Tag Archives: therapy

#432027 We Read This 800-Page Report on the ...

The longevity field is bustling but still fragmented, and the “silver tsunami” is coming.

That is the takeaway of The Science of Longevity, the behemoth first volume of a four-part series offering a bird’s-eye view of the longevity industry in 2017. The report, a joint production of the Biogerontology Research Foundation, Deep Knowledge Life Science, Aging Analytics Agency, and Longevity.International, synthesizes the growing array of academic and industry ventures related to aging, healthspan, and everything in between.

This is huge, not only in scale but also in ambition. The report, totally worth a read here, will be followed by four additional volumes in 2018, covering topics ranging from the business side of longevity ventures to financial systems to potential tensions between life extension and religion.

And that’s just the first step. The team hopes to publish updated versions of the report annually, giving scientists, investors, and regulatory agencies an easy way to keep their finger on the longevity pulse.

“In 2018, ‘aging’ remains an unnamed adversary in an undeclared war. For all intents and purposes it is mere abstraction in the eyes of regulatory authorities worldwide,” the authors write.

That needs to change.

People often arrive at the field of aging from disparate areas with wildly diverse opinions and strengths. The report compiles these individual efforts at cracking aging into a systematic resource—a “periodic table” for longevity that clearly lays out emerging trends and promising interventions.

The ultimate goal? A global framework serving as a road map to guide the burgeoning industry. With such a framework in hand, academics and industry alike are finally poised to petition the kind of large-scale investments and regulatory changes needed to tackle aging with a unified front.

Infographic depicting many of the key research hubs and non-profits within the field of geroscience.
Image Credit: Longevity.International
The Aging Globe
The global population is rapidly aging. And our medical and social systems aren’t ready to handle this oncoming “silver tsunami.”

Take the medical field. Many age-related diseases such as Alzheimer’s lack effective treatment options. Others, including high blood pressure, stroke, lung or heart problems, require continuous medication and monitoring, placing enormous strain on medical resources.

What’s more, because disease risk rises exponentially with age, medical care for the elderly becomes a game of whack-a-mole: curing any individual disease such as cancer only increases healthy lifespan by two to three years before another one hits.

That’s why in recent years there’s been increasing support for turning the focus to the root of the problem: aging. Rather than tackling individual diseases, geroscience aims to add healthy years to our lifespan—extending “healthspan,” so to speak.

Despite this relative consensus, the field still faces a roadblock. The US FDA does not yet recognize aging as a bona fide disease. Without such a designation, scientists are banned from testing potential interventions for aging in clinical trials (that said, many have used alternate measures such as age-related biomarkers or Alzheimer’s symptoms as a proxy).

Luckily, the FDA’s stance is set to change. The promising anti-aging drug metformin, for example, is already in clinical trials, examining its effect on a variety of age-related symptoms and diseases. This report, and others to follow, may help push progress along.

“It is critical for investors, policymakers, scientists, NGOs, and influential entities to prioritize the amelioration of the geriatric world scenario and recognize aging as a critical matter of global economic security,” the authors say.

Biomedical Gerontology
The causes of aging are complex, stubborn, and not all clear.

But the report lays out two main streams of intervention with already promising results.

The first is to understand the root causes of aging and stop them before damage accumulates. It’s like meddling with cogs and other inner workings of a clock to slow it down, the authors say.

The report lays out several treatments to keep an eye on.

Geroprotective drugs is a big one. Often repurposed from drugs already on the market, these traditional small molecule drugs target a wide variety of metabolic pathways that play a role in aging. Think anti-oxidants, anti-inflammatory, and drugs that mimic caloric restriction, a proven way to extend healthspan in animal models.

More exciting are the emerging technologies. One is nanotechnology. Nanoparticles of carbon, “bucky-balls,” for example, have already been shown to fight viral infections and dangerous ion particles, as well as stimulate the immune system and extend lifespan in mice (though others question the validity of the results).

Blood is another promising, if surprising, fountain of youth: recent studies found that molecules in the blood of the young rejuvenate the heart, brain, and muscles of aged rodents, though many of these findings have yet to be replicated.

Rejuvenation Biotechnology
The second approach is repair and maintenance.

Rather than meddling with inner clockwork, here we force back the hands of a clock to set it back. The main example? Stem cell therapy.

This type of approach would especially benefit the brain, which harbors small, scattered numbers of stem cells that deplete with age. For neurodegenerative diseases like Alzheimer’s, in which neurons progressively die off, stem cell therapy could in theory replace those lost cells and mend those broken circuits.

Once a blue-sky idea, the discovery of induced pluripotent stem cells (iPSCs), where scientists can turn skin and other mature cells back into a stem-like state, hugely propelled the field into near reality. But to date, stem cells haven’t been widely adopted in clinics.

It’s “a toolkit of highly innovative, highly invasive technologies with clinical trials still a great many years off,” the authors say.

But there is a silver lining. The boom in 3D tissue printing offers an alternative approach to stem cells in replacing aging organs. Recent investment from the Methuselah Foundation and other institutions suggests interest remains high despite still being a ways from mainstream use.

A Disruptive Future
“We are finally beginning to see an industry emerge from mankind’s attempts to make sense of the biological chaos,” the authors conclude.

Looking through the trends, they identified several technologies rapidly gaining steam.

One is artificial intelligence, which is already used to bolster drug discovery. Machine learning may also help identify new longevity genes or bring personalized medicine to the clinic based on a patient’s records or biomarkers.

Another is senolytics, a class of drugs that kill off “zombie cells.” Over 10 prospective candidates are already in the pipeline, with some expected to enter the market in less than a decade, the authors say.

Finally, there’s the big gun—gene therapy. The treatment, unlike others mentioned, can directly target the root of any pathology. With a snip (or a swap), genetic tools can turn off damaging genes or switch on ones that promote a youthful profile. It is the most preventative technology at our disposal.

There have already been some success stories in animal models. Using gene therapy, rodents given a boost in telomerase activity, which lengthens the protective caps of DNA strands, live healthier for longer.

“Although it is the prospect farthest from widespread implementation, it may ultimately prove the most influential,” the authors say.

Ultimately, can we stop the silver tsunami before it strikes?

Perhaps not, the authors say. But we do have defenses: the technologies outlined in the report, though still immature, could one day stop the oncoming tidal wave in its tracks.

Now we just have to bring them out of the lab and into the real world. To push the transition along, the team launched Longevity.International, an online meeting ground that unites various stakeholders in the industry.

By providing scientists, entrepreneurs, investors, and policy-makers a platform for learning and discussion, the authors say, we may finally generate enough drive to implement our defenses against aging. The war has begun.

Read the report in full here, and watch out for others coming soon here. The second part of the report profiles 650 (!!!) longevity-focused research hubs, non-profits, scientists, conferences, and literature. It’s an enormously helpful resource—totally worth keeping it in your back pocket for future reference.

Image Credit: Worraket / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431189 Researchers Develop New Tech to Predict ...

It is one of the top 10 deadliest diseases in the United States, and it cannot be cured or prevented. But new studies are finding ways to diagnose Alzheimer’s disease in its earliest stages, while some of the latest research says technologies like artificial intelligence can detect dementia years before the first symptoms occur.
These advances, in turn, will help bolster clinical trials seeking a cure or therapies to slow or prevent the disease. Catching Alzheimer’s disease or other forms of dementia early in their progression can help ease symptoms in some cases.
“Often neurodegeneration is diagnosed late when massive brain damage has already occurred,” says professor Francis L Martin at the University of Central Lancashire in the UK, in an email to Singularity Hub. “As we know more about the molecular basis of the disease, there is the possibility of clinical interventions that might slow or halt the progress of the disease, i.e., before brain damage. Extending cognitive ability for even a number of years would have huge benefit.”
Blood Diamond
Martin is the principal investigator on a project that has developed a technique to analyze blood samples to diagnose Alzheimer’s disease and distinguish between other forms of dementia.
The researchers used sensor-based technology with a diamond core to analyze about 550 blood samples. They identified specific chemical bonds within the blood after passing light through the diamond core and recording its interaction with the sample. The results were then compared against blood samples from cases of Alzheimer’s disease and other neurodegenerative diseases, along with those from healthy individuals.
“From a small drop of blood, we derive a fingerprint spectrum. That fingerprint spectrum contains numerical data, which can be inputted into a computational algorithm we have developed,” Martin explains. “This algorithm is validated for prediction of unknown samples. From this we determine sensitivity and specificity. Although not perfect, my clinical colleagues reliably tell me our results are far better than anything else they have seen.”
Martin says the breakthrough is the result of more than 10 years developing sensor-based technologies for routine screening, monitoring, or diagnosing neurodegenerative diseases and cancers.
“My vision was to develop something low-cost that could be readily applied in a typical clinical setting to handle thousands of samples potentially per day or per week,” he says, adding that the technology also has applications in environmental science and food security.
The new test can also distinguish accurately between Alzheimer’s disease and other forms of neurodegeneration, such as Lewy body dementia, which is one of the most common causes of dementia after Alzheimer’s.
“To this point, other than at post-mortem, there has been no single approach towards classifying these pathologies,” Martin notes. “MRI scanning is often used but is labor-intensive, costly, difficult to apply to dementia patients, and not a routine point-of-care test.”
Crystal Ball
Canadian researchers at McGill University believe they can predict Alzheimer’s disease up to two years before its onset using big data and artificial intelligence. They developed an algorithm capable of recognizing the signatures of dementia using a single amyloid PET scan of the brain of patients at risk of developing the disease.
Alzheimer’s is caused by the accumulation of two proteins—amyloid beta and tau. The latest research suggests that amyloid beta leads to the buildup of tau, which is responsible for damaging nerve cells and connections between cells called synapses.
The work was recently published in the journal Neurobiology of Aging.
“Despite the availability of biomarkers capable of identifying the proteins causative of Alzheimer’s disease in living individuals, the current technologies cannot predict whether carriers of AD pathology in the brain will progress to dementia,” Sulantha Mathotaarachchi, lead author on the paper and an expert in artificial neural networks, tells Singularity Hub by email.
The algorithm, trained on a population with amnestic mild cognitive impairment observed over 24 months, proved accurate 84.5 percent of the time. Mathotaarachchi says the algorithm can be trained on different populations for different observational periods, meaning the system can grow more comprehensive with more data.
“The more biomarkers we incorporate, the more accurate the prediction could be,” Mathotaarachchi adds. “However, right now, acquiring [the] required amount of training data is the biggest challenge. … In Alzheimer’s disease, it is known that the amyloid protein deposition occurs decades before symptoms onset.”
Unfortunately, the same process occurs in normal aging as well. “The challenge is to identify the abnormal patterns of deposition that lead to the disease later on,” he says
One of the key goals of the project is to improve the research in Alzheimer’s disease by ensuring those patients with the highest probability to develop dementia are enrolled in clinical trials. That will increase the efficiency of clinical programs, according to Mathotaarachchi.
“One of the most important outcomes from our study was the pilot, online, real-time prediction tool,” he says. “This can be used as a framework for patient screening before recruiting for clinical trials. … If a disease-modifying therapy becomes available for patients, a predictive tool might have clinical applications as well, by providing to the physician information regarding clinical progression.”
Pixel by Pixel Prediction
Private industry is also working toward improving science’s predictive powers when it comes to detecting dementia early. One startup called Darmiyan out of San Francisco claims its proprietary software can pick up signals before the onset of Alzheimer’s disease by up to 15 years.
Darmiyan didn’t respond to a request for comment for this article. Venture Beat reported that the company’s MRI-analyzing software “detects cell abnormalities at a microscopic level to reveal what a standard MRI scan cannot” and that the “software measures and highlights subtle microscopic changes in the brain tissue represented in every pixel of the MRI image long before any symptoms arise.”
Darmiyan claims to have a 90 percent accuracy rate and says its software has been vetted by top academic institutions like New York University, Rockefeller University, and Stanford, according to Venture Beat. The startup is awaiting FDA approval to proceed further but is reportedly working with pharmaceutical companies like Amgen, Johnson & Johnson, and Pfizer on pilot programs.
“Our technology enables smarter drug selection in preclinical animal studies, better patient selection for clinical trials, and much better drug-effect monitoring,” Darmiyan cofounder and CEO Padideh Kamali-Zare told Venture Beat.
An estimated 5.5 million Americans have Alzheimer’s, and one in 10 people over age 65 have been diagnosed with the disease. By mid-century, the number of Alzheimer’s patients could rise to 16 million. Health care costs in 2017 alone are estimated to be $259 billion, and by 2050 the annual price tag could be more than $1 trillion.
In sum, it’s a disease that cripples people and the economy.
Researchers are always after more data as they look to improve outcomes, with the hope of one day developing a cure or preventing the onset of neurodegeneration altogether. If interested in seeing this medical research progress, you can help by signing up on the Brain Health Registry to improve the quality of clinical trials.
Image Credit: rudall30 / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431159 How Close Is Turing’s Dream of ...

The quest for conversational artificial intelligence has been a long one.
When Alan Turing, the father of modern computing, racked his considerable brains for a test that would truly indicate that a computer program was intelligent, he landed on this area. If a computer could convince a panel of human judges that they were talking to a human—if it could hold a convincing conversation—then it would indicate that artificial intelligence had advanced to the point where it was indistinguishable from human intelligence.
This gauntlet was thrown down in 1950 and, so far, no computer program has managed to pass the Turing test.
There have been some very notable failures, however: Joseph Weizenbaum, as early as 1966—when computers were still programmed with large punch-cards—developed a piece of natural language processing software called ELIZA. ELIZA was a machine intended to respond to human conversation by pretending to be a psychotherapist; you can still talk to her today.
Talking to ELIZA is a little strange. She’ll often rephrase things you’ve said back at you: so, for example, if you say “I’m feeling depressed,” she might say “Did you come to me because you are feeling depressed?” When she’s unsure about what you’ve said, ELIZA will usually respond with “I see,” or perhaps “Tell me more.”
For the first few lines of dialogue, especially if you treat her as your therapist, ELIZA can be convincingly human. This was something Weizenbaum noticed and was slightly alarmed by: people were willing to treat the algorithm as more human than it really was. Before long, even though some of the test subjects knew ELIZA was just a machine, they were opening up with some of their deepest feelings and secrets. They were pouring out their hearts to a machine. When Weizenbaum’s secretary spoke to ELIZA, even though she knew it was a fairly simple computer program, she still insisted Weizenbaum leave the room.
Part of the unexpected reaction ELIZA generated may be because people are more willing to open up to a machine, feeling they won’t be judged, even if the machine is ultimately powerless to do or say anything to really help. The ELIZA effect was named for this computer program: the tendency of humans to anthropomorphize machines, or think of them as human.

Weizenbaum himself, who later became deeply suspicious of the influence of computers and artificial intelligence in human life, was astonished that people were so willing to believe his script was human. He wrote, “I had not realized…that extremely short exposures to a relatively simple computer program could induce powerful delusional thinking in quite normal people.”

“Consciously, you know you’re talking to a big block of code stored somewhere out there in the ether. But subconsciously, you might feel like you’re interacting with a human.”

The ELIZA effect may have disturbed Weizenbaum, but it has intrigued and fascinated others for decades. Perhaps you’ve noticed it in yourself, when talking to an AI like Siri, Alexa, or Google Assistant—the occasional response can seem almost too real. Consciously, you know you’re talking to a big block of code stored somewhere out there in the ether. But subconsciously, you might feel like you’re interacting with a human.
Yet the ELIZA effect, as enticing as it is, has proved a source of frustration for people who are trying to create conversational machines. Natural language processing has proceeded in leaps and bounds since the 1960s. Now you can find friendly chatbots like Mitsuku—which has frequently won the Loebner Prize, awarded to the machines that come closest to passing the Turing test—that aim to have a response to everything you might say.
In the commercial sphere, Facebook has opened up its Messenger program and provided software for people and companies to design their own chatbots. The idea is simple: why have an app for, say, ordering pizza when you can just chatter to a robot through your favorite messenger app and make the order in natural language, as if you were telling your friend to get it for you?
Startups like Semantic Machines hope their AI assistant will be able to interact with you just like a secretary or PA would, but with an unparalleled ability to retrieve information from the internet. They may soon be there.
But people who engineer chatbots—both in the social and commercial realm—encounter a common problem: the users, perhaps subconsciously, assume the chatbots are human and become disappointed when they’re not able to have a normal conversation. Frustration with miscommunication can often stem from raised initial expectations.
So far, no machine has really been able to crack the problem of context retention—understanding what’s been said before, referring back to it, and crafting responses based on the point the conversation has reached. Even Mitsuku will often struggle to remember the topic of conversation beyond a few lines of dialogue.

“For everything you say, there could be hundreds of responses that would make sense. When you travel a layer deeper into the conversation, those factors multiply until you end up with vast numbers of potential conversations.”

This is, of course, understandable. Conversation can be almost unimaginably complex. For everything you say, there could be hundreds of responses that would make sense. When you travel a layer deeper into the conversation, those factors multiply until—like possible games of Go or chess—you end up with vast numbers of potential conversations.
But that hasn’t deterred people from trying, most recently, tech giant Amazon, in an effort to make their AI voice assistant, Alexa, friendlier. They have been running the Alexa Prize competition, which offers a cool $500,000 to the winning AI—and a bonus of a million dollars to any team that can create a ‘socialbot’ capable of sustaining a conversation with human users for 20 minutes on a variety of themes.
Topics Alexa likes to chat about include science and technology, politics, sports, and celebrity gossip. The finalists were recently announced: chatbots from universities in Prague, Edinburgh, and Seattle. Finalists were chosen according to the ratings from Alexa users, who could trigger the socialbots into conversation by saying “Hey Alexa, let’s chat,” although the reviews for the socialbots weren’t always complimentary.
By narrowing down the fields of conversation to a specific range of topics, the Alexa Prize has cleverly started to get around the problem of context—just as commercially available chatbots hope to do. It’s much easier to model an interaction that goes a few layers into the conversational topic if you’re limiting those topics to a specific field.
Developing a machine that can hold almost any conversation with a human interlocutor convincingly might be difficult. It might even be a problem that requires artificial general intelligence to truly solve, rather than the previously-employed approaches of scripted answers or neural networks that associate inputs with responses.
But a machine that can have meaningful interactions that people might value and enjoy could be just around the corner. The Alexa Prize winner is announced in November. The ELIZA effect might mean we will relate to machines sooner than we’d thought.
So, go well, little socialbots. If you ever want to discuss the weather or what the world will be like once you guys take over, I’ll be around. Just don’t start a therapy session.
Image Credit: Shutterstock Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431000 Japan’s SoftBank Is Investing Billions ...

Remember the 1980s movie Brewster’s Millions, in which a minor league baseball pitcher (played by Richard Pryor) must spend $30 million in 30 days to inherit $300 million? Pryor goes on an epic spending spree for a bigger payoff down the road.
One of the world’s biggest public companies is making that film look like a weekend in the Hamptons. Japan’s SoftBank Group, led by its indefatigable CEO Masayoshi Son, is shooting to invest $100 billion over the next five years toward what the company calls the information revolution.
The newly-created SoftBank Vision Fund, with a handful of key investors, appears ready to almost single-handedly hack the technology revolution. Announced only last year, the fund had its first major close in May with $93 billion in committed capital. The rest of the money is expected to be raised this year.
The fund is unprecedented. Data firm CB Insights notes that the SoftBank Vision Fund, if and when it hits the $100 billion mark, will equal the total amount that VC-backed companies received in all of 2016—$100.8 billion across 8,372 deals globally.
The money will go toward both billion-dollar corporations and startups, with a minimum $100 million buy-in. The focus is on core technologies like artificial intelligence, robotics and the Internet of Things.
Aside from being Japan’s richest man, Son is also a futurist who has predicted the singularity, the moment in time when machines will become smarter than humans and technology will progress exponentially. Son pegs the date as 2047. He appears to be hedging that bet in the biggest way possible.
Show Me the Money
Ostensibly a telecommunications company, SoftBank Group was founded in 1981 and started investing in internet technologies by the mid-1990s. Son infamously lost about $70 billion of his own fortune after the dot-com bubble burst around 2001. The company itself has a market cap of nearly $90 billion today, about half of where it was during the heydays of the internet boom.
The ups and downs did nothing to slake the company’s thirst for technology. It has made nine acquisitions and more than 130 investments since 1995. In 2017 alone, SoftBank has poured billions into nearly 30 companies and acquired three others. Some of those investments are being transferred to the massive SoftBank Vision Fund.
SoftBank is not going it alone with the new fund. More than half of the money—$60 billion—comes via the Middle East through Saudi Arabia’s Public Investment Fund ($45 billion) and Abu Dhabi’s Mubadala Investment Company ($15 billion). Other players at the table include Apple, Qualcomm, Sharp, Foxconn, and Oracle.
During a company conference in August, Son notes the SoftBank Vision Fund is not just about making money. “We don’t just want to be an investor just for the money game,” he says through a translator. “We want to make the information revolution. To do the information revolution, you can’t do it by yourself; you need a lot of synergy.”
Off to the Races
The fund has wasted little time creating that synergy. In July, its first official investment, not surprisingly, went to a company that specializes in artificial intelligence for robots—Brain Corp. The San Diego-based startup uses AI to turn manual machines into self-driving robots that navigate their environments autonomously. The first commercial application appears to be a really smart commercial-grade version that crosses a Roomba and Zamboni.

A second investment in July was a bit more surprising. SoftBank and its fund partners led a $200 million mega-round for Plenty, an agricultural tech company that promises to reshape farming by going vertical. Using IoT sensors and machine learning, Plenty claims its urban vertical farms can produce 350 times more vegetables than a conventional farm using 1 percent of the water.
Round Two
The spending spree continued into August.
The SoftBank Vision Fund led a $1.1 billion investment into a little-known biotechnology company called Roivant Sciences that goes dumpster diving for abandoned drugs and then creates subsidiaries around each therapy. For example, Axovant Sciences is devoted to neurology while Urovant focuses on urology. TechCrunch reports that Roivant is also creating a tech-focused subsidiary, called Datavant, that will use AI for drug discovery and other healthcare initiatives, such as designing clinical trials.
The AI angle may partly explain SoftBank’s interest in backing the biggest private placement in healthcare to date.
Also in August, SoftBank Vision Fund led a mix of $2.5 billion in primary and secondary capital investments into India’s largest private company in what was touted as the largest single investment in a private Indian company. Flipkart is an e-commerce company in the mold of Amazon.
The fund tacked on a $250 million investment round in August to Kabbage, an Atlanta-based startup in the alt-lending sector for small businesses. It ended big with a $4.4 billion investment into a co-working company called WeWork.
Betterment of Humanity
And those investments only include companies that SoftBank Vision Fund has backed directly.
SoftBank the company will offer—or has already turned over—previous investments to the Vision Fund in more than a half-dozen companies. Those assets include its shares in Nvidia, which produces chips for AI applications, and its first serious foray into autonomous driving with Nauto, a California startup that uses AI and high-tech cameras to retrofit vehicles to improve driving safety. The more miles the AI logs, the more it learns about safe and unsafe driving behaviors.
Other recent acquisitions, such as Boston Dynamics, a well-known US robotics company owned briefly by Google’s parent company Alphabet, will remain under the SoftBank Group umbrella for now.

This spending spree begs the question: What is the overall vision behind the SoftBank’s relentless pursuit of technology companies? A spokesperson for SoftBank told Singularity Hub that the “common thread among all of these companies is that they are creating the foundational platforms for the next stage of the information revolution.All of the companies, he adds, share SoftBank’s criteria of working toward “the betterment of humanity.”
While the SoftBank portfolio is diverse, from agtech to fintech to biotech, it’s obvious that SoftBank is betting on technologies that will connect the world in new and amazing ways. For instance, it wrote a $1 billion check last year in support of OneWeb, which aims to launch 900 satellites to bring internet to everyone on the planet. (It will also be turned over to the SoftBank Vision Fund.)
SoftBank also led a half-billion equity investment round earlier this year in a UK company called Improbable, which employs cloud-based distributed computing to create virtual worlds for gaming. The next step for the company is massive simulations of the real world that supports simultaneous users who can experience the same environment together(and another candidate for the SoftBank Vision Fund.)
Even something as seemingly low-tech as WeWork, which provides a desk or office in locations around the world, points toward a more connected planet.
In the end, the singularity is about bringing humanity together through technology. No one said it would be easy—or cheap.
Stock Media provided by xackerz / Pond5 Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#430649 Robotherapy for children with autism

New Robotherapy for children with autism could reduce patient supervision by therapists.
Autism treatments and therapies routinely make headlines. With robot enhanced therapies on the rise, often overlooked though, is the mental stress and physical toll the procedures take on therapists. As autism treatments can be taxing on both patient and therapists, few realize the stress and workload of those working with autistic patients.
It is against this backdrop, that researchers from the Vrije Universiteit Brussel are pioneering a new technology to aid behavioural therapy, and one with a very deliberate aspect: they are using robots to boost the basic social learning skills of children with ASD and while doing so, they hope to make the therapists’ job substantially easier.
A study, just published in PALADYN – Journal of Behavioural Robotics examines the use of social robots as tools in clinical situations by addressing the challenge of increasing robot autonomy.
The growing deployment of robot-assisted therapies in recent decades means children with Autism Spectrum Disorder (ASD) can develop and nurture social behaviour and cognitive skills. Learning skills that hold out in real life is the first and foremost goal of all autism therapies, including the Robot-Assisted Therapy (RAT), with effectiveness always considered a key concern. However, this time round the scientists have set off on the additional mission to take the load off the human therapists by letting parts of the intervention be taken over by the supervised yet autonomous robots.
The researchers developed a complete system of robot-enhanced therapy (RET) for children with ASD. The therapy works by teaching behaviours during repeated sessions of interactive games. Since the individuals with ASD tend to be more responsive to feedback coming from an interaction with technology, robots are often used for this therapy. In this approach, the social robot acts as a mediator and typically remains remote-controlled by a human operator. The technique, called Wizard of Oz, requires the robot to be operated by an additional person and the robot is not recording the performance during the therapy. In order to reduce operator workload, authors introduced a system with a supervised autonomous robot – which is able to understand the psychological disposition of the child and use it to select actions appropriate to the current state of the interaction.
Admittedly, robots with supervised autonomy can substantially benefit behavioural therapy for children with ASD – diminishing the therapist workload on the one hand, and achieving more objective measurements of therapy outcomes on the other. Yet, complex as it is, this therapy requires a multidisciplinary approach, as RET provides mixed effectiveness for primary tasks: the turn-taking, joint attention and imitation task comparing to Standard Human Treatment (SHT).
Results are likely to prompt a further development of the robot assisted therapy with increasing robot’s autonomy. With many outstanding conceptual and technical issues yet to tackle –it is definitely the ethical questions that pose one of the major challenges as far as the potential and maximal degree of robot autonomy is concerned.
The article is fully available in open access to read, download and share on De Gruyter Online.
Research was conducted as a part of DREAM (Development of Robot-Enhanced therapy for children with Autism spectrum disorders) project.
DOI: 10.1515/pjbr-2017-0002
Image credit: P.G. Esteban
About the Journal: PALADYN – Journal of Behavioural Robotics is a fully peer-reviewed, electronic-only journal that publishes original, high-quality research on topics broadly related to neuronally and psychologically inspired robots and other behaving autonomous systems.
About De Gruyter Open: De Gruyter Open is a leading publisher of Open Access academic content. Publishing in all major disciplines, De Gruyter Open is home to more than 500 scholarly journals and over 100 books. The company is part of the De Gruyter Group (www.degruyter.com) and a member of the Association of Learned and Professional Society Publishers (ALPSP). De Gruyter Open’s book and journal programs have been endorsed by the international research community and some of the world’s top scientists, including Nobel laureates. The company’s mission is to make the very best in academic content freely available to scholars and lay readers alike.
The post Robotherapy for children with autism appeared first on Roboticmagazine. Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment