Timeline Of Humanoid Robot Developments

Year Development
c. 250 BC The Lie Zi described an automaton.
c. 50 AD Greek mathematician Hero of Alexandria described a machine to automatically pour wine for party guests.
1206 Al-Jazari described a band made up of humanoid automata which, according to Charles B. Fowler, performed “more than fifty facial and body actions during each musical selection.” Al-Jazari also created hand washing automata with automatic humanoid servants, and an elephant clock incorporating an automatic humanoid mahout striking a cymbal on the half-hour. His programmable “castle clock” also featured five musician automata which automatically played music when moved by levers operated by a hidden camshaft attached to a water wheel.
1495 Leonardo da Vinci designs a humanoid automaton that looks like an armored knight, known as Leonardo’s robot.
1738 Jacques de Vaucanson builds The Flute Player, a life-size figure of a shepherd that could play twelve songs on the flute and The Tambourine Player that played a flute and a drum or tambourine.
1774 Pierre Jacquet-Droz and his son Henri-Louis created the Draughtsman, the Musicienne and the Writer, a figure of a boy that could write messages up to 40 characters long.
1837

The story of the Golem of Prague, an humanoid artificial intelligence activated by inscribing Hebrew letters on its forehead, based on Jewish folklore, was created by Jewish German writer Berthold Auerbach for his novel Spinoza.

1921 Czech writer Karel ÄŒapek introduced the word “robot” in his play R.U.R. (Rossum’s Universal Robots). The word “robot” comes from the word “robota”, meaning, in Czech, “forced labour, drudgery”.
1927 The Maschinenmensch (“machine-humanâ€), a gynoid humanoid robot, also called “Parody”, “Futura”, “Robotrix”, or the “Maria impersonator” (played by German actress Brigitte Helm), perhaps the most memorable humanoid robot ever to appear on film, is depicted in Fritz Lang‘s film Metropolis.
1941-42 Isaac Asimov formulates the Three Laws of Robotics, and in the process of doing so, coins the word “robotics”.
1948 Norbert Weiner formulates the principles of cybernetics, the basis of practical robotics.
1961 The first digitally operated and programmable non-humanoid robot, the Unimate, is installed on a General Motors assembly line to lift hot pieces of metal from a die casting machine and stack them. It was created by George Devol and constructed by Unimation, the first robot manufacturing company.
1969 D.E. Whitney publishes his article “Resolved motion rate control of manipulators and human prosthesis”.
1970 Miomir Vukobratović has proposed Zero Moment Point, a theoretical model to explain biped locomotion.
1972 Miomir Vukobratović and his associates at Mihajlo Pupin Institute build the first active anthropomorphic exoskeleton.
1973 In Waseda University, in Tokyo, Wabot-1 is built. It was able to communicate with a person in Japanese and to measure distances and directions to the objects using external receptors, artificial ears and eyes, and an artificial mouth.
1980 Marc Raibert established the MIT Leg Lab, which is dedicated to studying legged locomotion and building dynamic legged robots.
1983 Using MB Associates arms, “Greenman” was developed by Space and Naval Warfare Systems Center, San Diego. It had an exoskeletal master controller with kinematic equivalency and spatial correspondence of the torso, arms, and head. Its vision system consisted of two 525-line video cameras each having a 35-degree field of view and video camera eyepiece monitors mounted in an aviator’s helmet.
1984 At Waseda University, the Wabot-2 is created, a musician humanoid robot able to communicate with a person, read a normal musical score with his eyes and play tunes of average difficulty on an electronic organ.
1985 Developed by Hitachi Ltd, WHL-11 is a biped robot capable of static walking on a flat surface at 13 seconds per step and it can also turn.
1985 WASUBOT is another musician robot from Waseda University. It performed a concerto with the NHK Symphony Orchestra at the opening ceremony of the International Science and Technology Exposition.
1986 Honda developed seven biped robots which were designated E0 (Experimental Model 0) through E6. E0 was in 1986, E1 – E3 were done between 1987 and 1991, and E4 – E6 were done between 1991 and 1993.
1989 Manny was a full-scale anthropomorphic robot with 42 degrees of freedom developed at Battelle’s Pacific Northwest Laboratories in Richland, Washington, for the US Army’s Dugway Proving Ground in Utah. It could not walk on its own but it could crawl, and had an artificial respiratory system to simulate breathing and sweating.
1990 Tad McGeer showed that a biped mechanical structure with knees could walk passively down a sloping surface.
1993 Honda developed P1 (Prototype Model 1) through P3, an evolution from E series, with upper limbs. Developed until 1997.
1995 Hadaly was developed in Waseda University to study human-robot communication and has three subsystems: a head-eye subsystem, a voice control system for listening and speaking in Japanese, and a motion-control subsystem to use the arms to point toward campus destinations.
1995 Wabian is a human-size biped walking robot from Waseda University.
1996 Saika, a light-weight, human-size and low-cost humanoid robot, was developed at Tokyo University. Saika has a two-DOF neck, dual five-DOF upper arms, a torso and a head. Several types of hands and forearms are under development also. Developed until 1998.
1997 Hadaly-2, developed at Waseda University, is a humanoid robot which realizes interactive communication with humans. It communicates not only informationally, but also physically.
2000 Honda creates its 11th bipedal humanoid robot, ASIMO.
2001 Sony unveils small humanoid entertainment robots, dubbed Sony Dream Robot (SDR). Renamed Qrio in 2003.
2001 Fujitsu realized its first commercial humanoid robot named HOAP-1. Its successors HOAP-2 and HOAP-3 were announced in 2003 and 2005, respectively. HOAP is designed for a broad range of applications for R&D of robot technologies.
2003 JOHNNIE, an autonomous biped walking robot built at the Technical University of Munich. The main objective was to realize an anthropomorphic walking machine with a human-like, dynamically stable gait
2003 Actroid, a robot with realistic silicone “skin” developed by Osaka University in conjunction with Kokoro Company Ltd.
2004 Persia, Iran’s first humanoid robot, was developed using realistic simulation by researchers of Isfahan University of Technology in conjunction with ISTT.
2004 KHR-1, a programmable bipedal humanoid robot introduced in June 2004 by a Japanese company Kondo Kagaku.
2005 The PKD Android, a conversational humanoid robot made in the likeness of science fiction novelist Philip K Dick, was developed as a collaboration between Hanson Robotics, the FedEx Institute of Technology, and the University of Memphis.
2005 Wakamaru, a Japanese domestic robot made by Mitsubishi Heavy Industries, primarily intended to provide companionship to elderly and disabled people.
2007 TOPIO, a ping pong playing robot developed by TOSY Robotics JSC.
2008 KT-X, the first international humanoid robot developed as a collaboration between the five-time consecutive RoboCup champions, Team Osaka, and KumoTek Robotics.
2008 Nexi, the first mobile, dexterous and social robot, makes its public debut as one of TIME magazine’s top inventions of the year. The robot was built through a collaboration between the MIT Media Lab Personal Robots Group, Xitome Design UMass Amherst and Meka robotics
2009 HRP-4C, a Japanese domestic robot made by National Institute of Advanced Industrial Science and Technology, shows human characteristics in addition to bipedal walking.
2009 Turkey’s first dynamically walking humanoid robot, SURALP, is developed by Sabanci University in conjunction with Tubitak.
2010 NASA and General Motors revealed Robonaut 2, a very advanced and humanoid robot. It is intended to do spacewalks for NASA.
2010 Students at the University of Tehran, Iran unveil the Surena II. It was unveiled by President Mahmoud Ahmadinejad.
2010 Researchers at Japan’s National Institute of Advanced Industrial Science and Technology demonstrate their humanoid robot HRP-4C singing and dancing along with human dancers.
2010 In September the National Institute of Advanced Industrial Science and Technology also demonstrates the humanoid robot HRP-4. The HRP-4 resembles the HRP-4C in some regards but is called “athletic” and is not a gynoid.

[Source]

Comments are closed.