Tag Archives: shared
#436114 Video Friday: Transferring Human Motion ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
We are very sad to say that MIT professor emeritus Woodie Flowers has passed away. Flowers will be remembered for (among many other things, like co-founding FIRST) the MIT 2.007 course that he began teaching in the mid-1970s, famous for its student competitions.
These competitions got a bunch of well-deserved publicity over the years; here’s one from 1985:
And the 2.007 competitions are still going strong—this year’s theme was Moonshot, and you can watch a replay of the event here.
[ MIT ]
Looks like Aibo is getting wireless integration with Hitachi appliances, which turns out to be pretty cute:
What is this magical box where you push a button and 60 seconds later fluffy pancakes come out?!
[ Aibo ]
LiftTiles are a “modular and reconfigurable room-scale shape display” that can turn your floor and walls into on-demand structures.
[ LiftTiles ]
Ben Katz, a grad student in MIT’s Biomimetics Robotics Lab, has been working on these beautiful desktop-sized Furuta pendulums:
That’s a crowdfunding project I’d pay way too much for.
[ Ben Katz ]
A clever bit of cable manipulation from MIT, using GelSight tactile sensors.
[ Paper ]
A useful display of industrial autonomy on ANYmal from the Oxford Robotics Group.
This video is of a demonstration for the ORCA Robotics Hub showing the ANYbotics ANYmal robot carrying out industrial inspection using autonomy software from Oxford Robotics Institute.
[ ORCA Hub ] via [ DRS ]
Thanks Maurice!
Meet Katie Hamilton, a software engineer at NASA’s Ames Research Center, who got into robotics because she wanted to help people with daily life. Katie writes code for robots, like Astrobee, who are assisting astronauts with routine tasks on the International Space Station.
[ NASA Astrobee ]
Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work we present a robot whole-body teleoperation framework for human motion transfer. We validate our approach through several experiments using the TIAGo robot, showing this could be an easy way for a non-expert to teach a rough manipulation skill to an assistive robot.
[ Paper ]
This is pretty cool looking for an autonomous boat, but we’ll see if they can build a real one by 2020 since at the moment it’s just an average rendering.
[ ProMare ]
I had no idea that asparagus grows like this. But, sure does make it easy for a robot to harvest.
[ Inaho ]
Skip to 2:30 in this Pepper unboxing video to hear the noise it makes when tickled.
[ HIT Lab NZ ]
In this interview, Jean Paul Laumond discusses his movement from mathematics to robotics and his career contributions to the field, especially in regards to motion planning and anthropomorphic motion. Describing his involvement at CNRS and in other robotics projects, such as HILARE, he comments on the distinction in perception between the robotics approach and a mathematics one.
[ IEEE RAS History ]
Here’s a couple of videos from the CMU Robotics Institute archives, showing some of the work that took place over the last few decades.
[ CMU RI ]
In this episode of the Artificial Intelligence Podcast, Lex Fridman speaks with David Ferrucci from IBM about Watson and (you guessed it) artificial intelligence.
David Ferrucci led the team that built Watson, the IBM question-answering system that beat the top humans in the world at the game of Jeopardy. He is also the Founder, CEO, and Chief Scientist of Elemental Cognition, a company working engineer AI systems that understand the world the way people do. This conversation is part of the Artificial Intelligence podcast.
[ AI Podcast ]
This week’s CMU RI Seminar is by Pieter Abbeel from UC Berkeley, on “Deep Learning for Robotics.”
Programming robots remains notoriously difficult. Equipping robots with the ability to learn would by-pass the need for what otherwise often ends up being time-consuming task specific programming. This talk will describe recent progress in deep reinforcement learning (robots learning through their own trial and error), in apprenticeship learning (robots learning from observing people), and in meta-learning for action (robots learning to learn). This work has led to new robotic capabilities in manipulation, locomotion, and flight, with the same approach underlying advances in each of these domains.
[ CMU RI ] Continue reading
#435822 The Internet Is Coming to the Rest of ...
People surf it. Spiders crawl it. Gophers navigate it.
Now, a leading group of cognitive biologists and computer scientists want to make the tools of the Internet accessible to the rest of the animal kingdom.
Dubbed the Interspecies Internet, the project aims to provide intelligent animals such as elephants, dolphins, magpies, and great apes with a means to communicate among each other and with people online.
And through artificial intelligence, virtual reality, and other digital technologies, researchers hope to crack the code of all the chirps, yips, growls, and whistles that underpin animal communication.
Oh, and musician Peter Gabriel is involved.
“We can use data analysis and technology tools to give non-humans a lot more choice and control,” the former Genesis frontman, dressed in his signature Nehru-style collar shirt and loose, open waistcoat, told IEEE Spectrum at the inaugural Interspecies Internet Workshop, held Monday in Cambridge, Mass. “This will be integral to changing our relationship with the natural world.”
The workshop was a long time in the making.
Eighteen years ago, Gabriel visited a primate research center in Atlanta, Georgia, where he jammed with two bonobos, a male named Kanzi and his half-sister Panbanisha. It was the first time either bonobo had sat at a piano before, and both displayed an exquisite sense of musical timing and melody.
Gabriel seemed to be speaking to the great apes through his synthesizer. It was a shock to the man who once sang “Shock the Monkey.”
“It blew me away,” he says.
Add in the bonobos’ ability to communicate by pointing to abstract symbols, Gabriel notes, and “you’d have to be deaf, dumb, and very blind not to notice language being used.”
Gabriel eventually teamed up with Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and IoT pioneer Neil Gershenfeld to propose building an Interspecies Internet. Presented in a 2013 TED Talk as an “idea in progress,” the concept proved to be ahead of the technology.
“It wasn’t ready,” says Gershenfeld, director of MIT’s Center for Bits and Atoms. “It needed to incubate.”
So, for the past six years, the architects of the Dolittlesque initiative embarked on two small pilot projects, one for dolphins and one for chimpanzees.
At her Hunter College lab in New York City, Reiss developed what she calls the D-Pad—a touchpad for dolphins.
Reiss had been trying for years to create an underwater touchscreen with which to probe the cognition and communication skills of bottlenose dolphins. But “it was a nightmare coming up with something that was dolphin-safe and would work,” she says.
Her first attempt emitted too much heat. A Wii-like system of gesture recognition proved too difficult to install in the dolphin tanks.
Eventually, she joined forces with Rockefeller University biophysicist Marcelo Magnasco and invented an optical detection system in which images and infrared sensors are projected through an underwater viewing window onto a glass panel, allowing the dolphins to play specially designed apps, including one dubbed Whack-a-Fish.
Meanwhile, in the United Kingdom, Gabriel worked with Alison Cronin, director of the ape rescue center Monkey World, to test the feasibility of using FaceTime with chimpanzees.
The chimps engaged with the technology, Cronin reported at this week’s workshop. However, our hominid cousins proved as adept at videotelephonic discourse as my three-year-old son is at video chatting with his grandparents—which is to say, there was a lot of pass-the-banana-through-the-screen and other silly games, and not much meaningful conversation.
“We can use data analysis and technology tools to give non-humans a lot more choice and control.”
—Peter Gabriel
The buggy, rudimentary attempt at interspecies online communication—what Cronin calls her “Max Headroom experiment”—shows that building the Interspecies Internet will not be as simple as giving out Skype-enabled tablets to smart animals.
“There are all sorts of problems with creating a human-centered experience for another animal,” says Gabriel Miller, director of research and development at the San Diego Zoo.
Miller has been working on animal-focused sensory tools such as an “Elephone” (for elephants) and a “Joybranch” (for birds), but it’s not easy to design efficient interactive systems for other creatures—and for the Interspecies Internet to be successful, Miller points out, “that will be super-foundational.”
Researchers are making progress on natural language processing of animal tongues. Through a non-profit organization called the Earth Species Project, former Firefox designer Aza Raskin and early Twitter engineer Britt Selvitelle are applying deep learning algorithms developed for unsupervised machine translation of human languages to fashion a Rosetta Stone–like tool capable of interpreting the vocalizations of whales, primates, and other animals.
Inspired by the scientists who first documented the complex sonic arrangements of humpback whales in the 1960s—a discovery that ushered in the modern marine conservation movement—Selvitelle hopes that an AI-powered animal translator can have a similar effect on environmentalism today.
“A lot of shifts happen when someone who doesn’t have a voice gains a voice,” he says.
A challenge with this sort of AI software remains verification and validation. Normally, machine-learning algorithms are benchmarked against a human expert, but who is to say if a cybernetic translation of a sperm whale’s clicks is accurate or not?
One could back-translate an English expression into sperm whale-ese and then into English again. But with the great apes, there might be a better option.
According to primatologist Sue Savage-Rumbaugh, expertly trained bonobos could serve as bilingual interpreters, translating the argot of apes into the parlance of people, and vice versa.
Not just any trained ape will do, though. They have to grow up in a mixed Pan/Homo environment, as Kanzi and Panbanisha were.
“If I can have a chat with a cow, maybe I can have more compassion for it.”
—Jeremy Coller
Those bonobos were raised effectively from birth both by Savage-Rumbaugh, who taught the animals to understand spoken English and to communicate via hundreds of different pictographic “lexigrams,” and a bonobo mother named Matata that had lived for six years in the Congolese rainforests before her capture.
Unlike all other research primates—which are brought into captivity as infants, reared by human caretakers, and have limited exposure to their natural cultures or languages—those apes thus grew up fluent in both bonobo and human.
Panbanisha died in 2012, but Kanzi, aged 38, is still going strong, living at an ape sanctuary in Des Moines, Iowa. Researchers continue to study his cognitive abilities—Francine Dolins, a primatologist at the University of Michigan-Dearborn, is running one study in which Kanzi and other apes hunt rabbits and forage for fruit through avatars on a touchscreen. Kanzi could, in theory, be recruited to check the accuracy of any Google Translate–like app for bonobo hoots, barks, grunts, and cries.
Alternatively, Kanzi could simply provide Internet-based interpreting services for our two species. He’s already proficient at video chatting with humans, notes Emily Walco, a PhD student at Harvard University who has personally Skyped with Kanzi. “He was super into it,” Walco says.
And if wild bonobos in Central Africa can be coaxed to gather around a computer screen, Savage-Rumbaugh is confident Kanzi could communicate with them that way. “It can all be put together,” she says. “We can have an Interspecies Internet.”
“Both the technology and the knowledge had to advance,” Savage-Rumbaugh notes. However, now, “the techniques that we learned could really be extended to a cow or a pig.”
That’s music to the ears of Jeremy Coller, a private equity specialist whose foundation partially funded the Interspecies Internet Workshop. Coller is passionate about animal welfare and has devoted much of his philanthropic efforts toward the goal of ending factory farming.
At the workshop, his foundation announced the creation of the Coller Doolittle Prize, a US $100,000 award to help fund further research related to the Interspecies Internet. (A working group also formed to synthesize plans for the emerging field, to facilitate future event planning, and to guide testing of shared technology platforms.)
Why would a multi-millionaire with no background in digital communication systems or cognitive psychology research want to back the initiative? For Coller, the motivation boils to interspecies empathy.
“If I can have a chat with a cow,” he says, “maybe I can have more compassion for it.”
An abridged version of this post appears in the September 2019 print issue as “Elephants, Dolphins, and Chimps Need the Internet, Too.” Continue reading
#435775 Jaco Is a Low-Power Robot Arm That Hooks ...
We usually think of robots as taking the place of humans in various tasks, but robots of all kinds can also enhance human capabilities. This may be especially true for people with disabilities. And while the Cybathlon competition showed what's possible when cutting-edge research robotics is paired with expert humans, that competition isn't necessarily reflective of the kind of robotics available to most people today.
Kinova Robotics's Jaco arm is an assistive robotic arm designed to be mounted on an electric wheelchair. With six degrees of freedom plus a three-fingered gripper, the lightweight carbon fiber arm is frequently used in research because it's rugged and versatile. But from the start, Kinova created it to add autonomy to the lives of people with mobility constraints.
Earlier this year, Kinova shared the story of Mary Nelson, an 11-year-old girl with spinal muscular atrophy, who uses her Jaco arm to show her horse in competition. Spinal muscular atrophy is a neuromuscular disorder that impairs voluntary muscle movement, including muscles that help with respiration, and Mary depends on a power chair for mobility.
We wanted to learn more about how Kinova designs its Jaco arm, and what that means for folks like Mary, so we spoke with both Kinova and Mary's parents to find out how much of a difference a robot arm can make.
IEEE Spectrum: How did Mary interact with the world before having her arm, and what was involved in the decision to try a robot arm in general? And why then Kinova's arm specifically?
Ryan Nelson: Mary interacts with the world much like you and I do, she just uses different tools to do so. For example, she is 100 percent independent using her computer, iPad, and phone, and she prefers to use a mouse. However, she cannot move a standard mouse, so she connects her wheelchair to each device with Bluetooth to move the mouse pointer/cursor using her wheelchair joystick.
For years, we had a Manfrotto magic arm and super clamp attached to her wheelchair and she used that much like the robotic arm. We could put a baseball bat, paint brush, toys, etc. in the super clamp so that Mary could hold the object and interact as physically able children do. Mary has always wanted to be more independent, so we knew the robotic arm was something she must try. We had seen videos of the Kinova arm on YouTube and on their website, so we reached out to them to get a trial.
Can you tell us about the Jaco arm, and how the process of designing an assistive robot arm is different from the process of designing a conventional robot arm?
Nathaniel Swenson, Director of U.S. Operations — Assistive Technologies at Kinova: Jaco is our flagship robotic arm. Inspired by our CEO's uncle and its namesake, Jacques “Jaco” Forest, it was designed as assistive technology with power wheelchair users in mind.
The primary differences between Jaco and our other robots, such as the new Gen3, which was designed to meet the needs of academic and industry research teams, are speed and power consumption. Other robots such as the Gen3 can move faster and draw slightly more power because they aren't limited by the battery size of power wheelchairs. Depending on the use case, they might not interact directly with a human being in the research setting and can safely move more quickly. Jaco is designed to move at safe speeds and make direct contact with the end user and draw very little power directly from their wheelchair.
The most important consideration in the design process of an assistive robot is the safety of the end user. Jaco users operate their robots through their existing drive controls to assist them in daily activities such as eating, drinking, and opening doors and they don't have to worry about the robot draining their chair's batteries throughout the day. The elegant design that results from meeting the needs of our power chair users has benefited subsequent iterations, [of products] such as the Gen3, as well: Kinova's robots are lightweight, extremely efficient in their power consumption, and safe for direct human-robot interaction. This is not true of conventional industrial robots.
What was the learning process like for Mary? Does she feel like she's mastered the arm, or is it a continuous learning process?
Ryan Nelson: The learning process was super quick for Mary. However, she amazes us every day with the new things that she can do with the arm. Literally within minutes of installing the arm on her chair, Mary had it figured out and was shaking hands with the Kinova rep. The control of the arm is super intuitive and the Kinova reps say that SMA (Spinal Muscular Atrophy) children are perfect users because they are so smart—they pick it up right away. Mary has learned to do many fine motor tasks with the arm, from picking up small objects like a pencil or a ruler, to adjusting her glasses on her face, to doing science experiments.
Photo: The Nelson Family
Mary uses a headset microphone to amplify her voice, and she will use the arm and finger to adjust the microphone in front of her mouth after she is done eating (also a task she mastered quickly with the arm). Additionally, Mary will use the arms to reach down and adjust her feet or leg by grabbing them with the arm and moving them to a more comfortable position. All of these examples are things she never really asked us to do, but something she needed and just did on her own, with the help of the arm.
What is the most common feedback that you get from new users of the arm? How about from experienced users who have been using the arm for a while?
Nathaniel Swenson: New users always tell us how excited they are to see what they can accomplish with their new Jaco. From day one, they are able to do things that they have longed to do without assistance from a caregiver: take a drink of water or coffee, scratch an itch, push the button to open an “accessible” door or elevator, or even feed their baby with a bottle.
The most common feedback I hear from experienced users is that Jaco has changed their life. Our experienced users like Mary are rock stars: everywhere they go, people get excited to see what they'll do next. The difference between a new user and an experienced user could be as little as two weeks. People who operate power wheelchairs every day are already expert drivers and we just add a new “gear” to their chair: robot mode. It's fun to see how quickly new users master the intuitive Jaco control modes.
What changes would you like to see in the next generation of Jaco arm?
Ryan Nelson: Titanium fingers! Make it lift heavier objects, hold heavier items like a baseball bat, machine gun, flame thrower, etc., and Mary literally said this last night: “I wish the arm moved fast enough to play the piano.”
Nathaniel Swenson: I love the idea of titanium fingers! Jaco's fingers are made from a flexible polymer and designed to avoid harm. This allows the fingers to bend or dislocate, rather than break, but it also means they are not as durable as a material like titanium. Increased payload, the ability to manipulate heavier objects, requires increased power consumption. We've struck a careful balance between providing enough strength to accomplish most medically necessary Activities of Daily Living and efficient use of the power chair's batteries.
We take Isaac Asimov's Laws of Robotics pretty seriously. When we start to combine machine guns, flame throwers, and artificial intelligence with robots, I get very nervous!
I wish the arm moved fast enough to play the piano, too! I am also a musician and I share Mary's dream of an assistive robot that would enable her to make music. In the meantime, while we work on that, please enjoy this beautiful violin piece by Manami Ito and her one-of-a-kind violin prosthesis:
To what extent could more autonomy for the arm be helpful for users? What would be involved in implementing that?
Nathaniel Swenson: Artificial intelligence, machine learning, and deep learning will introduce greater autonomy in future iterations of assistive robots. This will enable them to perform more complex tasks that aren't currently possible, and enable them to accomplish routine tasks more quickly and with less input than the current manual control requires.
For assistive robots, implementation of greater autonomy involves a focus on end-user safety and improvements in the robot's awareness of its environment. Autonomous robots that work in close proximity with humans need vision. They must be able to see to avoid collisions and they use haptic feedback to tell the robot how much force is being exerted on objects. All of these technologies exist, but the largest obstacle to bringing them to the assistive technology market is to prove to the health insurance companies who will fund them that they are both safe and medically necessary. Continue reading