundamental fluid flow problems. I think you’re going to be limited more by system design constraints. You’ll have to be able to locomote while carrying around your pressure source, and possibly some other components that are also still rigid. When you start to talk about really small scales, though, it's not as clear to me that you really need an intrinsically soft robot. If you think about insects, their structural geometry can make them behave like they’re soft, but they’re not intrinsically soft.

Should we be thinking about soft robots and compliant robots in the same way, or are they fundamentally different?

Tolley: There’s certainly a connection between the two. You could have a compliant robot that behaves in a very similar way to an intrinsically soft robot, or a robot made of intrinsically soft materials. At that point, it comes down to design and manufacturing and practical limitations on what you can make. I think when you get down to small scales, the two sort of get connected.

There was some interesting work several years ago on using explosions to power soft robots. Is that still a thing?

Tolley: One of the opportunities with soft robots is that with material compliance, you have the potential to store energy. I think there’s exciting potential there for rapid motion with a soft body. Combustion is one way of doing that with power coming from a chemical source all at once, but you could also use a relatively weak muscle that over time stores up energy in a soft body and then releases it.

Is it realistic to expect complete softness from soft robots, or will they likely always have rigid components because they have to store or generate and move pressurized gas somehow?

Tolley: If you look in nature, you do have soft pumps like the heart, but although it’s soft, it’s still relatively stiff. Like, if you grab a heart, it’s not totally squishy. I haven’t done it, but I’d imagine. If you have a container that you’re pressurizing, it has to be stiff enough to not just blow up like a balloon. Certainly pneumatics or hydraulics are not the only way to go for soft actuators; there has been some really nice work on smart muscles and smart materials like hydraulic electrostatic (HASEL) actuators. They seem promising, but all of these actuators have challenges. We’ve chosen to stick with pressurized pneumatics in the near term; longer term, I think you’ll start to see more of these smart material actuators become more practical.

Personally, I don’t have any problem with soft robots having some rigid components. Most animals on land have some rigid components, but they can still take advantage of being soft, so it’s probably going to be a combination. But I do also like the vision of making an entirely soft, squishy thing. Continue reading

Posted in Human Robots

#438720 Credit card-sized soft pumps power ...

Robotic clothing that is entirely soft and could help people to move more easily is a step closer to reality thanks to the development of a new flexible and lightweight power system for soft robotics. Continue reading

Posted in Human Robots