Tag Archives: mimic

#432027 We Read This 800-Page Report on the ...

The longevity field is bustling but still fragmented, and the “silver tsunami” is coming.

That is the takeaway of The Science of Longevity, the behemoth first volume of a four-part series offering a bird’s-eye view of the longevity industry in 2017. The report, a joint production of the Biogerontology Research Foundation, Deep Knowledge Life Science, Aging Analytics Agency, and Longevity.International, synthesizes the growing array of academic and industry ventures related to aging, healthspan, and everything in between.

This is huge, not only in scale but also in ambition. The report, totally worth a read here, will be followed by four additional volumes in 2018, covering topics ranging from the business side of longevity ventures to financial systems to potential tensions between life extension and religion.

And that’s just the first step. The team hopes to publish updated versions of the report annually, giving scientists, investors, and regulatory agencies an easy way to keep their finger on the longevity pulse.

“In 2018, ‘aging’ remains an unnamed adversary in an undeclared war. For all intents and purposes it is mere abstraction in the eyes of regulatory authorities worldwide,” the authors write.

That needs to change.

People often arrive at the field of aging from disparate areas with wildly diverse opinions and strengths. The report compiles these individual efforts at cracking aging into a systematic resource—a “periodic table” for longevity that clearly lays out emerging trends and promising interventions.

The ultimate goal? A global framework serving as a road map to guide the burgeoning industry. With such a framework in hand, academics and industry alike are finally poised to petition the kind of large-scale investments and regulatory changes needed to tackle aging with a unified front.

Infographic depicting many of the key research hubs and non-profits within the field of geroscience.
Image Credit: Longevity.International
The Aging Globe
The global population is rapidly aging. And our medical and social systems aren’t ready to handle this oncoming “silver tsunami.”

Take the medical field. Many age-related diseases such as Alzheimer’s lack effective treatment options. Others, including high blood pressure, stroke, lung or heart problems, require continuous medication and monitoring, placing enormous strain on medical resources.

What’s more, because disease risk rises exponentially with age, medical care for the elderly becomes a game of whack-a-mole: curing any individual disease such as cancer only increases healthy lifespan by two to three years before another one hits.

That’s why in recent years there’s been increasing support for turning the focus to the root of the problem: aging. Rather than tackling individual diseases, geroscience aims to add healthy years to our lifespan—extending “healthspan,” so to speak.

Despite this relative consensus, the field still faces a roadblock. The US FDA does not yet recognize aging as a bona fide disease. Without such a designation, scientists are banned from testing potential interventions for aging in clinical trials (that said, many have used alternate measures such as age-related biomarkers or Alzheimer’s symptoms as a proxy).

Luckily, the FDA’s stance is set to change. The promising anti-aging drug metformin, for example, is already in clinical trials, examining its effect on a variety of age-related symptoms and diseases. This report, and others to follow, may help push progress along.

“It is critical for investors, policymakers, scientists, NGOs, and influential entities to prioritize the amelioration of the geriatric world scenario and recognize aging as a critical matter of global economic security,” the authors say.

Biomedical Gerontology
The causes of aging are complex, stubborn, and not all clear.

But the report lays out two main streams of intervention with already promising results.

The first is to understand the root causes of aging and stop them before damage accumulates. It’s like meddling with cogs and other inner workings of a clock to slow it down, the authors say.

The report lays out several treatments to keep an eye on.

Geroprotective drugs is a big one. Often repurposed from drugs already on the market, these traditional small molecule drugs target a wide variety of metabolic pathways that play a role in aging. Think anti-oxidants, anti-inflammatory, and drugs that mimic caloric restriction, a proven way to extend healthspan in animal models.

More exciting are the emerging technologies. One is nanotechnology. Nanoparticles of carbon, “bucky-balls,” for example, have already been shown to fight viral infections and dangerous ion particles, as well as stimulate the immune system and extend lifespan in mice (though others question the validity of the results).

Blood is another promising, if surprising, fountain of youth: recent studies found that molecules in the blood of the young rejuvenate the heart, brain, and muscles of aged rodents, though many of these findings have yet to be replicated.

Rejuvenation Biotechnology
The second approach is repair and maintenance.

Rather than meddling with inner clockwork, here we force back the hands of a clock to set it back. The main example? Stem cell therapy.

This type of approach would especially benefit the brain, which harbors small, scattered numbers of stem cells that deplete with age. For neurodegenerative diseases like Alzheimer’s, in which neurons progressively die off, stem cell therapy could in theory replace those lost cells and mend those broken circuits.

Once a blue-sky idea, the discovery of induced pluripotent stem cells (iPSCs), where scientists can turn skin and other mature cells back into a stem-like state, hugely propelled the field into near reality. But to date, stem cells haven’t been widely adopted in clinics.

It’s “a toolkit of highly innovative, highly invasive technologies with clinical trials still a great many years off,” the authors say.

But there is a silver lining. The boom in 3D tissue printing offers an alternative approach to stem cells in replacing aging organs. Recent investment from the Methuselah Foundation and other institutions suggests interest remains high despite still being a ways from mainstream use.

A Disruptive Future
“We are finally beginning to see an industry emerge from mankind’s attempts to make sense of the biological chaos,” the authors conclude.

Looking through the trends, they identified several technologies rapidly gaining steam.

One is artificial intelligence, which is already used to bolster drug discovery. Machine learning may also help identify new longevity genes or bring personalized medicine to the clinic based on a patient’s records or biomarkers.

Another is senolytics, a class of drugs that kill off “zombie cells.” Over 10 prospective candidates are already in the pipeline, with some expected to enter the market in less than a decade, the authors say.

Finally, there’s the big gun—gene therapy. The treatment, unlike others mentioned, can directly target the root of any pathology. With a snip (or a swap), genetic tools can turn off damaging genes or switch on ones that promote a youthful profile. It is the most preventative technology at our disposal.

There have already been some success stories in animal models. Using gene therapy, rodents given a boost in telomerase activity, which lengthens the protective caps of DNA strands, live healthier for longer.

“Although it is the prospect farthest from widespread implementation, it may ultimately prove the most influential,” the authors say.

Ultimately, can we stop the silver tsunami before it strikes?

Perhaps not, the authors say. But we do have defenses: the technologies outlined in the report, though still immature, could one day stop the oncoming tidal wave in its tracks.

Now we just have to bring them out of the lab and into the real world. To push the transition along, the team launched Longevity.International, an online meeting ground that unites various stakeholders in the industry.

By providing scientists, entrepreneurs, investors, and policy-makers a platform for learning and discussion, the authors say, we may finally generate enough drive to implement our defenses against aging. The war has begun.

Read the report in full here, and watch out for others coming soon here. The second part of the report profiles 650 (!!!) longevity-focused research hubs, non-profits, scientists, conferences, and literature. It’s an enormously helpful resource—totally worth keeping it in your back pocket for future reference.

Image Credit: Worraket / Shutterstock.com Continue reading

Posted in Human Robots

#431958 The Next Generation of Cameras Might See ...

You might be really pleased with the camera technology in your latest smartphone, which can recognize your face and take slow-mo video in ultra-high definition. But these technological feats are just the start of a larger revolution that is underway.

The latest camera research is shifting away from increasing the number of mega-pixels towards fusing camera data with computational processing. By that, we don’t mean the Photoshop style of processing where effects and filters are added to a picture, but rather a radical new approach where the incoming data may not actually look like at an image at all. It only becomes an image after a series of computational steps that often involve complex mathematics and modeling how light travels through the scene or the camera.

This additional layer of computational processing magically frees us from the chains of conventional imaging techniques. One day we may not even need cameras in the conventional sense any more. Instead we will use light detectors that only a few years ago we would never have considered any use for imaging. And they will be able to do incredible things, like see through fog, inside the human body and even behind walls.

Single Pixel Cameras
One extreme example is the single pixel camera, which relies on a beautifully simple principle. Typical cameras use lots of pixels (tiny sensor elements) to capture a scene that is likely illuminated by a single light source. But you can also do things the other way around, capturing information from many light sources with a single pixel.

To do this you need a controlled light source, for example a simple data projector that illuminates the scene one spot at a time or with a series of different patterns. For each illumination spot or pattern, you then measure the amount of light reflected and add everything together to create the final image.

Clearly the disadvantage of taking a photo in this is way is that you have to send out lots of illumination spots or patterns in order to produce one image (which would take just one snapshot with a regular camera). But this form of imaging would allow you to create otherwise impossible cameras, for example that work at wavelengths of light beyond the visible spectrum, where good detectors cannot be made into cameras.

These cameras could be used to take photos through fog or thick falling snow. Or they could mimic the eyes of some animals and automatically increase an image’s resolution (the amount of detail it captures) depending on what’s in the scene.

It is even possible to capture images from light particles that have never even interacted with the object we want to photograph. This would take advantage of the idea of “quantum entanglement,” that two particles can be connected in a way that means whatever happens to one happens to the other, even if they are a long distance apart. This has intriguing possibilities for looking at objects whose properties might change when lit up, such as the eye. For example, does a retina look the same when in darkness as in light?

Multi-Sensor Imaging
Single-pixel imaging is just one of the simplest innovations in upcoming camera technology and relies, on the face of it, on the traditional concept of what forms a picture. But we are currently witnessing a surge of interest for systems that use lots of information but traditional techniques only collect a small part of it.

This is where we could use multi-sensor approaches that involve many different detectors pointed at the same scene. The Hubble telescope was a pioneering example of this, producing pictures made from combinations of many different images taken at different wavelengths. But now you can buy commercial versions of this kind of technology, such as the Lytro camera that collects information about light intensity and direction on the same sensor, to produce images that can be refocused after the image has been taken.

The next generation camera will probably look something like the Light L16 camera, which features ground-breaking technology based on more than ten different sensors. Their data are combined using a computer to provide a 50 MB, re-focusable and re-zoomable, professional-quality image. The camera itself looks like a very exciting Picasso interpretation of a crazy cell-phone camera.

Yet these are just the first steps towards a new generation of cameras that will change the way in which we think of and take images. Researchers are also working hard on the problem of seeing through fog, seeing behind walls, and even imaging deep inside the human body and brain.

All of these techniques rely on combining images with models that explain how light travels through through or around different substances.

Another interesting approach that is gaining ground relies on artificial intelligence to “learn” to recognize objects from the data. These techniques are inspired by learning processes in the human brain and are likely to play a major role in future imaging systems.

Single photon and quantum imaging technologies are also maturing to the point that they can take pictures with incredibly low light levels and videos with incredibly fast speeds reaching a trillion frames per second. This is enough to even capture images of light itself traveling across as scene.

Some of these applications might require a little time to fully develop, but we now know that the underlying physics should allow us to solve these and other problems through a clever combination of new technology and computational ingenuity.

This article was originally published on The Conversation. Read the original article.

Image Credit: Sylvia Adams / Shutterstock.com Continue reading

Posted in Human Robots

#431906 Low-Cost Soft Robot Muscles Can Lift 200 ...

Jerky mechanical robots are staples of science fiction, but to seamlessly integrate into everyday life they’ll need the precise yet powerful motor control of humans. Now scientists have created a new class of artificial muscles that could soon make that a reality.
The advance is the latest breakthrough in the field of soft robotics. Scientists are increasingly designing robots using soft materials that more closely resemble biological systems, which can be more adaptable and better suited to working in close proximity to humans.
One of the main challenges has been creating soft components that match the power and control of the rigid actuators that drive mechanical robots—things like motors and pistons. Now researchers at the University of Colorado Boulder have built a series of low-cost artificial muscles—as little as 10 cents per device—using soft plastic pouches filled with electrically insulating liquids that contract with the force and speed of mammalian skeletal muscles when a voltage is applied to them.

Three different designs of the so-called hydraulically amplified self-healing electrostatic (HASEL) actuators were detailed in two papers in the journals Science and Science Robotics last week. They could carry out a variety of tasks, from gently picking up delicate objects like eggs or raspberries to lifting objects many times their own weight, such as a gallon of water, at rapid repetition rates.
“We draw our inspiration from the astonishing capabilities of biological muscle,” Christoph Keplinger, an assistant professor at UC Boulder and senior author of both papers, said in a press release. “Just like biological muscle, HASEL actuators can reproduce the adaptability of an octopus arm, the speed of a hummingbird and the strength of an elephant.”
The artificial muscles work by applying a voltage to hydrogel electrodes on either side of pouches filled with liquid insulators, which can be as simple as canola oil. This creates an attraction between the two electrodes, pulling them together and displacing the liquid. This causes a change of shape that can push or pull levers, arms or any other articulated component.
The design is essentially a synthesis of two leading approaches to actuating soft robots. Pneumatic and hydraulic actuators that pump fluids around have been popular due to their high forces, easy fabrication and ability to mimic a variety of natural motions. But they tend to be bulky and relatively slow.
Dielectric elastomer actuators apply an electric field across a solid insulating layer to make it flex. These can mimic the responsiveness of biological muscle. But they are not very versatile and can also fail catastrophically, because the high voltages required can cause a bolt of electricity to blast through the insulator, destroying it. The likelihood of this happening increases in line with the size of their electrodes, which makes it hard to scale them up. By combining the two approaches, researchers get the best of both worlds, with the power, versatility and easy fabrication of a fluid-based system and the responsiveness of electrically-powered actuators.
One of the designs holds particular promise for robotics applications, as it behaves a lot like biological muscle. The so-called Peano-HASEL actuators are made up of multiple rectangular pouches connected in series, which allows them to contract linearly, just like real muscle. They can lift more than 200 times their weight, but being electrically powered, they exceed the flexing speed of human muscle.
As the name suggests, the HASEL actuators are also self-healing. They are still prone to the same kind of electrical damage as dielectric elastomer actuators, but the liquid insulator is able to immediately self-heal by redistributing itself and regaining its insulating properties.
The muscles can even monitor the amount of strain they’re under to provide the same kind of feedback biological systems would. The muscle’s capacitance—its ability to store an electric charge—changes as the device stretches, which makes it possible to power the arm while simultaneously measuring what position it’s in.
The researchers say this could imbue robots with a similar sense of proprioception or body-awareness to that found in plants and animals. “Self-sensing allows for the development of closed-loop feedback controllers to design highly advanced and precise robots for diverse applications,” Shane Mitchell, a PhD student in Keplinger’s lab and an author on both papers, said in an email.
The researchers say the high voltages required are an ongoing challenge, though they’ve already designed devices in the lab that use a fifth of the voltage of those features in the recent papers.
In most of their demonstrations, these soft actuators were being used to power rigid arms and levers, pointing to the fact that future robots are likely to combine both rigid and soft components, much like animals do. The potential applications for the technology range from more realistic prosthetics to much more dextrous robots that can work easily alongside humans.
It will take some work before these devices appear in commercial robots. But the combination of high-performance with simple and inexpensive fabrication methods mean other researchers are likely to jump in, so innovation could be rapid.
Image Credit: Keplinger Research Group/University of Colorado Continue reading

Posted in Human Robots

#431828 This Self-Driving AI Is Learning to ...

I don’t have to open the doors of AImotive’s white 2015 Prius to see that it’s not your average car. This particular Prius has been christened El Capitan, the name written below the rear doors, and two small cameras are mounted on top of the car. Bundles of wire snake out from them, as well as from the two additional cameras on the car’s hood and trunk.
Inside is where things really get interesting, though. The trunk holds a computer the size of a microwave, and a large monitor covers the passenger glove compartment and dashboard. The center console has three switches labeled “Allowed,” “Error,” and “Active.”
Budapest-based AImotive is working to provide scalable self-driving technology alongside big players like Waymo and Uber in the autonomous vehicle world. On a highway test ride with CEO Laszlo Kishonti near the company’s office in Mountain View, California, I got a glimpse of just how complex that world is.
Camera-Based Feedback System
AImotive’s approach to autonomous driving is a little different from that of some of the best-known systems. For starters, they’re using cameras, not lidar, as primary sensors. “The traffic system is visual and the cost of cameras is low,” Kishonti said. “A lidar can recognize when there are people near the car, but a camera can differentiate between, say, an elderly person and a child. Lidar’s resolution isn’t high enough to recognize the subtle differences of urban driving.”
Image Credit: AImotive
The company’s aiDrive software uses data from the camera sensors to feed information to its algorithms for hierarchical decision-making, grouped under four concurrent activities: recognition, location, motion, and control.
Kishonti pointed out that lidar has already gotten more cost-efficient, and will only continue to do so.
“Ten years ago, lidar was best because there wasn’t enough processing power to do all the calculations by AI. But the cost of running AI is decreasing,” he said. “In our approach, computer vision and AI processing are key, and for safety, we’ll have fallback sensors like radar or lidar.”
aiDrive currently runs on Nvidia chips, which Kishonti noted were originally designed for graphics, and are not terribly efficient given how power-hungry they are. “We’re planning to substitute lower-cost, lower-energy chips in the next six months,” he said.
Testing in Virtual Reality
Waymo recently announced its fleet has now driven four million miles autonomously. That’s a lot of miles, and hard to compete with. But AImotive isn’t trying to compete, at least not by logging more real-life test miles. Instead, the company is doing 90 percent of its testing in virtual reality. “This is what truly differentiates us from competitors,” Kishonti said.
He outlined the three main benefits of VR testing: it can simulate scenarios too dangerous for the real world (such as hitting something), too costly (not every company has Waymo’s funds to run hundreds of cars on real roads), or too time-consuming (like waiting for rain, snow, or other weather conditions to occur naturally and repeatedly).
“Real-world traffic testing is very skewed towards the boring miles,” he said. “What we want to do is test all the cases that are hard to solve.”
On a screen that looked not unlike multiple games of Mario Kart, he showed me the simulator. Cartoon cars cruised down winding streets, outfitted with all the real-world surroundings: people, trees, signs, other cars. As I watched, a furry kangaroo suddenly hopped across one screen. “Volvo had an issue in Australia,” Kishonti explained. “A kangaroo’s movement is different than other animals since it hops instead of running.” Talk about cases that are hard to solve.
AImotive is currently testing around 1,000 simulated scenarios every night, with a steadily-rising curve of successful tests. These scenarios are broken down into features, and the car’s behavior around those features fed into a neural network. As the algorithms learn more features, the level of complexity the vehicles can handle goes up.
On the Road
After Kishonti and his colleagues filled me in on the details of their product, it was time to test it out. A safety driver sat in the driver’s seat, a computer operator in the passenger seat, and Kishonti and I in back. The driver maintained full control of the car until we merged onto the highway. Then he flicked the “Allowed” switch, his copilot pressed the “Active” switch, and he took his hands off the wheel.
What happened next, you ask?
A few things. El Capitan was going exactly the speed limit—65 miles per hour—which meant all the other cars were passing us. When a car merged in front of us or cut us off, El Cap braked accordingly (if a little abruptly). The monitor displayed the feed from each of the car’s cameras, plus multiple data fields and a simulation where a blue line marked the center of the lane, measured by the cameras tracking the lane markings on either side.
I noticed El Cap wobbling out of our lane a bit, but it wasn’t until two things happened in a row that I felt a little nervous: first we went under a bridge, then a truck pulled up next to us, both bridge and truck casting a complete shadow over our car. At that point El Cap lost it, and we swerved haphazardly to the right, narrowly missing the truck’s rear wheels. The safety driver grabbed the steering wheel and took back control of the car.
What happened, Kishonti explained, was that the shadows made it hard for the car’s cameras to see the lane markings. This was a new scenario the algorithm hadn’t previously encountered. If we’d only gone under a bridge or only been next to the truck for a second, El Cap may not have had so much trouble, but the two events happening in a row really threw the car for a loop—almost literally.
“This is a new scenario we’ll add to our testing,” Kishonti said. He added that another way for the algorithm to handle this type of scenario, rather than basing its speed and positioning on the lane markings, is to mimic nearby cars. “The human eye would see that other cars are still moving at the same speed, even if it can’t see details of the road,” he said.
After another brief—and thankfully uneventful—hands-off cruise down the highway, the safety driver took over, exited the highway, and drove us back to the office.
Driving into the Future
I climbed out of the car feeling amazed not only that self-driving cars are possible, but that driving is possible at all. I squint when driving into a tunnel, swerve to avoid hitting a stray squirrel, and brake gradually at stop signs—all without consciously thinking to do so. On top of learning to steer, brake, and accelerate, self-driving software has to incorporate our brains’ and bodies’ unconscious (but crucial) reactions, like our pupils dilating to let in more light so we can see in a tunnel.
Despite all the progress of machine learning, artificial intelligence, and computing power, I have a wholly renewed appreciation for the thing that’s been in charge of driving up till now: the human brain.
Kishonti seemed to feel similarly. “I don’t think autonomous vehicles in the near future will be better than the best drivers,” he said. “But they’ll be better than the average driver. What we want to achieve is safe, good-quality driving for everyone, with scalability.”
AImotive is currently working with American tech firms and with car and truck manufacturers in Europe, China, and Japan.
Image Credit: Alex Oakenman / Shutterstock.com Continue reading

Posted in Human Robots

#431733 Why Humanoid Robots Are Still So Hard to ...

Picture a robot. In all likelihood, you just pictured a sleek metallic or chrome-white humanoid. Yet the vast majority of robots in the world around us are nothing like this; instead, they’re specialized for specific tasks. Our cultural conception of what robots are dates back to the coining of the term robots in the Czech play, Rossum’s Universal Robots, which originally envisioned them as essentially synthetic humans.
The vision of a humanoid robot is tantalizing. There are constant efforts to create something that looks like the robots of science fiction. Recently, an old competitor in this field returned with a new model: Toyota has released what they call the T-HR3. As humanoid robots go, it appears to be pretty dexterous and have a decent grip, with a number of degrees of freedom making the movements pleasantly human.
This humanoid robot operates mostly via a remote-controlled system that allows the user to control the robot’s limbs by exerting different amounts of pressure on a framework. A VR headset completes the picture, allowing the user to control the robot’s body and teleoperate the machine. There’s no word on a price tag, but one imagines a machine with a control system this complicated won’t exactly be on your Christmas list, unless you’re a billionaire.

Toyota is no stranger to robotics. They released a series of “Partner Robots” that had a bizarre affinity for instrument-playing but weren’t often seen doing much else. Given that they didn’t seem to have much capability beyond the automaton that Leonardo da Vinci made hundreds of years ago, they promptly vanished. If, as the name suggests, the T-HR3 is a sequel to these robots, which came out shortly after ASIMO back in 2003, it’s substantially better.
Slightly less humanoid (and perhaps the more useful for it), Toyota’s HSR-2 is a robot base on wheels with a simple mechanical arm. It brings to mind earlier machines produced by dream-factory startup Willow Garage like the PR-2. The idea of an affordable robot that could simply move around on wheels and pick up and fetch objects, and didn’t harbor too-lofty ambitions to do anything else, was quite successful.
So much so that when Robocup, the international robotics competition, looked for a platform for their robot-butler competition @Home, they chose HSR-2 for its ability to handle objects. HSR-2 has been deployed in trial runs to care for the elderly and injured, but has yet to be widely adopted for these purposes five years after its initial release. It’s telling that arguably the most successful multi-purpose humanoid robot isn’t really humanoid at all—and it’s curious that Toyota now seems to want to return to a more humanoid model a decade after they gave up on the project.
What’s unclear, as is often the case with humanoid robots, is what, precisely, the T-HR3 is actually for. The teleoperation gets around the complex problem of control by simply having the machine controlled remotely by a human. That human then handles all the sensory perception, decision-making, planning, and manipulation; essentially, the hardest problems in robotics.
There may not be a great deal of autonomy for the T-HR3, but by sacrificing autonomy, you drastically cut down the uses of the robot. Since it can’t act alone, you need a convincing scenario where you need a teleoperated humanoid robot that’s less precise and vastly more expensive than just getting a person to do the same job. Perhaps someday more autonomy will be developed for the robot, and the master maneuvering system that allows humans to control it will only be used in emergencies to control the robot if it gets stuck.
Toyota’s press release says it is “a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.” In reality, it’s difficult to see such a robot being affordable or even that useful in the home or in medical facilities (unless it’s substantially stronger than humans). Equally, it certainly doesn’t seem robust enough to be deployed in disaster zones or outer space. These tasks have been mooted for robots for a very long time and few have proved up to the challenge.
Toyota’s third generation humanoid robot, the T-HR3. Image Credit: Toyota
Instead, the robot seems designed to work alongside humans. Its design, standing 1.5 meters tall, weighing 75 kilograms, and possessing 32 degrees of freedom in its body, suggests it is built to closely mimic a person, rather than a robot like ATLAS which is robust enough that you can imagine it being useful in a war zone. In this case, it might be closer to the model of the collaborative robots or co-bots developed by Rethink Robotics, whose tons of safety features, including force-sensitive feedback for the user, reduce the risk of terrible PR surrounding killer robots.
Instead the emphasis is on graceful precision engineering: in the promo video, the robot can be seen balancing on one leg before showing off a few poised, yoga-like poses. This perhaps suggests that an application in elderly care, which Toyota has ventured into before and which was the stated aim of their simple HSR-2, might be more likely than deployment to a disaster zone.
The reason humanoid robots remain so elusive and so tempting is probably because of a simple cognitive mistake. We make two bad assumptions. First, we assume that if you build a humanoid robot, give its joints enough flexibility, throw in a little AI and perhaps some pre-programmed behaviors, then presto, it will be able to do everything humans can. When you see a robot that moves well and looks humanoid, it seems like the hardest part is done; surely this robot could do anything. The reality is never so simple.

We also make the reverse assumption: we assume that when we are finally replaced, it will be by perfect replicas of our own bodies and brains that can fulfill all the functions we used to fulfill. Perhaps, in reality, the future of robots and AI is more like its present: piecemeal, with specialized algorithms and specialized machines gradually learning to outperform humans at every conceivable task without ever looking convincingly human.
It may well be that the T-HR3 is angling towards this concept of machine learning as a platform for future research. Rather than trying to program an omni-capable robot out of the box, it will gradually learn from its human controllers. In this way, you could see the platform being used to explore the limits of what humans can teach robots to do simply by having them mimic sequences of our bodies’ motion, in the same way the exploitation of neural networks is testing the limits of training algorithms on data. No one machine will be able to perform everything a human can, but collectively, they will vastly outperform us at anything you’d want one to do.
So when you see a new android like Toyota’s, feel free to marvel at its technical abilities and indulge in the speculation about whether it’s a PR gimmick or a revolutionary step forward along the road to human replacement. Just remember that, human-level bots or not, we’re already strolling down that road.
Image Credit: Toyota Continue reading

Posted in Human Robots