Tag Archives: shows
#437805 Video Friday: Quadruped Robot HyQ ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.
Four-legged HyQ balancing on two legs. Nice results from the team at IIT’s Dynamic Legged Systems Lab. And we can’t wait to see the “ninja walk,” currently shown in simulation, implemented with the real robot!
The development of balance controllers for legged robots with point feet remains a challenge when they have to traverse extremely constrained environments. We present a balance controller that has the potential to achieve line walking for quadruped robots. Our initial experiments show the 90-kg robot HyQ balancing on two feet and recovering from external pushes, as well as some changes in posture achieved without losing balance.
[ IIT ]
Thanks Victor!
Ava Robotics’ telepresence robot has been beheaded by MIT, and it now sports a coronavirus-destroying UV array.
UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation. The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.
[ MIT ]
While it’s hard enough to get quadrupedal robots to walk in complex environments, this work from the Robotic Systems Lab at ETH Zurich shows some impressive whole body planning that allows ANYmal to squeeze its body through small or weirdly shaped spaces.
[ RSL ]
Engineering researchers at North Carolina State University and Temple University have developed soft robots inspired by jellyfish that can outswim their real-life counterparts. More practically, the new jellyfish-bots highlight a technique that uses pre-stressed polymers to make soft robots more powerful.
The researchers also used the technique to make a fast-moving robot that resembles a larval insect curling its body, then jumping forward as it quickly releases its stored energy. Lastly, the researchers created a three-pronged gripping robot – with a twist. Most grippers hang open when “relaxed,” and require energy to hold on to their cargo as it is lifted and moved from point A to point B. But this claw’s default position is clenched shut. Energy is required to open the grippers, but once they’re in position, the grippers return to their “resting” mode – holding their cargo tight.
[ NC State ]
As control skills increase, we are more and more impressed by what a Cassie bipedal robot can do. Those who have been following our channel, know that we always show the limitations of our work. So while there is still much to do, you gotta like the direction things are going. Later this year, you will see this controller integrated with our real-time planner and perception system. Autonomy with agility! Watch out for us!
[ University of Michigan ]
GITAI’s S1 arm is a little less exciting than their humanoid torso, but it looks like this one might actually be going to the ISS next year.
Here’s how the humanoid would handle a similar task:
[ GITAI ]
Thanks Fan!
If you need a robot that can lift 250 kg at 10 m/s across a workspace of a thousand cubic meters, here’s your answer.
[ Fraunhofer ]
Penn engineers with funding from the National Science Foundation, have nanocardboard plates able to levitate when bright light is shone on them. This fleet of tiny aircraft could someday explore the skies of other worlds, including Mars. The thinner atmosphere there would give the flyers a boost, enabling them to carry payloads ten times as massive as they are, making them an efficient, light-weight alternative to the Mars helicopter.
[ UPenn ]
Erin Sparks, assistant professor in Plant and Soil Sciences, dreamed of a robot she could use in her research. A perfect partnership was formed when Adam Stager, then a mechanical engineering Ph.D. student, reached out about a robot he had a gut feeling might be useful in agriculture. The pair moved forward with their research with corn at the UD Farm, using the robot to capture dynamic phenotyping information of brace roots over time.
[ Sparks Lab ]
This is a video about robot spy turtles but OMG that bird drone landing gear.
[ PBS ]
If you have a DJI Mavic, you now have something new to worry about.
[ DroGone ]
I was able to spot just one single person in the warehouse footage in this video.
[ Berkshire Grey ]
Flyability has partnered with the ROBINS Project to help fill gaps in the technology used in ship inspections. Watch this video to learn more about the ROBINS project and how Flyability’s drones for confined spaces are helping make inspections on ships safer, cheaper, and more efficient.
[ Flyability ]
In this video, a mission of the Alpha Aerial Scout of Team CERBERUS during the DARPA Subterranean Challenge Urban Circuit event is presented. The Alpha Robot operates inside the Satsop Abandoned Power Plant and performs autonomous exploration. This deployment took place during the 3rd field trial of team CERBERUS during the Urban Circuit event of the DARPA Subterranean Challenge.
[ ARL ]
More excellent talks from the remote Legged Robots ICRA workshop- we’ve posted three here, but there are several other good talks this week as well.
[ ICRA 2020 Legged Robots Workshop ] Continue reading
#437733 Video Friday: MIT Media Lab Developing ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.
Very impressive local obstacle avoidance at a fairly high speed on a small drone, both indoors and outdoors.
[ FAST Lab ]
Matt Carney writes:
My PhD at MIT Media Lab has been the design and build of a next generation powered prosthesis. The bionic ankle, named TF8, was designed to provide biologically equivalent power and range of motion for plantarflexion-dorsiflexion. This video shows the process of going from a blank sheet of paper to people walking on it. Shown are three different people wearing the robot. About a dozen people have since been able to test the hardware.
[ MIT ]
Thanks Matt!
Exciting changes are coming to the iRobot® Home App. Get ready for new personalized experiences, improved features, and an easy-to-use interface. The update is rolling out over the next few weeks!
[ iRobot ]
MOFLIN is an AI Pet created from a totally new concept. It possesses emotional capabilities that evolve like living animals. With its warm soft fur, cute sounds, and adorable movement, you’d want to love it forever. We took a nature inspired approach and developed a unique algorithm that allows MOFLIN to learn and grow by constantly using its interactions to determine patterns and evaluate its surroundings from its sensors. MOFLIN will choose from an infinite number of mobile and sound pattern combinations to respond and express its feelings. To put it in simple terms, it’s like you’re interacting with a living pet.
You lost me at “it’s like you’re interacting with a living pet.”
[ Kickstarter ] via [ Gizmodo ]
This video is only robotics-adjacent, but it has applications for robotic insects. With a high-speed tracking system, we can now follow insects as they jump and fly, and watch how clumsy (but effective) they are at it.
[ Paper ]
Thanks Sawyer!
Suzumori Endo Lab, Tokyo Tech has developed self-excited pneumatic actuators that can be integrally molded by a 3D printer. These actuators use the “automatic flow path switching mechanism” we have devised.
[ Suzimori Endo Lab ]
Quadrupeds are getting so much better at deciding where to step rather than just stepping where they like and trying not to fall over.
[ RSL ]
Omnidirectional micro aerial vehicles are a growing field of research, with demonstrated advantages for aerial interaction and uninhibited observation. While systems with complete pose omnidirectionality and high hover efficiency have been developed independently, a robust system that combines the two has not been demonstrated to date. This paper presents the design and optimal control of a novel omnidirectional vehicle that can exert a wrench in any orientation while maintaining efficient flight configurations.
[ ASL ]
The latest in smooth humanoid walking from Dr. Guero.
[ YouTube ]
Will robots replace humans one day? When it comes to space exploration, robots are our precursors, gathering data to prepare humans for deep space. ESA robotics engineer Martin Azkarate discusses some of the upcoming missions involving robots and the unique science they will perform in this episode of Meet the Experts.
[ ESA ]
The Multi-robot Systems Group at FEE-CTU in Prague is working on an autonomous drone that detects fires and the shoots an extinguisher capsule at them.
[ MRS ]
This experiment with HEAP (Hydraulic Excavator for Autonomous Purposes) demonstrates our latest research in on-site and mobile digital fabrication with found materials. The embankment prototype in natural granular material was achieved using state of the art design and construction processes in mapping, modelling, planning and control. The entire process of building the embankment was fully autonomous. An operator was only present in the cabin for safety purposes.
[ RSL ]
The Simulation, Systems Optimization and Robotics Group (SIM) of Technische Universität Darmstadt’s Department of Computer Science conducts research on cooperating autonomous mobile robots, biologically inspired robots and numerical optimization and control methods.
[ SIM ]
Starting January 1, 2021, your drone platform of choice may be severely limited by the European Union’s new drone regulations. In this short video, senseFly’s Brock Ryder explains what that means for drone programs and operators and where senseFly drones fit in the EU’s new regulatory framework.
[ SenseFly ]
Nearly every company across every industry is looking for new ways to minimize human contact, cut costs and address the labor crunch in repetitive and dangerous jobs. WSJ explores why many are looking to robots as the solution for all three.
[ WSJ ]
You’ll need to prepare yourself emotionally for this video on “Examining Users’ Attitude Towards Robot Punishment.”
[ ACM ]
In this episode of the AI Podcast, Lex interviews Russ Tedrake (MIT and TRI) about biped locomotion, the DRC, home robots, and more.
[ AI Podcast ] Continue reading