Tag Archives: eye

#435260 How Tech Can Help Curb Emissions by ...

Trees are a low-tech, high-efficiency way to offset much of humankind’s negative impact on the climate. What’s even better, we have plenty of room for a lot more of them.

A new study conducted by researchers at Switzerland’s ETH-Zürich, published in Science, details how Earth could support almost an additional billion hectares of trees without the new forests pushing into existing urban or agricultural areas. Once the trees grow to maturity, they could store more than 200 billion metric tons of carbon.

Great news indeed, but it still leaves us with some huge unanswered questions. Where and how are we going to plant all the new trees? What kind of trees should we plant? How can we ensure that the new forests become a boon for people in those areas?

Answers to all of the above likely involve technology.

Math + Trees = Challenges
The ETH-Zürich research team combined Google Earth mapping software with a database of nearly 80,000 existing forests to create a predictive model for optimal planting locations. In total, 0.9 billion hectares of new, continuous forest could be planted. Once mature, the 500 billion new trees in these forests would be capable of storing about two-thirds of the carbon we have emitted since the industrial revolution.

Other researchers have noted that the study may overestimate how efficient trees are at storing carbon, as well as underestimate how much carbon humans have emitted over time. However, all seem to agree that new forests would offset much of our cumulative carbon emissions—still an impressive feat as the target of keeping global warming this century at under 1.5 degrees Celsius becomes harder and harder to reach.

Recently, there was a story about a Brazilian couple who replanted trees in the valley where they live. The couple planted about 2.7 million trees in two decades. Back-of-the-napkin math shows that they on average planted 370 trees a day, meaning planting 500 billion trees would take about 3.7 million years. While an over-simplification, the point is that planting trees by hand is not realistic. Even with a million people going at a rate of 370 trees a day, it would take 83 years. Current technologies are also not likely to be able to meet the challenge, especially in remote locations.

Tree-Bombing Drones
Technology can speed up the planting process, including a new generation of drones that take tree planting to the skies. Drone planting generally involves dropping biodegradable seed pods at a designated area. The pods dissolve over time, and the tree seeds grow in the earth below. DroneSeed is one example; its 55-pound drones can plant up to 800 seeds an hour. Another startup, Biocarbon Engineering, has used various techniques, including drones, to plant 38 different species of trees across three continents.

Drone planting has distinct advantages when it comes to planting in hard-to-access areas—one example is mangrove forests, which are disappearing rapidly, increasing the risk of floods and storm surges.

Challenges include increasing the range and speed of drone planting, and perhaps most importantly, the success rate, as automatic planting from a height is still likely to be less accurate when it comes to what depth the tree saplings are planted. However, drones are already showing impressive numbers for sapling survival rates.

AI, Sensors, and Eye-In-the-Sky
Planting the trees is the first step in a long road toward an actual forest. Companies are leveraging artificial intelligence and satellite imagery in a multitude of ways to increase protection and understanding of forested areas.

20tree.ai, a Portugal-based startup, uses AI to analyze satellite imagery and monitor the state of entire forests at a fraction of the cost of manual monitoring. The approach can lead to faster identification of threats like pest infestation and a better understanding of the state of forests.

AI can also play a pivotal role in protecting existing forest areas by predicting where deforestation is likely to occur.

Closer to the ground—and sometimes in it—new networks of sensors can provide detailed information about the state and needs of trees. One such project is Trace, where individual trees are equipped with a TreeTalker, an internet of things-based device that can provide real-time monitoring of the tree’s functions and well-being. The information can be used to, among other things, optimize the use of available resources, such as providing the exact amount of water a tree needs.

Budding Technologies Are Controversial
Trees are in many ways fauna’s marathon runners—slow-growing and sturdy, but still susceptible to sickness and pests. Many deforested areas are likely not as rich in nutrients as they once were, which could slow down reforestation. Much of the positive impact that said trees could have on carbon levels in the atmosphere is likely decades away.

Bioengineering, for example through CRISPR, could provide solutions, making trees more resistant and faster-growing. Such technologies are being explored in relation to Ghana’s at-risk cocoa trees. Other exponential technologies could also hold much future potential—for instance micro-robots to assist the dwindling number of bees with pollination.

These technologies remain mired in controversy, and perhaps rightfully so. Bioengineering’s massive potential is for many offset by the inherent risks of engineered plants out-competing existing fauna or growing beyond our control. Micro-robots for pollination may solve a problem, but don’t do much to address the root cause: that we seem to be disrupting and destroying integral parts of natural cycles.

Tech Not The Whole Answer
So, is it realistic to plant 500 billion new trees? The short answer would be that yes, it’s possible—with the help of technology.

However, there are many unanswered challenges. For example, many of areas identified by the ETH-Zürich research team are not readily available for reforestation. Some are currently reserved for grazing, others owned by private entities, and others again are located in remote areas or areas prone to political instability, beyond the reach of most replanting efforts.

If we do wish to plant 500 billion trees to offset some of the negative impacts we have had on the planet, we might well want to combine the best of exponential technology with reforestation as well as a move to other forms of agriculture.

Such an approach might also help address a major issue: that few of the proposed new forests will likely succeed without ensuring that people living in and around the areas where reforestation takes place become involved, and can reap rewards from turning arable land into forests.

Image Credit: Lillac/Shutterstock.com Continue reading

Posted in Human Robots

#435199 The Rise of AI Art—and What It Means ...

Artificially intelligent systems are slowly taking over tasks previously done by humans, and many processes involving repetitive, simple movements have already been fully automated. In the meantime, humans continue to be superior when it comes to abstract and creative tasks.

However, it seems like even when it comes to creativity, we’re now being challenged by our own creations.

In the last few years, we’ve seen the emergence of hundreds of “AI artists.” These complex algorithms are creating unique (and sometimes eerie) works of art. They’re generating stunning visuals, profound poetry, transcendent music, and even realistic movie scripts. The works of these AI artists are raising questions about the nature of art and the role of human creativity in future societies.

Here are a few works of art created by non-human entities.

Unsecured Futures
by Ai.Da

Ai-Da Robot with Painting. Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations.
Earlier this month we saw the announcement of Ai.Da, considered the first ultra-realistic drawing robot artist. Her mechanical abilities, combined with AI-based algorithms, allow her to draw, paint, and even sculpt. She is able to draw people using her artificial eye and a pencil in her hand. Ai.Da’s artwork and first solo exhibition, Unsecured Futures, will be showcased at Oxford University in July.

Ai-Da Cartesian Painting. Image Credit: Ai-Da Artworks. Published with permission from Midas Public Relations.
Obviously Ai.Da has no true consciousness, thoughts, or feelings. Despite that, the (human) organizers of the exhibition believe that Ai.Da serves as a basis for crucial conversations about the ethics of emerging technologies. The exhibition will serve as a stimulant for engaging with critical questions about what kind of future we ought to create via such technologies.

The exhibition’s creators wrote, “Humans are confident in their position as the most powerful species on the planet, but how far do we actually want to take this power? To a Brave New World (Nightmare)? And if we use new technologies to enhance the power of the few, we had better start safeguarding the future of the many.”

Google’s PoemPortraits
Our transcendence adorns,
That society of the stars seem to be the secret.

The two lines of poetry above aren’t like any poetry you’ve come across before. They are generated by an algorithm that was trained via deep learning neural networks trained on 20 million words of 19th-century poetry.

Google’s latest art project, named PoemPortraits, takes a word of your suggestion and generates a unique poem (once again, a collaboration of man and machine). You can even add a selfie in the final “PoemPortrait.” Artist Es Devlin, the project’s creator, explains that the AI “doesn’t copy or rework existing phrases, but uses its training material to build a complex statistical model. As a result, the algorithm generates original phrases emulating the style of what it’s been trained on.”

The generated poetry can sometimes be profound, and sometimes completely meaningless.But what makes the PoemPortraits project even more interesting is that it’s a collaborative project. All of the generated lines of poetry are combined to form a consistently growing collective poem, which you can view after your lines are generated. In many ways, the final collective poem is a collaboration of people from around the world working with algorithms.

Faceless Portraits Transcending Time
AICAN + Ahmed Elgammal

Image Credit: AICAN + Ahmed Elgammal | Faceless Portrait #2 (2019) | Artsy.
In March of this year, an AI artist called AICAN and its creator Ahmed Elgammal took over a New York gallery. The exhibition at HG Commentary showed two series of canvas works portraying harrowing, dream-like faceless portraits.

The exhibition was not simply credited to a machine, but rather attributed to the collaboration between a human and machine. Ahmed Elgammal is the founder and director of the Art and Artificial Intelligence Laboratory at Rutgers University. He considers AICAN to not only be an autonomous AI artist, but also a collaborator for artistic endeavors.

How did AICAN create these eerie faceless portraits? The system was presented with 100,000 photos of Western art from over five centuries, allowing it to learn the aesthetics of art via machine learning. It then drew from this historical knowledge and the mandate to create something new to create an artwork without human intervention.

Genesis
by AIVA Technologies

Listen to the score above. While you do, reflect on the fact that it was generated by an AI.

AIVA is an AI that composes soundtrack music for movies, commercials, games, and trailers. Its creative works span a wide range of emotions and moods. The scores it generates are indistinguishable from those created by the most talented human composers.

The AIVA music engine allows users to generate original scores in multiple ways. One is to upload an existing human-generated score and select the temp track to base the composition process on. Another method involves using preset algorithms to compose music in pre-defined styles, including everything from classical to Middle Eastern.

Currently, the platform is promoted as an opportunity for filmmakers and producers. But in the future, perhaps every individual will have personalized music generated for them based on their interests, tastes, and evolving moods. We already have algorithms on streaming websites recommending novel music to us based on our interests and history. Soon, algorithms may be used to generate music and other works of art that are tailored to impact our unique psyches.

The Future of Art: Pushing Our Creative Limitations
These works of art are just a glimpse into the breadth of the creative works being generated by algorithms and machines. Many of us will rightly fear these developments. We have to ask ourselves what our role will be in an era where machines are able to perform what we consider complex, abstract, creative tasks. The implications on the future of work, education, and human societies are profound.

At the same time, some of these works demonstrate that AI artists may not necessarily represent a threat to human artists, but rather an opportunity for us to push our creative boundaries. The most exciting artistic creations involve collaborations between humans and machines.

We have always used our technological scaffolding to push ourselves beyond our biological limitations. We use the telescope to extend our line of sight, planes to fly, and smartphones to connect with others. Our machines are not always working against us, but rather working as an extension of our minds. Similarly, we could use our machines to expand on our creativity and push the boundaries of art.

Image Credit: Ai-Da portraits by Nicky Johnston. Published with permission from Midas Public Relations. Continue reading

Posted in Human Robots

#435167 A Closer Look at the Robots Helping Us ...

Buck Rogers had Twiki. Luke Skywalker palled around with C-3PO and R2-D2. And astronauts aboard the International Space Station (ISS) now have their own robotic companions in space—Astrobee.

A pair of the cube-shaped robots were launched to the ISS during an April re-supply mission and are currently being commissioned for use on the space station. The free-flying space robots, dubbed Bumble and Honey, are the latest generation of robotic machines to join the human crew on the ISS.

Exploration of the solar system and beyond will require autonomous machines that can assist humans with numerous tasks—or go where we cannot. NASA has said repeatedly that robots will be instrumental in future space missions to the moon, Mars, and even to the icy moon Europa.

The Astrobee robots will specifically test robotic capabilities in zero gravity, replacing the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellite) robots that have been on the ISS for more than a decade to test various technologies ranging from communications to navigation.

The 18-sided robots, each about the size of a volleyball or an oversized Dungeons and Dragons die, use CO2-based cold-gas thrusters for movement and a series of ultrasonic beacons for orientation. The Astrobee robots, on the other hand, can propel themselves autonomously around the interior of the ISS using electric fans and six cameras.

The modular design of the Astrobee robots means they are highly plug-and-play, capable of being reconfigured with different hardware modules. The robots’ software is also open-source, encouraging scientists and programmers to develop and test new algorithms and features.

And, yes, the Astrobee robots will be busy as bees once they are fully commissioned this fall, with experiments planned to begin next year. Scientists hope to learn more about how robots can assist space crews and perform caretaking duties on spacecraft.

Robots Working Together
The Astrobee robots are expected to be joined by a familiar “face” on the ISS later this year—the humanoid robot Robonaut.

Robonaut, also known as R2, was the first US-built robot on the ISS. It joined the crew back in 2011 without legs, which were added in 2014. However, the installation never entirely worked, as R2 experienced power failures that eventually led to its return to Earth last year to fix the problem. If all goes as planned, the space station’s first humanoid robot will return to the ISS to lend a hand to the astronauts and the new robotic arrivals.

In particular, NASA is interested in how the two different robotic platforms can complement each other, with an eye toward outfitting the agency’s proposed lunar orbital space station with various robots that can supplement a human crew.

“We don’t have definite plans for what would happen on the Gateway yet, but there’s a general recognition that intra-vehicular robots are important for space stations,” Astrobee technical lead Trey Smith in the NASA Intelligent Robotics Group told IEEE Spectrum. “And so, it would not be surprising to see a mobile manipulator like Robonaut, and a free flyer like Astrobee, on the Gateway.”

While the focus on R2 has been to test its capabilities in zero gravity and to use it for mundane or dangerous tasks in space, the technology enabling the humanoid robot has proven to be equally useful on Earth.

For example, R2 has amazing dexterity for a robot, with sensors, actuators, and tendons comparable to the nerves, muscles, and tendons in a human hand. Based on that design, engineers are working on a robotic glove that can help factory workers, for instance, do their jobs better while reducing the risk of repetitive injuries. R2 has also inspired development of a robotic exoskeleton for both astronauts in space and paraplegics on Earth.

Working Hard on Soft Robotics
While innovative and technologically sophisticated, Astrobee and Robonaut are typical robots in that neither one would do well in a limbo contest. In other words, most robots are limited in their flexibility and agility based on current hardware and materials.

A subfield of robotics known as soft robotics involves developing robots with highly pliant materials that mimic biological organisms in how they move. Scientists at NASA’s Langley Research Center are investigating how soft robots could help with future space exploration.

Specifically, the researchers are looking at a series of properties to understand how actuators—components responsible for moving a robotic part, such as Robonaut’s hand—can be built and used in space.

The team first 3D prints a mold and then pours a flexible material like silicone into the mold. Air bladders or chambers in the actuator expand and compress using just air.

Some of the first applications of soft robotics sound more tool-like than R2-D2-like. For example, two soft robots could connect to produce a temporary shelter for astronauts on the moon or serve as an impromptu wind shield during one of Mars’ infamous dust storms.

The idea is to use soft robots in situations that are “dangerous, dirty, or dull,” according to Jack Fitzpatrick, a NASA intern working on the soft robotics project at Langley.

Working on Mars
Of course, space robots aren’t only designed to assist humans. In many instances, they are the only option to explore even relatively close celestial bodies like Mars. Four American-made robotic rovers have been used to investigate the fourth planet from the sun since 1997.

Opportunity is perhaps the most famous, covering about 25 miles of terrain across Mars over 15 years. A dust storm knocked it out of commission last year, with NASA officially ending the mission in February.

However, the biggest and baddest of the Mars rovers, Curiosity, is still crawling across the Martian surface, sending back valuable data since 2012. The car-size robot carries 17 cameras, a laser to vaporize rocks for study, and a drill to collect samples. It is on the hunt for signs of biological life.

The next year or two could see a virtual traffic jam of robots to Mars. NASA’s Mars 2020 Rover is next in line to visit the Red Planet, sporting scientific gadgets like an X-ray fluorescence spectrometer for chemical analyses and ground-penetrating radar to see below the Martian surface.

This diagram shows the instrument payload for the Mars 2020 mission. Image Credit: NASA.
Meanwhile, the Europeans have teamed with the Russians on a rover called Rosalind Franklin, named after a famed British chemist, that will drill down into the Martian ground for evidence of past or present life as soon as 2021.

The Chinese are also preparing to begin searching for life on Mars using robots as soon as next year, as part of the country’s Mars Global Remote Sensing Orbiter and Small Rover program. The mission is scheduled to be the first in a series of launches that would culminate with bringing samples back from Mars to Earth.

Perhaps there is no more famous utterance in the universe of science fiction as “to boldly go where no one has gone before.” However, the fact is that human exploration of the solar system and beyond will only be possible with robots of different sizes, shapes, and sophistication.

Image Credit: NASA. Continue reading

Posted in Human Robots

#435152 The Futuristic Tech Disrupting Real ...

In the wake of the housing market collapse of 2008, one entrepreneur decided to dive right into the failing real estate industry. But this time, he didn’t buy any real estate to begin with. Instead, Glenn Sanford decided to launch the first-ever cloud-based real estate brokerage, eXp Realty.

Contracting virtual platform VirBELA to build out the company’s mega-campus in VR, eXp Realty demonstrates the power of a dematerialized workspace, throwing out hefty overhead costs and fundamentally redefining what ‘real estate’ really means. Ten years later, eXp Realty has an army of 14,000 agents across all 50 US states, 3 Canadian provinces, and 400 MLS market areas… all without a single physical office.

But VR is just one of many exponential technologies converging to revolutionize real estate and construction. As floating cities and driverless cars spread out your living options, AI and VR are together cutting out the middleman.

Already, the global construction industry is projected to surpass $12.9 trillion in 2022, and the total value of the US housing market alone grew to $33.3 trillion last year. Both vital for our daily lives, these industries will continue to explode in value, posing countless possibilities for disruption.

In this blog, I’ll be discussing the following trends:

New prime real estate locations;
Disintermediation of the real estate broker and search;
Materials science and 3D printing in construction.

Let’s dive in!

Location Location Location
Until today, location has been the name of the game when it comes to hunting down the best real estate. But constraints on land often drive up costs while limiting options, and urbanization is only exacerbating the problem.

Beyond the world of virtual real estate, two primary mechanisms are driving the creation of new locations.

(1) Floating Cities

Offshore habitation hubs, floating cities have long been conceived as a solution to rising sea levels, skyrocketing urban populations, and threatened ecosystems. In success, they will soon unlock an abundance of prime real estate, whether for scenic living, commerce, education, or recreation.

One pioneering model is that of Oceanix City, designed by Danish architect Bjarke Ingels and a host of other domain experts. Intended to adapt organically over time, Oceanix would consist of a galaxy of mass-produced, hexagonal floating modules, built as satellite “cities” off coastal urban centers and sustained by renewable energies.

While individual 4.5-acre platforms would each sustain 300 people, these hexagonal modules are designed to link into 75-acre tessellations sustaining up to 10,000 residents. Each anchored to the ocean floor using biorock, Oceanix cities are slated to be closed-loop systems, as external resources are continuously supplied by automated drone networks.

Electric boats or flying cars might zoom you to work, city-embedded water capture technologies would provide your water, and while vertical and outdoor farming supply your family meal, share economies would dominate goods provision.

AERIAL: Located in calm, sheltered waters, near coastal megacities, OCEANIX City will be an adaptable, sustainable, scalable, and affordable solution for human life on the ocean. Image Credit: OCEANIX/BIG-Bjarke Ingels Group.
Joined by countless government officials whose islands risk submersion at the hands of sea level rise, the UN is now getting on board. And just this year, seasteading is exiting the realm of science fiction and testing practical waters.

As French Polynesia seeks out robust solutions to sea level rise, their government has now joined forces with the San Francisco-based Seasteading Institute. With a newly designated special economic zone and 100 acres of beachfront, this joint Floating Island Project could even see up to a dozen inhabitable structures by 2020. And what better to fund the $60 million project than the team’s upcoming ICO?

But aside from creating new locations, autonomous vehicles (AVs) and flying cars are turning previously low-demand land into the prime real estate of tomorrow.

(2) Autonomous Electric Vehicles and Flying Cars

Today, the value of a location is a function of its proximity to your workplace, your city’s central business district, the best schools, or your closest friends.

But what happens when driverless cars desensitize you to distance, or Hyperloop and flying cars decimate your commute time? Historically, every time new transit methods have hit the mainstream, tolerance for distance has opened up right alongside them, further catalyzing city spread.

And just as Hyperloop and the Boring Company aim to make your commute immaterial, autonomous vehicle (AV) ridesharing services will spread out cities in two ways: (1) by drastically reducing parking spaces needed (vertical parking decks = more prime real estate); and (2) by untethering you from the steering wheel. Want an extra two hours of sleep on the way to work? Schedule a sleeper AV and nap on your route to the office. Need a car-turned-mobile-office? No problem.

Meanwhile, aerial taxis (i.e. flying cars) will allow you to escape ground congestion entirely, delivering you from bedroom to boardroom at decimated time scales.

Already working with regulators, Uber Elevate has staked ambitious plans for its UberAIR airborne taxi project. By 2023, Uber anticipates rolling out flying drones in its two first pilot cities, Los Angeles and Dallas. Flying between rooftop skyports, drones would carry passengers at a height of 1,000 to 2,000 feet at speeds between 100 to 200 mph. And while costs per ride are anticipated to resemble those of an Uber Black based on mileage, prices are projected to soon drop to those of an UberX.

But the true economic feat boils down to this: if I were to commute 50 to 100 kilometers, I could get two or three times the house for the same price. (Not to mention the extra living space offered up by my now-unneeded garage.)

All of a sudden, virtual reality, broadband, AVs, or high-speed vehicles are going to change where we live and where we work. So rather than living in a crowded, dense urban core for access to jobs and entertainment, our future of personalized, autonomous, low-cost transport opens the luxury of rural areas to all without compromising the benefits of a short commute.

Once these drivers multiply your real estate options, how will you select your next home?

Disintermediation: Say Bye to Your Broker
In a future of continuous and personalized preference-tracking, why hire a human agent who knows less about your needs and desires than a personal AI?

Just as disintermediation is cutting out bankers and insurance agents, so too is it closing in on real estate brokers. Over the next decade, as AI becomes your agent, VR will serve as your medium.

To paint a more vivid picture of how this will look, over 98 percent of your home search will be conducted from the comfort of your couch through next-generation VR headgear.

Once you’ve verbalized your primary desires for home location, finishings, size, etc. to your personal AI, it will offer you top picks, tour-able 24/7, with optional assistance by a virtual guide and constantly updated data. As a seller, this means potential buyers from two miles, or two continents, away.

Throughout each immersive VR tour, advanced eye-tracking software and a permissioned machine learning algorithm follow your gaze, further learn your likes and dislikes, and intelligently recommend other homes or commercial residences to visit.

Curious as to what the living room might look like with a fresh coat of blue paint and a white carpet? No problem! VR programs will be able to modify rendered environments instantly, changing countless variables, from furniture materials to even the sun’s orientation. Keen to input your own furniture into a VR-rendered home? Advanced AIs could one day compile all your existing furniture, electronics, clothing, decorations, and even books, virtually organizing them across any accommodating new space.

As 3D scanning technologies make extraordinary headway, VR renditions will only grow cheaper and higher resolution. One company called Immersive Media (disclosure: I’m an investor and advisor) has a platform for 360-degree video capture and distribution, and is already exploring real estate 360-degree video.

Smaller firms like Studio 216, Vieweet, Arch Virtual, ArX Solutions, and Rubicon Media can similarly capture and render models of various properties for clients and investors to view and explore. In essence, VR real estate platforms will allow you to explore any home for sale, do the remodel, and determine if it truly is the house of your dreams.

Once you’re ready to make a bid, your AI will even help estimate a bid, process and submit your offer. Real estate companies like Zillow, Trulia, Move, Redfin, ZipRealty (acquired by Realogy in 2014) and many others have already invested millions in machine learning applications to make search, valuation, consulting, and property management easier, faster, and much more accurate.

But what happens if the home you desire most means starting from scratch with new construction?

New Methods and Materials for Construction
For thousands of years, we’ve been constrained by the construction materials of nature. We built bricks from naturally abundant clay and shale, used tree limbs as our rooftops and beams, and mastered incredible structures in ancient Rome with the use of cement.

But construction is now on the cusp of a materials science revolution. Today, I’d like to focus on three key materials:

Upcycled Materials

Imagine if you could turn the world’s greatest waste products into their most essential building blocks. Thanks to UCLA researchers at CO2NCRETE, we can already do this with carbon emissions.

Today, concrete produces about five percent of all greenhouse gas (GHG) emissions. But what if concrete could instead conserve greenhouse emissions? CO2NCRETE engineers capture carbon from smokestacks and combine it with lime to create a new type of cement. The lab’s 3D printers then shape the upcycled concrete to build entirely new structures. Once conquered at scale, upcycled concrete will turn a former polluter into a future conserver.

Or what if we wanted to print new residences from local soil at hand? Marking an extraordinary convergence between robotics and 3D printing, the Institute of Advanced Architecture of Catalonia (IAAC) is already working on a solution.

In a major feat for low-cost construction in remote zones, IAAC has found a way to convert almost any soil into a building material with three times the tensile strength of industrial clay. Offering myriad benefits, including natural insulation, low GHG emissions, fire protection, air circulation, and thermal mediation, IAAC’s new 3D printed native soil can build houses on-site for as little as $1,000.

Nanomaterials

Nano- and micro-materials are ushering in a new era of smart, super-strong, and self-charging buildings. While carbon nanotubes dramatically increase the strength-to-weight ratio of skyscrapers, revolutionizing their structural flexibility, nanomaterials don’t stop here.

Several research teams are pioneering silicon nanoparticles to capture everyday light flowing through our windows. Little solar cells at the edges of windows then harvest this energy for ready use. Researchers at the US National Renewable Energy Lab have developed similar smart windows. Turning into solar panels when bathed in sunlight, these thermochromic windows will power our buildings, changing color as they do.

Self-Healing Infrastructure

The American Society of Civil Engineers estimates that the US needs to spend roughly $4.5 trillion to fix nationwide roads, bridges, dams, and common infrastructure by 2025. But what if infrastructure could fix itself?

Enter self-healing concrete. Engineers at Delft University have developed bio-concrete that can repair its own cracks. As head researcher Henk Jonkers explains, “What makes this limestone-producing bacteria so special is that they are able to survive in concrete for more than 200 years and come into play when the concrete is damaged. […] If cracks appear as a result of pressure on the concrete, the concrete will heal these cracks itself.”

But bio-concrete is only the beginning of self-healing technologies. As futurist architecture firms start printing plastic and carbon-fiber houses like the stunner seen below (using Branch Technologies’ 3D printing technology), engineers have begun tackling self-healing plastic.

And in a bid to go smart, burgeoning construction projects have started embedding sensors for preemptive detection. Beyond materials and sensors, however, construction methods are fast colliding into robotics and 3D printing.

While some startups and research institutes have leveraged robot swarm construction (namely, Harvard’s robotic termite-like swarm of programmed constructors), others have taken to large-scale autonomous robots.

One such example involves Fastbrick Robotics. After multiple iterations, the company’s Hadrian X end-to-end bricklaying robot can now autonomously build a fully livable, 180-square meter home in under 3 days. Using a laser-guided robotic attachment, the all-in-one brick-loaded truck simply drives to a construction site and directs blocks through its robotic arm in accordance with a 3D model.

Layhead. Image Credit: Fastbrick Robotics.
Meeting verified building standards, Hadrian and similar solutions hold massive promise in the long term, deployable across post-conflict refugee sites and regions recovering from natural catastrophes.

Imagine the implications. Eliminating human safety concerns and unlocking any environment, autonomous builder robots could collaboratively build massive structures in space or deep underwater habitats.

Final Thoughts
Where, how, and what we live in form a vital pillar of our everyday lives. The concept of “home” is unlikely to disappear anytime soon. At the same time, real estate and construction are two of the biggest playgrounds for technological convergence, each on the verge of revolutionary disruption.

As underlying shifts in transportation, land reclamation, and the definition of “space” (real vs. virtual) take hold, the real estate market is about to explode in value, spreading out urban centers on unprecedented scales and unlocking vast new prime “property.”

Meanwhile, converging advancements in AI and VR are fundamentally disrupting the way we design, build, and explore new residences. Just as mirror worlds create immersive, virtual real estate economies, VR tours and AI agents are absorbing both sides of the coin to entirely obliterate the middleman.

And as materials science breakthroughs meet new modes of construction, the only limits to tomorrow’s structures are those of our own imagination.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: OCEANIX/BIG-Bjarke Ingels Group. Continue reading

Posted in Human Robots

#435070 5 Breakthroughs Coming Soon in Augmented ...

Convergence is accelerating disruption… everywhere! Exponential technologies are colliding into each other, reinventing products, services, and industries.

In this third installment of my Convergence Catalyzer series, I’ll be synthesizing key insights from my annual entrepreneurs’ mastermind event, Abundance 360. This five-blog series looks at 3D printing, artificial intelligence, VR/AR, energy and transportation, and blockchain.

Today, let’s dive into virtual and augmented reality.

Today’s most prominent tech giants are leaping onto the VR/AR scene, each driving forward new and upcoming product lines. Think: Microsoft’s HoloLens, Facebook’s Oculus, Amazon’s Sumerian, and Google’s Cardboard (Apple plans to release a headset by 2021).

And as plummeting prices meet exponential advancements in VR/AR hardware, this burgeoning disruptor is on its way out of the early adopters’ market and into the majority of consumers’ homes.

My good friend Philip Rosedale is my go-to expert on AR/VR and one of the foremost creators of today’s most cutting-edge virtual worlds. After creating the virtual civilization Second Life in 2013, now populated by almost 1 million active users, Philip went on to co-found High Fidelity, which explores the future of next-generation shared VR.

In just the next five years, he predicts five emerging trends will take hold, together disrupting major players and birthing new ones.

Let’s dive in…

Top 5 Predictions for VR/AR Breakthroughs (2019-2024)
“If you think you kind of understand what’s going on with that tech today, you probably don’t,” says Philip. “We’re still in the middle of landing the airplane of all these new devices.”

(1) Transition from PC-based to standalone mobile VR devices

Historically, VR devices have relied on PC connections, usually involving wires and clunky hardware that restrict a user’s field of motion. However, as VR enters the dematerialization stage, we are about to witness the rapid rise of a standalone and highly mobile VR experience economy.

Oculus Go, the leading standalone mobile VR device on the market, requires only a mobile app for setup and can be transported anywhere with WiFi.

With a consumer audience in mind, the 32GB headset is priced at $200 and shares an app ecosystem with Samsung’s Gear VR. While Google Daydream are also standalone VR devices, they require a docked mobile phone instead of the built-in screen of Oculus Go.

In the AR space, Lenovo’s standalone Microsoft’s HoloLens 2 leads the way in providing tetherless experiences.

Freeing headsets from the constraints of heavy hardware will make VR/AR increasingly interactive and transportable, a seamless add-on whenever, wherever. Within a matter of years, it may be as simple as carrying lightweight VR goggles wherever you go and throwing them on at a moment’s notice.

(2) Wide field-of-view AR displays

Microsoft’s HoloLens 2 leads the AR industry in headset comfort and display quality. The most significant issue with their prior version was the limited rectangular field of view (FOV).

By implementing laser technology to create a microelectromechanical systems (MEMS) display, however, HoloLens 2 can position waveguides in front of users’ eyes, directed by mirrors. Subsequently enlarging images can be accomplished by shifting the angles of these mirrors. Coupled with a 47 pixel per degree resolution, HoloLens 2 has now doubled its predecessor’s FOV. Microsoft anticipates the release of its headset by the end of this year at a $3,500 price point, first targeting businesses and eventually rolling it out to consumers.

Magic Leap provides a similar FOV but with lower resolution than the HoloLens 2. The Meta 2 boasts an even wider 90-degree FOV, but requires a cable attachment. The race to achieve the natural human 120-degree horizontal FOV continues.

“The technology to expand the field of view is going to make those devices much more usable by giving you bigger than a small box to look through,” Rosedale explains.

(3) Mapping of real world to enable persistent AR ‘mirror worlds’

‘Mirror worlds’ are alternative dimensions of reality that can blanket a physical space. While seated in your office, the floor beneath you could dissolve into a calm lake and each desk into a sailboat. In the classroom, mirror worlds would convert pencils into magic wands and tabletops into touch screens.

Pokémon Go provides an introductory glimpse into the mirror world concept and its massive potential to unite people in real action.

To create these mirror worlds, AR headsets must precisely understand the architecture of the surrounding world. Rosedale predicts the scanning accuracy of devices will improve rapidly over the next five years to make these alternate dimensions possible.

(4) 5G mobile devices reduce latency to imperceptible levels

Verizon has already launched 5G networks in Minneapolis and Chicago, compatible with the Moto Z3. Sprint plans to follow with its own 5G launch in May. Samsung, LG, Huawei, and ZTE have all announced upcoming 5G devices.

“5G is rolling out this year and it’s going to materially affect particularly my work, which is making you feel like you’re talking to somebody else directly face to face,” explains Rosedale. “5G is critical because currently the cell devices impose too much delay, so it doesn’t feel real to talk to somebody face to face on these devices.”

To operate seamlessly from anywhere on the planet, standalone VR/AR devices will require a strong 5G network. Enhancing real-time connectivity in VR/AR will transform the communication methods of tomorrow.

(5) Eye-tracking and facial expressions built in for full natural communication

Companies like Pupil Labs and Tobii provide eye tracking hardware add-ons and software to VR/AR headsets. This technology allows for foveated rendering, which renders a given scene in high resolution only in the fovea region, while the peripheral regions appear in lower resolution, conserving processing power.

As seen in the HoloLens 2, eye tracking can also be used to identify users and customize lens widths to provide a comfortable, personalized experience for each individual.

According to Rosedale, “The fundamental opportunity for both VR and AR is to improve human communication.” He points out that current VR/AR headsets miss many of the subtle yet important aspects of communication. Eye movements and microexpressions provide valuable insight into a user’s emotions and desires.

Coupled with emotion-detecting AI software, such as Affectiva, VR/AR devices might soon convey much more richly textured and expressive interactions between any two people, transcending physical boundaries and even language gaps.

Final Thoughts
As these promising trends begin to transform the market, VR/AR will undoubtedly revolutionize our lives… possibly to the point at which our virtual worlds become just as consequential and enriching as our physical world.

A boon for next-gen education, VR/AR will empower youth and adults alike with holistic learning that incorporates social, emotional, and creative components through visceral experiences, storytelling, and simulation. Traveling to another time, manipulating the insides of a cell, or even designing a new city will become daily phenomena of tomorrow’s classrooms.

In real estate, buyers will increasingly make decisions through virtual tours. Corporate offices might evolve into spaces that only exist in ‘mirror worlds’ or grow virtual duplicates for remote workers.

In healthcare, accuracy of diagnosis will skyrocket, while surgeons gain access to digital aids as they conduct life-saving procedures. Or take manufacturing, wherein training and assembly will become exponentially more efficient as visual cues guide complex tasks.

In the mere matter of a decade, VR and AR will unlock limitless applications for new and converging industries. And as virtual worlds converge with AI, 3D printing, computing advancements and beyond, today’s experience economies will explode in scale and scope. Prepare yourself for the exciting disruption ahead!

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements, and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Mariia Korneeva / Shutterstock.com Continue reading

Posted in Human Robots