Tag Archives: mimic

#435656 Will AI Be Fashion Forward—or a ...

The narrative that often accompanies most stories about artificial intelligence these days is how machines will disrupt any number of industries, from healthcare to transportation. It makes sense. After all, technology already drives many of the innovations in these sectors of the economy.

But sneakers and the red carpet? The definitively low-tech fashion industry would seem to be one of the last to turn over its creative direction to data scientists and machine learning algorithms.

However, big brands, e-commerce giants, and numerous startups are betting that AI can ingest data and spit out Chanel. Maybe it’s not surprising, given that fashion is partly about buzz and trends—and there’s nothing more buzzy and trendy in the world of tech today than AI.

In its annual survey of the $3 trillion fashion industry, consulting firm McKinsey predicted that while AI didn’t hit a “critical mass” in 2018, it would increasingly influence the business of everything from design to manufacturing.

“Fashion as an industry really has been so slow to understand its potential roles interwoven with technology. And, to be perfectly honest, the technology doesn’t take fashion seriously.” This comment comes from Zowie Broach, head of fashion at London’s Royal College of Arts, who as a self-described “old fashioned” designer has embraced the disruptive nature of technology—with some caveats.

Co-founder in the late 1990s of the avant-garde fashion label Boudicca, Broach has always seen tech as a tool for designers, even setting up a website for the company circa 1998, way before an online presence became, well, fashionable.

Broach told Singularity Hub that while she is generally optimistic about the future of technology in fashion—the designer has avidly been consuming old sci-fi novels over the last few years—there are still a lot of difficult questions to answer about the interface of algorithms, art, and apparel.

For instance, can AI do what the great designers of the past have done? Fashion was “about designing, it was about a narrative, it was about meaning, it was about expression,” according to Broach.

AI that designs products based on data gleaned from human behavior can potentially tap into the Pavlovian response in consumers in order to make money, Broach noted. But is that channeling creativity, or just digitally dabbling in basic human brain chemistry?

She is concerned about people retaining control of the process, whether we’re talking about their data or their designs. But being empowered with the insights machines could provide into, for example, the geographical nuances of fashion between Dubai, Moscow, and Toronto is thrilling.

“What is it that we want the future to be from a fashion, an identity, and design perspective?” she asked.

Off on the Right Foot
Silicon Valley and some of the biggest brands in the industry offer a few answers about where AI and fashion are headed (though not at the sort of depths that address Broach’s broader questions of aesthetics and ethics).

Take what is arguably the biggest brand in fashion, at least by market cap but probably not by the measure of appearances on Oscar night: Nike. The $100 billion shoe company just gobbled up an AI startup called Celect to bolster its data analytics and optimize its inventory. In other words, Nike hopes it will be able to figure out what’s hot and what’s not in a particular location to stock its stores more efficiently.

The company is going even further with Nike Fit, a foot-scanning platform using a smartphone camera that applies AI techniques from fields like computer vision and machine learning to find the best fit for each person’s foot. The algorithms then identify and recommend the appropriately sized and shaped shoe in different styles.

No doubt the next step will be to 3D print personalized and on-demand sneakers at any store.

San Francisco-based startup ThirdLove is trying to bring a similar approach to bra sizes. Its 20-member data team, Fortune reported, has developed the Fit Finder quiz that uses machine learning algorithms to help pick just the right garment for every body type.

Data scientists are also a big part of the team at Stitch Fix, a former San Francisco startup that went public in 2017 and today sports a market cap of more than $2 billion. The online “personal styling” company uses hundreds of algorithms to not only make recommendations to customers, but to help design new styles and even manage the subscription-based supply chain.

Future of Fashion
E-commerce giant Amazon has thrown its own considerable resources into developing AI applications for retail fashion—with mixed results.

One notable attempt involved a “styling assistant” that came with the company’s Echo Look camera that helped people catalog and manage their wardrobes, evening helping pick out each day’s attire. The company more recently revisited the direct consumer side of AI with an app called StyleSnap, which matches clothes and accessories uploaded to the site with the retailer’s vast inventory and recommends similar styles.

Behind the curtains, Amazon is going even further. A team of researchers in Israel have developed algorithms that can deduce whether a particular look is stylish based on a few labeled images. Another group at the company’s San Francisco research center was working on tech that could generate new designs of items based on images of a particular style the algorithms trained on.

“I will say that the accumulation of many new technologies across the industry could manifest in a highly specialized style assistant, far better than the examples we’ve seen today. However, the most likely thing is that the least sexy of the machine learning work will become the most impactful, and the public may never hear about it.”

That prediction is from an online interview with Leanne Luce, a fashion technology blogger and product manager at Google who recently wrote a book called, succinctly enough, Artificial Intelligence and Fashion.

Data Meets Design
Academics are also sticking their beakers into AI and fashion. Researchers at the University of California, San Diego, and Adobe Research have previously demonstrated that neural networks, a type of AI designed to mimic some aspects of the human brain, can be trained to generate (i.e., design) new product images to match a buyer’s preference, much like the team at Amazon.

Meanwhile, scientists at Hong Kong Polytechnic University are working with China’s answer to Amazon, Alibaba, on developing a FashionAI Dataset to help machines better understand fashion. The effort will focus on how algorithms approach certain building blocks of design, what are called “key points” such as neckline and waistline, and “fashion attributes” like collar types and skirt styles.

The man largely behind the university’s research team is Calvin Wong, a professor and associate head of Hong Kong Polytechnic University’s Institute of Textiles and Clothing. His group has also developed an “intelligent fabric defect detection system” called WiseEye for quality control, reducing the chance of producing substandard fabric by 90 percent.

Wong and company also recently inked an agreement with RCA to establish an AI-powered design laboratory, though the details of that venture have yet to be worked out, according to Broach.

One hope is that such collaborations will not just get at the technological challenges of using machines in creative endeavors like fashion, but will also address the more personal relationships humans have with their machines.

“I think who we are, and how we use AI in fashion, as our identity, is not a superficial skin. It’s very, very important for how we define our future,” Broach said.

Image Credit: Inspirationfeed / Unsplash Continue reading

Posted in Human Robots

#435423 Moving Beyond Mind-Controlled Limbs to ...

Brain-machine interface enthusiasts often gush about “closing the loop.” It’s for good reason. On the implant level, it means engineering smarter probes that only activate when they detect faulty electrical signals in brain circuits. Elon Musk’s Neuralink—among other players—are readily pursuing these bi-directional implants that both measure and zap the brain.

But to scientists laboring to restore functionality to paralyzed patients or amputees, “closing the loop” has broader connotations. Building smart mind-controlled robotic limbs isn’t enough; the next frontier is restoring sensation in offline body parts. To truly meld biology with machine, the robotic appendage has to “feel one” with the body.

This month, two studies from Science Robotics describe complementary ways forward. In one, scientists from the University of Utah paired a state-of-the-art robotic arm—the DEKA LUKE—with electrically stimulating remaining nerves above the attachment point. Using artificial zaps to mimic the skin’s natural response patterns to touch, the team dramatically increased the patient’s ability to identify objects. Without much training, he could easily discriminate between the small and large and the soft and hard while blindfolded and wearing headphones.

In another, a team based at the National University of Singapore took inspiration from our largest organ, the skin. Mimicking the neural architecture of biological skin, the engineered “electronic skin” not only senses temperature, pressure, and humidity, but continues to function even when scraped or otherwise damaged. Thanks to artificial nerves that transmit signals far faster than our biological ones, the flexible e-skin shoots electrical data 1,000 times quicker than human nerves.

Together, the studies marry neuroscience and robotics. Representing the latest push towards closing the loop, they show that integrating biological sensibilities with robotic efficiency isn’t impossible (super-human touch, anyone?). But more immediately—and more importantly—they’re beacons of hope for patients who hope to regain their sense of touch.

For one of the participants, a late middle-aged man with speckled white hair who lost his forearm 13 years ago, superpowers, cyborgs, or razzle-dazzle brain implants are the last thing on his mind. After a barrage of emotionally-neutral scientific tests, he grasped his wife’s hand and felt her warmth for the first time in over a decade. His face lit up in a blinding smile.

That’s what scientists are working towards.

Biomimetic Feedback
The human skin is a marvelous thing. Not only does it rapidly detect a multitude of sensations—pressure, temperature, itch, pain, humidity—its wiring “binds” disparate signals together into a sensory fingerprint that helps the brain identify what it’s feeling at any moment. Thanks to over 45 miles of nerves that connect the skin, muscles, and brain, you can pick up a half-full coffee cup, knowing that it’s hot and sloshing, while staring at your computer screen. Unfortunately, this complexity is also why restoring sensation is so hard.

The sensory electrode array implanted in the participant’s arm. Image Credit: George et al., Sci. Robot. 4, eaax2352 (2019)..
However, complex neural patterns can also be a source of inspiration. Previous cyborg arms are often paired with so-called “standard” sensory algorithms to induce a basic sense of touch in the missing limb. Here, electrodes zap residual nerves with intensities proportional to the contact force: the harder the grip, the stronger the electrical feedback. Although seemingly logical, that’s not how our skin works. Every time the skin touches or leaves an object, its nerves shoot strong bursts of activity to the brain; while in full contact, the signal is much lower. The resulting electrical strength curve resembles a “U.”

The LUKE hand. Image Credit: George et al., Sci. Robot. 4, eaax2352 (2019).
The team decided to directly compare standard algorithms with one that better mimics the skin’s natural response. They fitted a volunteer with a robotic LUKE arm and implanted an array of electrodes into his forearm—right above the amputation—to stimulate the remaining nerves. When the team activated different combinations of electrodes, the man reported sensations of vibration, pressure, tapping, or a sort of “tightening” in his missing hand. Some combinations of zaps also made him feel as if he were moving the robotic arm’s joints.

In all, the team was able to carefully map nearly 120 sensations to different locations on the phantom hand, which they then overlapped with contact sensors embedded in the LUKE arm. For example, when the patient touched something with his robotic index finger, the relevant electrodes sent signals that made him feel as if he were brushing something with his own missing index fingertip.

Standard sensory feedback already helped: even with simple electrical stimulation, the man could tell apart size (golf versus lacrosse ball) and texture (foam versus plastic) while blindfolded and wearing noise-canceling headphones. But when the team implemented two types of neuromimetic feedback—electrical zaps that resembled the skin’s natural response—his performance dramatically improved. He was able to identify objects much faster and more accurately under their guidance. Outside the lab, he also found it easier to cook, feed, and dress himself. He could even text on his phone and complete routine chores that were previously too difficult, such as stuffing an insert into a pillowcase, hammering a nail, or eating hard-to-grab foods like eggs and grapes.

The study shows that the brain more readily accepts biologically-inspired electrical patterns, making it a relatively easy—but enormously powerful—upgrade that seamlessly integrates the robotic arms with the host. “The functional and emotional benefits…are likely to be further enhanced with long-term use, and efforts are underway to develop a portable take-home system,” the team said.

E-Skin Revolution: Asynchronous Coded Electronic Skin (ACES)
Flexible electronic skins also aren’t new, but the second team presented an upgrade in both speed and durability while retaining multiplexed sensory capabilities.

Starting from a combination of rubber, plastic, and silicon, the team embedded over 200 sensors onto the e-skin, each capable of discerning contact, pressure, temperature, and humidity. They then looked to the skin’s nervous system for inspiration. Our skin is embedded with a dense array of nerve endings that individually transmit different types of sensations, which are integrated inside hubs called ganglia. Compared to having every single nerve ending directly ping data to the brain, this “gather, process, and transmit” architecture rapidly speeds things up.

The team tapped into this biological architecture. Rather than pairing each sensor with a dedicated receiver, ACES sends all sensory data to a single receiver—an artificial ganglion. This setup lets the e-skin’s wiring work as a whole system, as opposed to individual electrodes. Every sensor transmits its data using a characteristic pulse, which allows it to be uniquely identified by the receiver.

The gains were immediate. First was speed. Normally, sensory data from multiple individual electrodes need to be periodically combined into a map of pressure points. Here, data from thousands of distributed sensors can independently go to a single receiver for further processing, massively increasing efficiency—the new e-skin’s transmission rate is roughly 1,000 times faster than that of human skin.

Second was redundancy. Because data from individual sensors are aggregated, the system still functioned even when any individual receptors are damaged, making it far more resilient than previous attempts. Finally, the setup could easily scale up. Although the team only tested the idea with 240 sensors, theoretically the system should work with up to 10,000.

The team is now exploring ways to combine their invention with other material layers to make it water-resistant and self-repairable. As you might’ve guessed, an immediate application is to give robots something similar to complex touch. A sensory upgrade not only lets robots more easily manipulate tools, doorknobs, and other objects in hectic real-world environments, it could also make it easier for machines to work collaboratively with humans in the future (hey Wall-E, care to pass the salt?).

Dexterous robots aside, the team also envisions engineering better prosthetics. When coated onto cyborg limbs, for example, ACES may give them a better sense of touch that begins to rival the human skin—or perhaps even exceed it.

Regardless, efforts that adapt the functionality of the human nervous system to machines are finally paying off, and more are sure to come. Neuromimetic ideas may very well be the link that finally closes the loop.

Image Credit: Dan Hixson/University of Utah College of Engineering.. Continue reading

Posted in Human Robots

#435196 Avatar Love? New ‘Black Mirror’ ...

This week, the widely-anticipated fifth season of the dystopian series Black Mirror was released on Netflix. The storylines this season are less focused on far-out scenarios and increasingly aligned with current issues. With only three episodes, this season raises more questions than it answers, often leaving audiences bewildered.

The episode Smithereens explores our society’s crippling addiction to social media platforms and the monopoly they hold over our data. In Rachel, Jack and Ashley Too, we see the disruptive impact of technologies on the music and entertainment industry, and the price of fame for artists in the digital world. Like most Black Mirror episodes, these explore the sometimes disturbing implications of tech advancements on humanity.

But once again, in the midst of all the doom and gloom, the creators of the series leave us with a glimmer of hope. Aligned with Pride month, the episode Striking Vipers explores the impact of virtual reality on love, relationships, and sexual fluidity.

*The review contains a few spoilers.*

Striking Vipers
The first episode of the season, Striking Vipers may be one of the most thought-provoking episodes in Black Mirror history. Reminiscent of previous episodes San Junipero and Hang the DJ, the writers explore the potential for technology to transform human intimacy.

The episode tells the story of two old friends, Danny and Karl, whose friendship is reignited in an unconventional way. Karl unexpectedly appears at Danny’s 38th birthday and reintroduces him to the VR version of a game they used to play years before. In the game Striking Vipers X, each of the players is represented by an avatar of their choice in an uncanny digital reality. Following old tradition, Karl chooses to become the female fighter, Roxanne, and Danny takes on the role of the male fighter, Lance. The state-of-the-art VR headsets appear to use an advanced form of brain-machine interface to allow each player to be fully immersed in the virtual world, emulating all physical sensations.

To their surprise (and confusion), Danny and Karl find themselves transitioning from fist-fighting to kissing. Over the course of many games, they continue to explore a sexual and romantic relationship in the virtual world, leaving them confused and distant in the real world. The virtual and physical realities begin to blur, and so do the identities of the players with their avatars. Danny, who is married (in a heterosexual relationship) and is a father, begins to carry guilt and confusion in the real world. They both wonder if there would be any spark between them in real life.

The brain-machine interface (BMI) depicted in the episode is still science fiction, but that hasn’t stopped innovators from pushing the technology forward. Experts today are designing more intricate BMI systems while programming better algorithms to interpret the neural signals they capture. Scientists have already succeeded in enabling paralyzed patients to type with their minds, and are even allowing people to communicate with one another purely through brainwaves.

The convergence of BMIs with virtual reality and artificial intelligence could make the experience of such immersive digital realities possible. Virtual reality, too, is decreasing exponentially in cost and increasing in quality.

The narrative provides meaningful commentary on another tech area—gaming. It highlights video games not necessarily as addictive distractions, but rather as a platform for connecting with others in a deeper way. This is already very relevant. Video games like Final Fantasy are often a tool for meaningful digital connections for their players.

The Implications of Virtual Reality on Love and Relationships
The narrative of Striking Vipers raises many novel questions about the implications of immersive technologies on relationships: could the virtual world allow us a safe space to explore suppressed desires? Can virtual avatars make it easier for us to show affection to those we care about? Can a sexual or romantic encounter in the digital world be considered infidelity?

Above all, the episode explores the therapeutic possibilities of such technologies. While many fears about virtual reality had been raised in previous seasons of Black Mirror, this episode was focused on its potential. This includes the potential of immersive technology to be a source of liberation, meaningful connections, and self-exploration, as well as a tool for realizing our true identities and desires.

Once again, this is aligned with emerging trends in VR. We are seeing the rise of social VR applications and platforms that allow you to hang out with your friends and family as avatars in the virtual space. The technology is allowing for animation movies, such as Coco VR, to become an increasingly social and interactive experience. Considering that meaningful social interaction can alleviate depression and anxiety, such applications could contribute to well-being.

Techno-philosopher and National Geographic host Jason Silva points out that immersive media technologies can be “engines of empathy.” VR allows us to enter virtual spaces that mimic someone else’s state of mind, allowing us to empathize with the way they view the world. Silva said, “Imagine the intimacy that becomes possible when people meet and they say, ‘Hey, do you want to come visit my world? Do you want to see what it’s like to be inside my head?’”

What is most fascinating about Striking Vipers is that it explores how we may redefine love with virtual reality; we are introduced to love between virtual avatars. While this kind of love may seem confusing to audiences, it may be one of the complex implications of virtual reality on human relationships.

In many ways, the title Black Mirror couldn’t be more appropriate, as each episode serves as a mirror to the most disturbing aspects of our psyches as they get amplified through technology. However, what we see in uplifting and thought-provoking plots like Striking Vipers, San Junipero, and Hang The DJ is that technology could also amplify the most positive aspects of our humanity. This includes our powerful capacity to love.

Image Credit: Arsgera / Shutterstock.com Continue reading

Posted in Human Robots

#435167 A Closer Look at the Robots Helping Us ...

Buck Rogers had Twiki. Luke Skywalker palled around with C-3PO and R2-D2. And astronauts aboard the International Space Station (ISS) now have their own robotic companions in space—Astrobee.

A pair of the cube-shaped robots were launched to the ISS during an April re-supply mission and are currently being commissioned for use on the space station. The free-flying space robots, dubbed Bumble and Honey, are the latest generation of robotic machines to join the human crew on the ISS.

Exploration of the solar system and beyond will require autonomous machines that can assist humans with numerous tasks—or go where we cannot. NASA has said repeatedly that robots will be instrumental in future space missions to the moon, Mars, and even to the icy moon Europa.

The Astrobee robots will specifically test robotic capabilities in zero gravity, replacing the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite) robots that have been on the ISS for more than a decade to test various technologies ranging from communications to navigation.

The 18-sided robots, each about the size of a volleyball or an oversized Dungeons and Dragons die, use CO2-based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The Astrobee robots, on the other hand, can propel themselves autonomously around the interior of the ISS using electric fans and six cameras.

The modular design of the Astrobee robots means they are highly plug-and-play, capable of being reconfigured with different hardware modules. The robots’ software is also open-source, encouraging scientists and programmers to develop and test new algorithms and features.

And, yes, the Astrobee robots will be busy as bees once they are fully commissioned this fall, with experiments planned to begin next year. Scientists hope to learn more about how robots can assist space crews and perform caretaking duties on spacecraft.

Robots Working Together
The Astrobee robots are expected to be joined by a familiar “face” on the ISS later this year—the humanoid robot Robonaut.

Robonaut, also known as R2, was the first US-built robot on the ISS. It joined the crew back in 2011 without legs, which were added in 2014. However, the installation never entirely worked, as R2 experienced power failures that eventually led to its return to Earth last year to fix the problem. If all goes as planned, the space station’s first humanoid robot will return to the ISS to lend a hand to the astronauts and the new robotic arrivals.

In particular, NASA is interested in how the two different robotic platforms can complement each other, with an eye toward outfitting the agency’s proposed lunar orbital space station with various robots that can supplement a human crew.

“We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations,” Astrobee technical lead Trey Smith in the NASA Intelligent Robotics Group told IEEE Spectrum. “And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.”

While the focus on R2 has been to test its capabilities in zero gravity and to use it for mundane or dangerous tasks in space, the technology enabling the humanoid robot has proven to be equally useful on Earth.

For example, R2 has amazing dexterity for a robot, with sensors, actuators, and tendons comparable to the nerves, muscles, and tendons in a human hand. Based on that design, engineers are working on a robotic glove that can help factory workers, for instance, do their jobs better while reducing the risk of repetitive injuries. R2 has also inspired development of a robotic exoskeleton for both astronauts in space and paraplegics on Earth.

Working Hard on Soft Robotics
While innovative and technologically sophisticated, Astrobee and Robonaut are typical robots in that neither one would do well in a limbo contest. In other words, most robots are limited in their flexibility and agility based on current hardware and materials.

A subfield of robotics known as soft robotics involves developing robots with highly pliant materials that mimic biological organisms in how they move. Scientists at NASA’s Langley Research Center are investigating how soft robots could help with future space exploration.

Specifically, the researchers are looking at a series of properties to understand how actuators—components responsible for moving a robotic part, such as Robonaut’s hand—can be built and used in space.

The team first 3D prints a mold and then pours a flexible material like silicone into the mold. Air bladders or chambers in the actuator expand and compress using just air.

Some of the first applications of soft robotics sound more tool-like than R2-D2-like. For example, two soft robots could connect to produce a temporary shelter for astronauts on the moon or serve as an impromptu wind shield during one of Mars’ infamous dust storms.

The idea is to use soft robots in situations that are “dangerous, dirty, or dull,” according to Jack Fitzpatrick, a NASA intern working on the soft robotics project at Langley.

Working on Mars
Of course, space robots aren’t only designed to assist humans. In many instances, they are the only option to explore even relatively close celestial bodies like Mars. Four American-made robotic rovers have been used to investigate the fourth planet from the sun since 1997.

Opportunity is perhaps the most famous, covering about 25 miles of terrain across Mars over 15 years. A dust storm knocked it out of commission last year, with NASA officially ending the mission in February.

However, the biggest and baddest of the Mars rovers, Curiosity, is still crawling across the Martian surface, sending back valuable data since 2012. The car-size robot carries 17 cameras, a laser to vaporize rocks for study, and a drill to collect samples. It is on the hunt for signs of biological life.

The next year or two could see a virtual traffic jam of robots to Mars. NASA’s Mars 2020 Rover is next in line to visit the Red Planet, sporting scientific gadgets like an X-ray fluorescence spectrometer for chemical analyses and ground-penetrating radar to see below the Martian surface.

This diagram shows the instrument payload for the Mars 2020 mission. Image Credit: NASA.
Meanwhile, the Europeans have teamed with the Russians on a rover called Rosalind Franklin, named after a famed British chemist, that will drill down into the Martian ground for evidence of past or present life as soon as 2021.

The Chinese are also preparing to begin searching for life on Mars using robots as soon as next year, as part of the country’s Mars Global Remote Sensing Orbiter and Small Rover program. The mission is scheduled to be the first in a series of launches that would culminate with bringing samples back from Mars to Earth.

Perhaps there is no more famous utterance in the universe of science fiction as “to boldly go where no one has gone before.” However, the fact is that human exploration of the solar system and beyond will only be possible with robots of different sizes, shapes, and sophistication.

Image Credit: NASA. Continue reading

Posted in Human Robots

#435106 Could Artificial Photosynthesis Help ...

Plants are the planet’s lungs, but they’re struggling to keep up due to rising CO2 emissions and deforestation. Engineers are giving them a helping hand, though, by augmenting their capacity with new technology and creating artificial substitutes to help them clean up our atmosphere.

Imperial College London, one of the UK’s top engineering schools, recently announced that it was teaming up with startup Arborea to build the company’s first outdoor pilot of its BioSolar Leaf cultivation system at the university’s White City campus in West London.

Arborea is developing large solar panel-like structures that house microscopic plants and can be installed on buildings or open land. The plants absorb light and carbon dioxide as they photosynthesize, removing greenhouse gases from the air and producing organic material, which can be processed to extract valuable food additives like omega-3 fatty acids.

The idea of growing algae to produce useful materials isn’t new, but Arborea’s pitch seems to be flexibility and affordability. The more conventional approach is to grow algae in open ponds, which are less efficient and open to contamination, or in photo-bioreactors, which typically require CO2 to be piped in rather than getting it from the air and can be expensive to run.

There’s little detail on how the technology deals with issues like nutrient supply and harvesting or how efficient it is. The company claims it can remove carbon dioxide as fast as 100 trees using the surface area of just a single tree, but there’s no published research to back that up, and it’s hard to compare the surface area of flat panels to that of a complex object like a tree. If you flattened out every inch of a tree’s surface it would cover a surprisingly large area.

Nonetheless, the ability to install these panels directly on buildings could present a promising way to soak up the huge amount of CO2 produced in our cities by transport and industry. And Arborea isn’t the only one trying to give plants a helping hand.

For decades researchers have been working on ways to use light-activated catalysts to split water into oxygen and hydrogen fuel, and more recently there have been efforts to fuse this with additional processes to combine the hydrogen with carbon from CO2 to produce all kinds of useful products.

Most notably, in 2016 Harvard researchers showed that water-splitting catalysts could be augmented with bacteria that combines the resulting hydrogen with CO2 to create oxygen and biomass, fuel, or other useful products. The approach was more efficient than plants at turning CO2 to fuel and was built using cheap materials, but turning it into a commercially viable technology will take time.

Not everyone is looking to mimic or borrow from biology in their efforts to suck CO2 out of the atmosphere. There’s been a recent glut of investment in startups working on direct-air capture (DAC) technology, which had previously been written off for using too much power and space to be practical. The looming climate change crisis appears to be rewriting some of those assumptions, though.

Most approaches aim to use the concentrated CO2 to produce synthetic fuels or other useful products, creating a revenue stream that could help improve their commercial viability. But we look increasingly likely to surpass the safe greenhouse gas limits, so attention is instead turning to carbon-negative technologies.

That means capturing CO2 from the air and then putting it into long-term storage. One way could be to grow lots of biomass and then bury it, mimicking the process that created fossil fuels in the first place. Or DAC plants could pump the CO2 they produce into deep underground wells.

But the former would take up unreasonably large amounts of land to make a significant dent in emissions, while the latter would require huge amounts of already scant and expensive renewable power. According to a recent analysis, artificial photosynthesis could sidestep these issues because it’s up to five times more efficient than its natural counterpart and could be cheaper than DAC.

Whether the technology will develop quickly enough for it to be deployed at scale and in time to mitigate the worst effects of climate change remains to be seen. Emissions reductions certainly present a more sure-fire way to deal with the problem, but nonetheless, cyborg plants could soon be a common sight in our cities.

Image Credit: GiroScience / Shutterstock.com Continue reading

Posted in Human Robots