Tag Archives: see
#436114 Video Friday: Transferring Human Motion ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
We are very sad to say that MIT professor emeritus Woodie Flowers has passed away. Flowers will be remembered for (among many other things, like co-founding FIRST) the MIT 2.007 course that he began teaching in the mid-1970s, famous for its student competitions.
These competitions got a bunch of well-deserved publicity over the years; here’s one from 1985:
And the 2.007 competitions are still going strong—this year’s theme was Moonshot, and you can watch a replay of the event here.
[ MIT ]
Looks like Aibo is getting wireless integration with Hitachi appliances, which turns out to be pretty cute:
What is this magical box where you push a button and 60 seconds later fluffy pancakes come out?!
[ Aibo ]
LiftTiles are a “modular and reconfigurable room-scale shape display” that can turn your floor and walls into on-demand structures.
[ LiftTiles ]
Ben Katz, a grad student in MIT’s Biomimetics Robotics Lab, has been working on these beautiful desktop-sized Furuta pendulums:
That’s a crowdfunding project I’d pay way too much for.
[ Ben Katz ]
A clever bit of cable manipulation from MIT, using GelSight tactile sensors.
[ Paper ]
A useful display of industrial autonomy on ANYmal from the Oxford Robotics Group.
This video is of a demonstration for the ORCA Robotics Hub showing the ANYbotics ANYmal robot carrying out industrial inspection using autonomy software from Oxford Robotics Institute.
[ ORCA Hub ] via [ DRS ]
Thanks Maurice!
Meet Katie Hamilton, a software engineer at NASA’s Ames Research Center, who got into robotics because she wanted to help people with daily life. Katie writes code for robots, like Astrobee, who are assisting astronauts with routine tasks on the International Space Station.
[ NASA Astrobee ]
Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work we present a robot whole-body teleoperation framework for human motion transfer. We validate our approach through several experiments using the TIAGo robot, showing this could be an easy way for a non-expert to teach a rough manipulation skill to an assistive robot.
[ Paper ]
This is pretty cool looking for an autonomous boat, but we’ll see if they can build a real one by 2020 since at the moment it’s just an average rendering.
[ ProMare ]
I had no idea that asparagus grows like this. But, sure does make it easy for a robot to harvest.
[ Inaho ]
Skip to 2:30 in this Pepper unboxing video to hear the noise it makes when tickled.
[ HIT Lab NZ ]
In this interview, Jean Paul Laumond discusses his movement from mathematics to robotics and his career contributions to the field, especially in regards to motion planning and anthropomorphic motion. Describing his involvement at CNRS and in other robotics projects, such as HILARE, he comments on the distinction in perception between the robotics approach and a mathematics one.
[ IEEE RAS History ]
Here’s a couple of videos from the CMU Robotics Institute archives, showing some of the work that took place over the last few decades.
[ CMU RI ]
In this episode of the Artificial Intelligence Podcast, Lex Fridman speaks with David Ferrucci from IBM about Watson and (you guessed it) artificial intelligence.
David Ferrucci led the team that built Watson, the IBM question-answering system that beat the top humans in the world at the game of Jeopardy. He is also the Founder, CEO, and Chief Scientist of Elemental Cognition, a company working engineer AI systems that understand the world the way people do. This conversation is part of the Artificial Intelligence podcast.
[ AI Podcast ]
This week’s CMU RI Seminar is by Pieter Abbeel from UC Berkeley, on “Deep Learning for Robotics.”
Programming robots remains notoriously difficult. Equipping robots with the ability to learn would by-pass the need for what otherwise often ends up being time-consuming task specific programming. This talk will describe recent progress in deep reinforcement learning (robots learning through their own trial and error), in apprenticeship learning (robots learning from observing people), and in meta-learning for action (robots learning to learn). This work has led to new robotic capabilities in manipulation, locomotion, and flight, with the same approach underlying advances in each of these domains.
[ CMU RI ] Continue reading
#436042 Video Friday: Caltech’s Drone With ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
Caltech has been making progress on LEONARDO (LEg ON Aerial Robotic DrOne), their leggy thruster powered humanoid-thing. It can now balance and walk, which is quite impressive to see.
We’ll circle back again when they’ve got it jumping and floating around.
[ Caltech ]
Turn the subtitles on to learn how robots became experts at slicing bubbly, melty, delicious cheese.
These robots learned how to do the traditional Swiss raclette from demonstration. The Robot Learning & Interaction group at the Idiap Research Institute has developed an imitation learning technique allowing the robot to acquire new skills by considering position and force information, with an automatic adaptation to new situations. The range of applications is wide, including industrial robots, service robots, and assistive robots.
[ Idiap ]
Thanks Sylvain!
Some amazing news this week from Skydio, with the announcement of their better in every single way Skydio 2 autonomous drone. Read our full article for details, but here’s a getting started video that gives you an overview of what the drone can do.
The first batch sold out in 36 hours, but you can put down a $100 deposit to reserve the $999 drone for 2020 delivery.
[ Skydio ]
UBTECH is introducing a couple new robot kits for the holidays: ChampBot and FireBot.
$130 each, available on October 20.
[ Ubtech ]
NASA’s InSight lander on Mars is trying to use its robotic arm to get the mission’s heat flow probe, or mole, digging again. InSight team engineer Ashitey Trebbi-Ollennu, based at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains what has been attempted and the game plan for the coming weeks. The next tactic they’ll try will be “pinning” the mole against the hole it’s in.
[ NASA ]
We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physical affordances. ShapeBots is a concept prototype of shape-changing swarm robots. Each robot can change its shape by leveraging small linear actuators that are thin (2.5 cm) and highly extendable (up to 20cm) in both horizontal and vertical directions.
[ Ryo Suzuki ]
Robot abuse!
Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.
[ Ghost Robotics ]
We asked real people to bring in real products they needed picked for their application. In MINUTES, we assembled the right tool.
This is a cool idea, but for a real challenge they should try it outside a supermarket. Or a pet store.
[ Soft Robotics ]
Good water quality is important to humans and to nature. In a country with as much water as the Netherlands has, ensuring water quality is a very labour-intensive undertaking. To address this issue, researchers from TU Delft have developed a ‘pelican drone’: a drone capable of taking water samples quickly, in combination with a measuring instrument that immediately analyses the water quality. The drone was tested this week at the new Marker Wadden nature area ‘Living Lab’.
[ MAVLab ]
In an international collaboration led by scientists in Switzerland, three amputees merge with their bionic prosthetic legs as they climb over various obstacles without having to look. The amputees report using and feeling their bionic leg as part of their own body, thanks to sensory feedback from the prosthetic leg that is delivered to nerves in the leg’s stump.
[ EPFL ]
It’s a little hard to see, but this is one way of testing out asteroid imaging spacecraft without actually going into space: a fake asteroid and a 2D microgravity simulator.
[ Caltech ]
Drones can help filmmakers do the kinds of shots that would be otherwise impossible.
[ DJI ]
Two long interviews this week from Lex Fridman’s AI Podcast, and both of them are worth watching: Gary Marcus, and Peter Norvig.
[ AI Podcast ]
This week’s CMU RI Seminar comes from Tucker Hermans at the University of Utah, on “Improving Multi-fingered Robot Manipulation by Unifying Learning and Planning.”
Multi-fingered hands offer autonomous robots increased dexterity, versatility, and stability over simple two-fingered grippers. Naturally, this increased ability comes with increased complexity in planning and executing manipulation actions. As such, I propose combining model-based planning with learned components to improve over purely data-driven or purely-model based approaches to manipulation. This talk examines multi-fingered autonomous manipulation when the robot has only partial knowledge of the object of interest. I will first present results on planning multi-fingered grasps for novel objects using a learned neural network. I will then present our approach to planning in-hand manipulation tasks when dynamic properties of objects are not known. I will conclude with a discussion of our ongoing and future research to further unify these two approaches.
[ CMU RI ] Continue reading