Tag Archives: shows

#430734 Why XPRIZE Is Asking Writers to Take Us ...

In a world of accelerating change, educating the public about the implications of technological advancements is extremely important. We can continue to write informative articles and speculate about the kind of future that lies ahead. Or instead, we can take readers on an immersive journey by using science fiction to paint vivid images of the future for society.
The XPRIZE Foundation recently announced a science fiction storytelling competition. In recent years, the organization has backed and launched a range of competitions to propel innovation in science and technology. These have been aimed at a variety of challenges, such as transforming the lives of low-literacy adults, tackling climate change, and creating water from thin air.
Their sci-fi writing competition asks participants to envision a groundbreaking future for humanity. The initiative, in partnership with Japanese airline ANA, features 22 sci-fi stories from noteworthy authors that are now live on the website. Each of these stories is from the perspective of a different passenger on a plane that travels 20 years into the future through a wormhole. Contestants will compete to tell the story of the passenger in Seat 14C.
In addition to the competition, XPRIZE has brought together a science fiction advisory council to work with the organization and imagine what the future will look like. According to Peter Diamandis, founder and executive chairman, “As the future becomes harder and harder to predict, we look forward to engaging some of the world’s most visionary storytellers to help us imagine what’s just beyond the horizon and chart a path toward a future of abundance.”
The Importance of Science Fiction
Why is an organization like XPRIZE placing just as much importance on fiction as it does on reality? As Isaac Asimov has pointed out, “Modern science fiction is the only form of literature that consistently considers the nature of the changes that face us.” While the rest of the world reports on a new invention, sci-fi authors examine how these advancements affect the human condition.
True science fiction is distinguished from pure fantasy in that everything that happens is within the bounds of the physical laws of the universe. We’ve already seen how sci-fi can inspire generations and shape the future. 3D printers, wearable technology, and smartphones were first seen in Star Trek. Targeted advertising and air touch technology was first seen in Philip K. Dick’s 1958 story “The Minority Report.” Tanning beds, robot vacuums, and flatscreen TVs were seen in The Jetsons. The internet and a world of global instant communication was predicted by Arthur C. Clarke in his work long before it became reality.
Sci-fi shows like Black Mirror or Star Trek aren’t just entertainment. They allow us to imagine and explore the influence of technology on humanity. For instance, how will artificial intelligence impact human relationships? How will social media affect privacy? What if we encounter alien life? Good sci-fi stories take us on journeys that force us to think critically about the societal impacts of technological advancements.
As sci-fi author Yaasha Moriah points out, the genre is universal because “it tackles hard questions about human nature, morality, and the evolution of society, all through the narrative of speculation about the future. If we continue to do A, will it necessarily lead to problems B and C? What implicit lessons are being taught when we insist on a particular policy? When we elevate the importance of one thing over another—say, security over privacy—what could be the potential benefits and dangers of that mentality? That’s why science fiction has such an enduring appeal. We want to explore deep questions, without being preached at. We want to see the principles in action, and observe their results.”
An Extension of STEAM Education
At its core, this genre is a harmonious symbiosis between two distinct disciplines: science and literature. It is an extension of STEAM education, an educational approach that combines science, technology, engineering, the arts, and mathematics. Story-telling with science fiction allows us to use the arts in order to educate and engage the public about scientific advancements and its implications.
According to the National Science Foundation, research on art-based learning of STEM, including the use of narrative writing, works “beyond expectation.” It has been shown to have a powerful impact on creative thinking, collaborative behavior and application skills.
What does it feel like to travel through a wormhole? What are some ethical challenges of AI? How could we terraform Mars? For decades, science fiction writers and producers have answered these questions through the art of storytelling.
What better way to engage more people with science and technology than through sparking their imaginations? The method makes academic subject areas many traditionally perceived as boring or dry far more inspiring and engaging.
A Form of Time Travel
XPRIZE’s competition theme of traveling 20 years into the future through a wormhole is an appropriate beacon for the genre. In many ways, sci-fi is a precautionary form of time travel. Before we put a certain technology, scientific invention, or policy to use, we can envision and explore what our world would be like if we were to do so.
Sci-fi lets us explore different scenarios for the future of humanity before deciding which ones are more desirable. Some of these scenarios may be radically beyond our comfort zone. Yet when we’re faced with the seemingly impossible, we must remind ourselves that if something is within the domain of the physical laws of the universe, then it’s absolutely possible.
Stock Media provided by NASA_images / Pond5 Continue reading

Posted in Human Robots

#430556 Forget Flying Cars, the Future Is ...

Flying car concepts have been around nearly as long as their earthbound cousins, but no one has yet made them a commercial success. MIT engineers think we’ve been coming at the problem from the wrong direction; rather than putting wings on cars, we should be helping drones to drive.
The team from the university’s Computer Science and Artificial Intelligence Laboratory (CSAIL) added wheels to a fleet of eight mini-quadcopters and tested driving and flying them around a tiny toy town made out of cardboard and fabric.
Adding the ability to drive reduced the distance the drone could fly by 14 percent compared to a wheel-less version. But while driving was slower, the drone could travel 150 percent further than when flying. The result is a vehicle that combines the speed and mobility of flying with the energy-efficiency of driving.

CSAIL director Daniela Rus told MIT News their work suggested that when looking to create flying cars, it might make more sense to build on years of research into drones rather than trying to simply “put wings on cars.”
Historically, flying car concepts have looked like someone took apart a Cessna light aircraft and a family sedan, mixed all the parts up, and bolted them back together again. Not everyone has abandoned this approach—two of the most developed flying car designs from Terrafugia and AeroMobil are cars with folding wings that need an airstrip to take off.
But flying car concepts are looking increasingly drone-like these days, with multiple small rotors, electric propulsion and vertical take-off abilities. Take the eHang 184 autonomous aerial vehicle being developed in China, the Kitty Hawk all-electric aircraft backed by Google founder Larry Page, which is little more than a quadcopter with a seat, the AirQuadOne designed by UK consortium Neva Aerospace, or Lilium Aviation’s Jet.
The attraction is obvious. Electric-powered drones are more compact, maneuverable, and environmentally friendly, making them suitable for urban environments.
Most of these vehicles are not quite the same as those proposed by the MIT engineers, as they’re pure flying machines. But a recent Airbus concept builds on the same principle that the future of urban mobility is vehicles that can both fly and drive. Its Pop.Up design is a two-passenger pod that can either be clipped to a set of wheels or hang under a quadcopter.
Importantly, they envisage their creation being autonomous in both flight and driving modes. And they’re not the only ones who think the future of flying cars is driverless. Uber has committed to developing a network of autonomous air taxis within a decade. This spring, Dubai announced it would launch a pilotless passenger drone service using the Ehang 184 as early as next month (July).
While integrating fully-fledged autonomous flying cars into urban environments will be far more complex, the study by Rus and her colleagues provides a good starting point for the kind of 3D route-planning and collision avoidance capabilities this would require.
The team developed multi-robot path planning algorithms that were able to control all eight drones as they flew and drove around their mock up city, while also making sure they didn’t crash into each other and avoided no-fly zones.
“This work provides an algorithmic solution for large-scale, mixed-mode transportation and shows its applicability to real-world problems,” Jingjin Yu, a computer science professor at Rutgers University who was not involved in the research, told MIT News.
This vision of a driverless future for flying cars might be a bit of a disappointment for those who’d envisaged themselves one day piloting their own hover car just like George Jetson. But autonomy and Uber-like ride-hailing business models are likely to be attractive, as they offer potential solutions to three of the biggest hurdles drone-like passenger vehicles face.
Firstly, it makes the vehicles accessible to anyone by removing the need to learn how to safely pilot an aircraft. Secondly, battery life still limits most electric vehicles to flight times measured in minutes. For personal vehicles this could be frustrating, but if you’re just hopping in a driverless air taxi for a five minute trip across town it’s unlikely to become apparent to you.
Operators of the service simply need to make sure they have a big enough fleet to ensure a charged vehicle is never too far away, or they’ll need a way to swap out batteries easily, such as the one suggested by the makers of the Volocopter electric helicopter.
Finally, there has already been significant progress in developing technology and regulations needed to integrate autonomous drones into our airspace that future driverless flying cars can most likely piggyback off of.
Safety requirements will inevitably be more stringent, but adding more predictable and controllable autonomous drones to the skies is likely to be more attractive to regulators than trying to license and police thousands of new amateur pilots.
Image Credit: Lilium Continue reading

Posted in Human Robots

#428153 Soon We’ll All Love Robots the Way ...

Here is my hypothesis: Japan has a long ongoing love affair with humanoid robots. The love seems so strong that they are willing to accept faults and imperfections that to others make the robots seem eerie, if not downright creepy. Your first reaction to that may well be "so what?" I would argue that Japan’s love affair with "creepy" robots shows a glimpse of the future — not just for Japan, but likely for the world at… read more Continue reading

Posted in Human Robots