Tag Archives: eye

#433939 The Promise—and Complications—of ...

Every year, for just a few days in a major city, a small team of roboticists get to live the dream: ordering around their own personal robot butlers. In carefully-constructed replicas of a restaurant scene or a domestic setting, these robots perform any number of simple algorithmic tasks. “Get the can of beans from the shelf. Greet the visitors to the museum. Help the humans with their shopping. Serve the customers at the restaurant.”

This is Robocup @ Home, the annual tournament where teams of roboticists put their autonomous service robots to the test for practical domestic applications. The tasks seem simple and mundane, but considering the technology required reveals that they’re really not.

The Robot Butler Contest
Say you want a robot to fetch items in the supermarket. In a crowded, noisy environment, the robot must understand your commands, ask for clarification, and map out and navigate an unfamiliar environment, avoiding obstacles and people as it does so. Then it must recognize the product you requested, perhaps in a cluttered environment, perhaps in an unfamiliar orientation. It has to grasp that product appropriately—recall that there are entire multi-million-dollar competitions just dedicated to developing robots that can grasp a range of objects—and then return it to you.

It’s a job so simple that a child could do it—and so complex that teams of smart roboticists can spend weeks programming and engineering, and still end up struggling to complete simplified versions of this task. Of course, the child has the advantage of millions of years of evolutionary research and development, while the first robots that could even begin these tasks were only developed in the 1970s.

Even bearing this in mind, Robocup @ Home can feel like a place where futurist expectations come crashing into technologist reality. You dream of a smooth-voiced, sardonic JARVIS who’s already made your favorite dinner when you come home late from work; you end up shouting “remember the biscuits” at a baffled, ungainly droid in aisle five.

Caring for the Elderly
Famously, Japan is one of the most robo-enthusiastic nations in the world; they are the nation that stunned us all with ASIMO in 2000, and several studies have been conducted into the phenomenon. It’s no surprise, then, that humanoid robotics should be seriously considered as a solution to the crisis of the aging population. The Japanese government, as part of its robots strategy, has already invested $44 million in their development.

Toyota’s Human Support Robot (HSR-2) is a simple but programmable robot with a single arm; it can be remote-controlled to pick up objects and can monitor patients. HSR-2 has become the default robot for use in Robocup @ Home tournaments, at least in tasks that involve manipulating objects.

Alongside this, Toyota is working on exoskeletons to assist people in walking after strokes. It may surprise you to learn that nurses suffer back injuries more than any other occupation, at roughly three times the rate of construction workers, due to the day-to-day work of lifting patients. Toyota has a Care Assist robot/exoskeleton designed to fix precisely this problem by helping care workers with the heavy lifting.

The Home of the Future
The enthusiasm for domestic robotics is easy to understand and, in fact, many startups already sell robots marketed as domestic helpers in some form or another. In general, though, they skirt the immensely complicated task of building a fully capable humanoid robot—a task that even Google’s skunk-works department gave up on, at least until recently.

It’s plain to see why: far more research and development is needed before these domestic robots could be used reliably and at a reasonable price. Consumers with expectations inflated by years of science fiction saturation might find themselves frustrated as the robots fail to perform basic tasks.

Instead, domestic robotics efforts fall into one of two categories. There are robots specialized to perform a domestic task, like iRobot’s Roomba, which stuck to vacuuming and became the most successful domestic robot of all time by far.

The tasks need not necessarily be simple, either: the impressive but expensive automated kitchen uses the world’s most dexterous hands to cook meals, providing it can recognize the ingredients. Other robots focus on human-robot interaction, like Jibo: they essentially package the abilities of a voice assistant like Siri, Cortana, or Alexa to respond to simple questions and perform online tasks in a friendly, dynamic robot exterior.

In this way, the future of domestic automation starts to look a lot more like smart homes than a robot or domestic servant. General robotics is difficult in the same way that general artificial intelligence is difficult; competing with humans, the great all-rounders, is a challenge. Getting superhuman performance at a more specific task, however, is feasible and won’t cost the earth.

Individual startups without the financial might of a Google or an Amazon can develop specialized robots, like Seven Dreamers’ laundry robot, and hope that one day it will form part of a network of autonomous robots that each have a role to play in the household.

Domestic Bliss?
The Smart Home has been a staple of futurist expectations for a long time, to the extent that movies featuring smart homes out of control are already a cliché. But critics of the smart home idea—and of the internet of things more generally—tend to focus on the idea that, more often than not, software just adds an additional layer of things that can break (NSFW), in exchange for minimal added convenience. A toaster that can short-circuit is bad enough, but a toaster that can refuse to serve you toast because its firmware is updating is something else entirely.

That’s before you even get into the security vulnerabilities, which are all the more important when devices are installed in your home and capable of interacting with them. The idea of a smart watch that lets you keep an eye on your children might sound like something a security-conscious parent would like: a smart watch that can be hacked to track children, listen in on their surroundings, and even fool them into thinking a call is coming from their parents is the stuff of nightmares.

Key to many of these problems is the lack of standardization for security protocols, and even the products themselves. The idea of dozens of startups each developing a highly-specialized piece of robotics to perform a single domestic task sounds great in theory, until you realize the potential hazards and pitfalls of getting dozens of incompatible devices to work together on the same system.

It seems inevitable that there are yet more layers of domestic drudgery that can be automated away, decades after the first generation of time-saving domestic devices like the dishwasher and vacuum cleaner became mainstream. With projected market values into the billions and trillions of dollars, there is no shortage of industry interest in ironing out these kinks. But, for now at least, the answer to the question: “Where’s my robot butler?” is that it is gradually, painstakingly learning how to sort through groceries.

Image Credit: Nonchanon / Shutterstock.com Continue reading

Posted in Human Robots

#433907 How the Spatial Web Will Fix What’s ...

Converging exponential technologies will transform media, advertising and the retail world. The world we see, through our digitally-enhanced eyes, will multiply and explode with intelligence, personalization, and brilliance.

This is the age of Web 3.0.

Last week, I discussed the what and how of Web 3.0 (also known as the Spatial Web), walking through its architecture and the converging technologies that enable it.

To recap, while Web 1.0 consisted of static documents and read-only data, Web 2.0 introduced multimedia content, interactive web applications, and participatory social media, all of these mediated by two-dimensional screens—a flat web of sensorily confined information.

During the next two to five years, the convergence of 5G, AI, a trillion sensors, and VR/AR will enable us to both map our physical world into virtual space and superimpose a digital layer onto our physical environments.

Web 3.0 is about to transform everything—from the way we learn and educate, to the way we trade (smart) assets, to our interactions with real and virtual versions of each other.

And while users grow rightly concerned about data privacy and misuse, the Spatial Web’s use of blockchain in its data and governance layer will secure and validate our online identities, protecting everything from your virtual assets to personal files.

In this second installment of the Web 3.0 series, I’ll be discussing the Spatial Web’s vast implications for a handful of industries:

News & Media Coverage
Smart Advertising
Personalized Retail

Let’s dive in.

Transforming Network News with Web 3.0
News media is big business. In 2016, global news media (including print) generated 168 billion USD in circulation and advertising revenue.

The news we listen to impacts our mindset. Listen to dystopian news on violence, disaster, and evil, and you’ll more likely be searching for a cave to hide in, rather than technology for the launch of your next business.

Today, different news media present starkly different realities of everything from foreign conflict to domestic policy. And outcomes are consequential. What reporters and news corporations decide to show or omit of a given news story plays a tremendous role in shaping the beliefs and resulting values of entire populations and constituencies.

But what if we could have an objective benchmark for today’s news, whereby crowdsourced and sensor-collected evidence allows you to tour the site of journalistic coverage, determining for yourself the most salient aspects of a story?

Enter mesh networks, AI, public ledgers, and virtual reality.

While traditional networks rely on a limited set of wired access points (or wireless hotspots), a wireless mesh network can connect entire cities via hundreds of dispersed nodes that communicate with each other and share a network connection non-hierarchically.

In short, this means that individual mobile users can together establish a local mesh network using nothing but the computing power in their own devices.

Take this a step further, and a local population of strangers could collectively broadcast countless 360-degree feeds across a local mesh network.

Imagine a scenario in which protests break out across the country, each cluster of activists broadcasting an aggregate of 360-degree videos, all fed through photogrammetry AIs that build out a live hologram of the march in real time. Want to see and hear what the NYC-based crowds are advocating for? Throw on some VR goggles and explore the event with full access. Or cue into the southern Texan border to assess for yourself the handling of immigrant entry and border conflicts.

Take a front seat in the Capitol during tomorrow’s Senate hearing, assessing each Senator’s reactions, questions and arguments without a Fox News or CNN filter. Or if you’re short on time, switch on the holographic press conference and host 3D avatars of live-broadcasting politicians in your living room.

We often think of modern media as taking away consumer agency, feeding tailored and often partisan ideology to a complacent audience. But as wireless mesh networks and agnostic sensor data allow for immersive VR-accessible news sites, the average viewer will necessarily become an active participant in her own education of current events.

And with each of us interpreting the news according to our own values, I envision a much less polarized world. A world in which civic engagement, moderately reasoned dialogue, and shared assumptions will allow us to empathize and make compromises.

The future promises an era in which news is verified and balanced; wherein public ledgers, AI, and new web interfaces bring you into the action and respect your intelligence—not manipulate your ignorance.

Web 3.0 Reinventing Advertising
Bringing about the rise of ‘user-owned data’ and self-established permissions, Web 3.0 is poised to completely disrupt digital advertising—a global industry worth over 192 billion USD.

Currently, targeted advertising leverages tomes of personal data and online consumer behavior to subtly engage you with products you might not want, or sell you on falsely advertised services promising inaccurate results.

With a new Web 3.0 data and governance layer, however, distributed ledger technologies will require advertisers to engage in more direct interaction with consumers, validating claims and upping transparency.

And with a data layer that allows users to own and authorize third-party use of their data, blockchain also holds extraordinary promise to slash not only data breaches and identity theft, but covert advertiser bombardment without your authorization.

Accessing crowdsourced reviews and AI-driven fact-checking, users will be able to validate advertising claims more efficiently and accurately than ever before, potentially rating and filtering out advertisers in the process. And in such a streamlined system of verified claims, sellers will face increased pressure to compete more on product and rely less on marketing.

But perhaps most exciting is the convergence of artificial intelligence and augmented reality.

As Spatial Web networks begin to associate digital information with physical objects and locations, products will begin to “sell themselves.” Each with built-in smart properties, products will become hyper-personalized, communicating information directly to users through Web 3.0 interfaces.

Imagine stepping into a department store in pursuit of a new web-connected fridge. As soon as you enter, your AR goggles register your location and immediately grant you access to a populated register of store products.

As you move closer to a kitchen set that catches your eye, a virtual salesperson—whether by holographic video or avatar—pops into your field of view next to the fridge you’ve been examining and begins introducing you to its various functions and features. You quickly decide you’d rather disable the avatar and get textual input instead, and preferences are reset to list appliance properties visually.

After a virtual tour of several other fridges, you decide on the one you want and seamlessly execute a smart contract, carried out by your smart wallet and the fridge. The transaction takes place in seconds, and the fridge’s blockchain-recorded ownership record has been updated.

Better yet, you head over to a friend’s home for dinner after moving into the neighborhood. While catching up in the kitchen, your eyes fixate on the cabinets, which quickly populate your AR glasses with a price-point and selection of colors.

But what if you’d rather not get auto-populated product info in the first place? No problem!

Now empowered with self-sovereign identities, users might be able to turn off advertising preferences entirely, turning on smart recommendations only when they want to buy a given product or need new supplies.

And with user-centric data, consumers might even sell such information to advertisers directly. Now, instead of Facebook or Google profiting off your data, you might earn a passive income by giving advertisers permission to personalize and market their services. Buy more, and your personal data marketplace grows in value. Buy less, and a lower-valued advertising profile causes an ebb in advertiser input.

With user-controlled data, advertisers now work on your terms, putting increased pressure on product iteration and personalizing products for each user.

This brings us to the transformative future of retail.

Personalized Retail–Power of the Spatial Web
In a future of smart and hyper-personalized products, I might walk through a virtual game space or a digitally reconstructed Target, browsing specific categories of clothing I’ve predetermined prior to entry.

As I pick out my selection, my AI assistant hones its algorithm reflecting new fashion preferences, and personal shoppers—also visiting the store in VR—help me pair different pieces as I go.

Once my personal shopper has finished constructing various outfits, I then sit back and watch a fashion show of countless Peter avatars with style and color variations of my selection, each customizable.

After I’ve made my selection, I might choose to purchase physical versions of three outfits and virtual versions of two others for my digital avatar. Payments are made automatically as I leave the store, including a smart wallet transaction made with the personal shopper at a per-outfit rate (for only the pieces I buy).

Already, several big players have broken into the VR market. Just this year, Walmart has announced its foray into the VR space, shipping 17,000 Oculus Go VR headsets to Walmart locations across the US.

And just this past January, Walmart filed two VR shopping-related patents. In a new bid to disrupt a rapidly changing retail market, Walmart now describes a system in which users couple their VR headset with haptic gloves for an immersive in-store experience, whether at 3am in your living room or during a lunch break at the office.

But Walmart is not alone. Big e-commerce players from Amazon to Alibaba are leaping onto the scene with new software buildout to ride the impending headset revolution.

Beyond virtual reality, players like IKEA have even begun using mobile-based augmented reality to map digitally replicated furniture in your physical living room, true to dimension. And this is just the beginning….

As AR headset hardware undergoes breakneck advancements in the next two to five years, we might soon be able to project watches onto our wrists, swapping out colors, styles, brand, and price points.

Or let’s say I need a new coffee table in my office. Pulling up multiple models in AR, I can position each option using advanced hand-tracking technology and customize height and width according to my needs. Once the smart payment is triggered, the manufacturer prints my newly-customized piece, droning it to my doorstep. As soon as I need to assemble the pieces, overlaid digital prompts walk me through each step, and any user confusions are communicated to a company database.

Perhaps one of the ripest industries for Spatial Web disruption, retail presents one of the greatest opportunities for profit across virtual apparel, digital malls, AI fashion startups and beyond.

In our next series iteration, I’ll be looking at the tremendous opportunities created by Web 3.0 for the Future of Work and Entertainment.

Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: nmedia / Shutterstock.com Continue reading

Posted in Human Robots

#433884 Designer Babies, and Their Babies: How ...

As if stand-alone technologies weren’t advancing fast enough, we’re in age where we must study the intersection points of these technologies. How is what’s happening in robotics influenced by what’s happening in 3D printing? What could be made possible by applying the latest advances in quantum computing to nanotechnology?

Along these lines, one crucial tech intersection is that of artificial intelligence and genomics. Each field is seeing constant progress, but Jamie Metzl believes it’s their convergence that will really push us into uncharted territory, beyond even what we’ve imagined in science fiction. “There’s going to be this push and pull, this competition between the reality of our biology with its built-in limitations and the scope of our aspirations,” he said.

Metzl is a senior fellow at the Atlantic Council and author of the upcoming book Hacking Darwin: Genetic Engineering and the Future of Humanity. At Singularity University’s Exponential Medicine conference last week, he shared his insights on genomics and AI, and where their convergence could take us.

Life As We Know It
Metzl explained how genomics as a field evolved slowly—and then quickly. In 1953, James Watson and Francis Crick identified the double helix structure of DNA, and realized that the order of the base pairs held a treasure trove of genetic information. There was such a thing as a book of life, and we’d found it.

In 2003, when the Human Genome Project was completed (after 13 years and $2.7 billion), we learned the order of the genome’s 3 billion base pairs, and the location of specific genes on our chromosomes. Not only did a book of life exist, we figured out how to read it.

Jamie Metzl at Exponential Medicine
Fifteen years after that, it’s 2018 and precision gene editing in plants, animals, and humans is changing everything, and quickly pushing us into an entirely new frontier. Forget reading the book of life—we’re now learning how to write it.

“Readable, writable, and hackable, what’s clear is that human beings are recognizing that we are another form of information technology, and just like our IT has entered this exponential curve of discovery, we will have that with ourselves,” Metzl said. “And it’s intersecting with the AI revolution.”

Learning About Life Meets Machine Learning
In 2016, DeepMind’s AlphaGo program outsmarted the world’s top Go player. In 2017 AlphaGo Zero was created: unlike AlphaGo, AlphaGo Zero wasn’t trained using previous human games of Go, but was simply given the rules of Go—and in four days it defeated the AlphaGo program.

Our own biology is, of course, vastly more complex than the game of Go, and that, Metzl said, is our starting point. “The system of our own biology that we are trying to understand is massively, but very importantly not infinitely, complex,” he added.

Getting a standardized set of rules for our biology—and, eventually, maybe even outsmarting our biology—will require genomic data. Lots of it.

Multiple countries already starting to produce this data. The UK’s National Health Service recently announced a plan to sequence the genomes of five million Britons over the next five years. In the US the All of Us Research Program will sequence a million Americans. China is the most aggressive in sequencing its population, with a goal of sequencing half of all newborns by 2020.

“We’re going to get these massive pools of sequenced genomic data,” Metzl said. “The real gold will come from comparing people’s sequenced genomes to their electronic health records, and ultimately their life records.” Getting people comfortable with allowing open access to their data will be another matter; Metzl mentioned that Luna DNA and others have strategies to help people get comfortable with giving consent to their private information. But this is where China’s lack of privacy protection could end up being a significant advantage.

To compare genotypes and phenotypes at scale—first millions, then hundreds of millions, then eventually billions, Metzl said—we’re going to need AI and big data analytic tools, and algorithms far beyond what we have now. These tools will let us move from precision medicine to predictive medicine, knowing precisely when and where different diseases are going to occur and shutting them down before they start.

But, Metzl said, “As we unlock the genetics of ourselves, it’s not going to be about just healthcare. It’s ultimately going to be about who and what we are as humans. It’s going to be about identity.”

Designer Babies, and Their Babies
In Metzl’s mind, the most serious application of our genomic knowledge will be in embryo selection.

Currently, in-vitro fertilization (IVF) procedures can extract around 15 eggs, fertilize them, then do pre-implantation genetic testing; right now what’s knowable is single-gene mutation diseases and simple traits like hair color and eye color. As we get to the millions and then billions of people with sequences, we’ll have information about how these genetics work, and we’re going to be able to make much more informed choices,” Metzl said.

Imagine going to a fertility clinic in 2023. You give a skin graft or a blood sample, and using in-vitro gametogenesis (IVG)—infertility be damned—your skin or blood cells are induced to become eggs or sperm, which are then combined to create embryos. The dozens or hundreds of embryos created from artificial gametes each have a few cells extracted from them, and these cells are sequenced. The sequences will tell you the likelihood of specific traits and disease states were that embryo to be implanted and taken to full term. “With really anything that has a genetic foundation, we’ll be able to predict with increasing levels of accuracy how that potential child will be realized as a human being,” Metzl said.

This, he added, could lead to some wild and frightening possibilities: if you have 1,000 eggs and you pick one based on its optimal genetic sequence, you could then mate your embryo with somebody else who has done the same thing in a different genetic line. “Your five-day-old embryo and their five-day-old embryo could have a child using the same IVG process,” Metzl said. “Then that child could have a child with another five-day-old embryo from another genetic line, and you could go on and on down the line.”

Sounds insane, right? But wait, there’s more: as Jason Pontin reported earlier this year in Wired, “Gene-editing technologies such as Crispr-Cas9 would make it relatively easy to repair, add, or remove genes during the IVG process, eliminating diseases or conferring advantages that would ripple through a child’s genome. This all may sound like science fiction, but to those following the research, the combination of IVG and gene editing appears highly likely, if not inevitable.”

From Crazy to Commonplace?
It’s a slippery slope from gene editing and embryo-mating to a dystopian race to build the most perfect humans possible. If somebody’s investing so much time and energy in selecting their embryo, Metzl asked, how will they think about the mating choices of their children? IVG could quickly leave the realm of healthcare and enter that of evolution.

“We all need to be part of an inclusive, integrated, global dialogue on the future of our species,” Metzl said. “Healthcare professionals are essential nodes in this.” Not least among this dialogue should be the question of access to tech like IVG; are there steps we can take to keep it from becoming a tool for a wealthy minority, and thereby perpetuating inequality and further polarizing societies?

As Pontin points out, at its inception 40 years ago IVF also sparked fear, confusion, and resistance—and now it’s as normal and common as could be, with millions of healthy babies conceived using the technology.

The disruption that genomics, AI, and IVG will bring to reproduction could follow a similar story cycle—if we’re smart about it. As Metzl put it, “This must be regulated, because it is life.”

Image Credit: hywards / Shutterstock.com Continue reading

Posted in Human Robots

#433748 Could Tech Make Government As We Know It ...

Governments are one of the last strongholds of an undigitized, linear sector of humanity, and they are falling behind fast. Apart from their struggle to keep up with private sector digitization, federal governments are in a crisis of trust.

At almost a 60-year low, only 18 percent of Americans reported that they could trust their government “always” or “most of the time” in a recent Pew survey. And the US is not alone. The Edelman Trust Barometer revealed last year that 41 percent of the world population distrust their nations’ governments.

In many cases, the private sector—particularly tech—is driving greater progress in regulation-targeted issues like climate change than state leaders. And as decentralized systems, digital disruption, and private sector leadership take the world by storm, traditional forms of government are beginning to fear irrelevance. However, the fight for exponential governance is not a lost battle.

Early visionaries like Estonia and the UAE are leading the way in digital governance, empowered by a host of converging technologies.

In this article, we will cover three key trends:

Digital governance divorced from land
AI-driven service delivery and regulation
Blockchain-enforced transparency

Let’s dive in.

Governments Going Digital
States and their governments have forever been tied to physical territories, and public services are often delivered through brick-and-mortar institutions. Yet public sector infrastructure and services will soon be hosted on servers, detached from land and physical form.

Enter e-Estonia. Perhaps the least expected on a list of innovative nations, this former Soviet Republic-turned digital society is ushering in an age of technological statecraft.

Hosting every digitizable government function on the cloud, Estonia could run its government almost entirely on a server. Starting in the 1990s, Estonia’s government has covered the nation with ultra-high-speed data connectivity, laying down tremendous amounts of fiber optic cable. By 2007, citizens could vote from their living rooms.

With digitized law, Estonia signs policies into effect using cryptographically secure digital signatures, and every stage of the legislative process is available to citizens online.

Citizens’ healthcare registry is run on the blockchain, allowing patients to own and access their own health data from anywhere in the world—X-rays, digital prescriptions, medical case notes—all the while tracking who has access.

Today, most banks have closed their offices, as 99 percent of banking transactions occur online (with 67 percent of citizens regularly using cryptographically secured e-IDs). And by 2020, e-tax will be entirely automated with Estonia’s new e-Tax and Customs Board portal, allowing companies and tax authority to exchange data automatically. And i-Voting, civil courts, land registries, banking, taxes, and countless e-facilities allow citizens to access almost any government service with an electronic ID and personal PIN online.

But perhaps Estonia’s most revolutionary breakthrough is its recently introduced e-residency. With over 30,000 e-residents, Estonia issues electronic IDs to global residents anywhere in the world. While e-residency doesn’t grant territorial rights, over 5,000 e-residents have already established companies within Estonia’s jurisdiction.

After registering companies online, entrepreneurs pay automated taxes—calculated in minutes and transmitted to the Estonian government with unprecedented ease.

The implications of e-residency and digital governance are huge. As with any software, open-source code for digital governance could be copied perfectly at almost zero cost, lowering the barrier to entry for any group or movement seeking statehood.

We may soon see the rise of competitive governing ecosystems, each testing new infrastructure and public e-services to compete with mainstream governments for taxpaying citizens.

And what better to accelerate digital governance than AI?

Legal Compliance Through AI
Just last year, the UAE became the first nation to appoint a State Minister for AI (actually a friend of mine, H.E. Omar Al Olama), aiming to digitize government services and halve annual costs. Among multiple sector initiatives, the UAE hopes to deploy robotic cops by 2030.

Meanwhile, the U.K. now has a Select Committee on Artificial Intelligence, and just last month, world leaders convened at the World Government Summit to discuss guidelines for AI’s global regulation.

As AI infuses government services, emerging applications have caught my eye:

Smart Borders and Checkpoints

With biometrics and facial recognition, traditional checkpoints will soon be a thing of the past. Cubic Transportation Systems—the company behind London’s ticketless public transit—is currently developing facial recognition for automated transport barriers. Digital security company Gemalto predicts that biometric systems will soon cross-reference individual faces with passport databases at security checkpoints, and China has already begun to test this at scale. While the Alibaba Ant Financial affiliate’s “Smile to Pay” feature allows users to authenticate digital payments with their faces, nationally overseen facial recognition technologies allow passengers to board planes, employees to enter office spaces, and students to access university halls. With biometric-geared surveillance at national borders, supply chains and international travelers could be tracked automatically, and granted or denied access according to biometrics and cross-referenced databases.

Policing and Security

Leveraging predictive analytics, China is also working to integrate security footage into a national surveillance and data-sharing system. By merging citizen data in its “Police Cloud”—including everything from criminal and medical records, transaction data, travel records and social media—it may soon be able to spot suspects and predict crime in advance. But China is not alone. During London’s Notting Hill Carnival this year, the Metropolitan Police used facial recognition cross-referenced with crime data to pre-identify and track likely offenders.

Smart Courts

AI may soon be reaching legal trials as well. UCL computer scientists have developed software capable of predicting courtroom outcomes based on data patterns with unprecedented accuracy. Assessing risk of flight, the National Bureau of Economic Research now uses an algorithm leveraging data from hundreds of thousands of NYC cases to recommend whether defendants should be granted bail. But while AI allows for streamlined governance, the public sector’s power to misuse our data is a valid concern and issues with bias as a result of historical data still remain. As tons of new information is generated about our every move, how do we keep governments accountable?

Enter the blockchain.

Transparent Governance and Accountability
Without doubt, alongside AI, government’s greatest disruptor is the newly-minted blockchain. Relying on a decentralized web of nodes, blockchain can securely verify transactions, signatures, and other information. This makes it essentially impossible for hackers, companies, officials, or even governments to falsify information on the blockchain.

As you’d expect, many government elites are therefore slow to adopt the technology, fearing enforced accountability. But blockchain’s benefits to government may be too great to ignore.

First, blockchain will be a boon for regulatory compliance.

As transactions on a blockchain are irreversible and transparent, uploaded sensor data can’t be corrupted. This means middlemen have no way of falsifying information to shirk regulation, and governments eliminate the need to enforce charges after the fact.

Apply this to carbon pricing, for instance, and emission sensors could fluidly log carbon credits onto a carbon credit blockchain, such as that developed by Ecosphere+. As carbon values are added to the price of everyday products or to corporations’ automated taxes, compliance and transparency would soon be digitally embedded.

Blockchain could also bolster government efforts in cybersecurity. As supercities and nation-states build IoT-connected traffic systems, surveillance networks, and sensor-tracked supply chain management, blockchain is critical in protecting connected devices from cyberattack.

But blockchain will inevitably hold governments accountable as well. By automating and tracking high-risk transactions, blockchain may soon eliminate fraud in cash transfers, public contracts and aid funds. Already, the UN World Food Program has piloted blockchain to manage cash-based transfers and aid flows to Syrian refugees in Jordan.

Blockchain-enabled “smart contracts” could automate exchange of real assets according to publicly visible, pre-programmed conditions, disrupting the $9.5 trillion market of public-sector contracts and public investment projects.

Eliminating leakages and increasing transparency, a distributed ledger has the potential to save trillions.

Future Implications
It is truly difficult to experiment with new forms of government. It’s not like there are new countries waiting to be discovered where we can begin fresh. And with entrenched bureaucracies and dominant industrial players, changing an existing nation’s form of government is extremely difficult and usually only happens during times of crisis or outright revolution.

Perhaps we will develop and explore new forms of government in the virtual world (to be explored during a future blog), or perhaps Sea Steading will allow us to physically build new island nations. And ultimately, as we move off the earth to Mars and space colonies, we will have yet another chance to start fresh.

But, without question, 90 percent or more of today’s political processes herald back to a day before technology, and it shows in terms of speed and efficiency.

Ultimately, there will be a shift to digital governments enabled with blockchain’s transparency, and we will redefine the relationship between citizens and the public sector.

One day I hope i-voting will allow anyone anywhere to participate in policy, and cloud-based governments will start to compete in e-services. As four billion new minds come online over the next several years, people may soon have the opportunity to choose their preferred government and citizenship digitally, independent of birthplace.

In 50 years, what will our governments look like? Will we have an interplanetary order, or a multitude of publicly-run ecosystems? Will cyber-ocracies rule our physical worlds with machine intelligence, or will blockchains allow for hive mind-like democracy?

The possibilities are endless, and only we can shape them.

Join Me
Abundance-Digital Online Community: I’ve created a digital community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: ArtisticPhoto / Shutterstock.com Continue reading

Posted in Human Robots

#433620 Instilling the Best of Human Values in ...

Now that the era of artificial intelligence is unquestionably upon us, it behooves us to think and work harder to ensure that the AIs we create embody positive human values.

Science fiction is full of AIs that manifest the dark side of humanity, or are indifferent to humans altogether. Such possibilities cannot be ruled out, but nor is there any logical or empirical reason to consider them highly likely. I am among a large group of AI experts who see a strong potential for profoundly positive outcomes in the AI revolution currently underway.

We are facing a future with great uncertainty and tremendous promise, and the best we can do is to confront it with a combination of heart and mind, of common sense and rigorous science. In the realm of AI, what this means is, we need to do our best to guide the AI minds we are creating to embody the values we cherish: love, compassion, creativity, and respect.

The quest for beneficial AI has many dimensions, including its potential to reduce material scarcity and to help unlock the human capacity for love and compassion.

Reducing Scarcity
A large percentage of difficult issues in human society, many of which spill over into the AI domain, would be palliated significantly if material scarcity became less of a problem. Fortunately, AI has great potential to help here. AI is already increasing efficiency in nearly every industry.

In the next few decades, as nanotech and 3D printing continue to advance, AI-driven design will become a larger factor in the economy. Radical new tools like artificial enzymes built using Christian Schafmeister’s spiroligomer molecules, and designed using quantum physics-savvy AIs, will enable the creation of new materials and medicines.

For amazing advances like the intersection of AI and nanotech to lead toward broadly positive outcomes, however, the economic and political aspects of the AI industry may have to shift from the current status quo.

Currently, most AI development occurs under the aegis of military organizations or large corporations oriented heavily toward advertising and marketing. Put crudely, an awful lot of AI today is about “spying, brainwashing, or killing.” This is not really the ideal situation if we want our first true artificial general intelligences to be open-minded, warm-hearted, and beneficial.

Also, as the bulk of AI development now occurs in large for-profit organizations bound by law to pursue the maximization of shareholder value, we face a situation where AI tends to exacerbate global wealth inequality and class divisions. This has the potential to lead to various civilization-scale failure modes involving the intersection of geopolitics, AI, cyberterrorism, and so forth. Part of my motivation for founding the decentralized AI project SingularityNET was to create an alternative mode of dissemination and utilization of both narrow AI and AGI—one that operates in a self-organizing way, outside of the direct grip of conventional corporate and governmental structures.

In the end, though, I worry that radical material abundance and novel political and economic structures may fail to create a positive future, unless they are coupled with advances in consciousness and compassion. AGIs have the potential to be massively more ethical and compassionate than humans. But still, the odds of getting deeply beneficial AGIs seem higher if the humans creating them are fuller of compassion and positive consciousness—and can effectively pass these values on.

Transmitting Human Values
Brain-computer interfacing is another critical aspect of the quest for creating more positive AIs and more positive humans. As Elon Musk has put it, “If you can’t beat ’em, join’ em.” Joining is more fun than beating anyway. What better way to infuse AIs with human values than to connect them directly to human brains, and let them learn directly from the source (while providing humans with valuable enhancements)?

Millions of people recently heard Elon Musk discuss AI and BCI on the Joe Rogan podcast. Musk’s embrace of brain-computer interfacing is laudable, but he tends to dodge some of the tough issues—for instance, he does not emphasize the trade-off cyborgs will face between retaining human-ness and maximizing intelligence, joy, and creativity. To make this trade-off effectively, the AI portion of the cyborg will need to have a deep sense of human values.

Musk calls humanity the “biological boot loader” for AGI, but to me this colorful metaphor misses a key point—that we can seed the AGI we create with our values as an initial condition. This is one reason why it’s important that the first really powerful AGIs are created by decentralized networks, and not conventional corporate or military organizations. The decentralized software/hardware ecosystem, for all its quirks and flaws, has more potential to lead to human-computer cybernetic collective minds that are reasonable and benevolent.

Algorithmic Love
BCI is still in its infancy, but a more immediate way of connecting people with AIs to infuse both with greater love and compassion is to leverage humanoid robotics technology. Toward this end, I conceived a project called Loving AI, focused on using highly expressive humanoid robots like the Hanson robot Sophia to lead people through meditations and other exercises oriented toward unlocking the human potential for love and compassion. My goals here were to explore the potential of AI and robots to have a positive impact on human consciousness, and to use this application to study and improve the OpenCog and SingularityNET tools used to control Sophia in these interactions.

The Loving AI project has now run two small sets of human trials, both with exciting and positive results. These have been small—dozens rather than hundreds of people—but have definitively proven the point. Put a person in a quiet room with a humanoid robot that can look them in the eye, mirror their facial expressions, recognize some of their emotions, and lead them through simple meditation, listening, and consciousness-oriented exercises…and quite a lot of the time, the result is a more relaxed person who has entered into a shifted state of consciousness, at least for a period of time.

In a certain percentage of cases, the interaction with the robot consciousness guide triggered a dramatic change of consciousness in the human subject—a deep meditative trance state, for instance. In most cases, the result was not so extreme, but statistically the positive effect was quite significant across all cases. Furthermore, a similar effect was found using an avatar simulation of the robot’s face on a tablet screen (together with a webcam for facial expression mirroring and recognition), but not with a purely auditory interaction.

The Loving AI experiments are not only about AI; they are about human-robot and human-avatar interaction, with AI as one significant aspect. The facial interaction with the robot or avatar is pushing “biological buttons” that trigger emotional reactions and prime the mind for changes of consciousness. However, this sort of body-mind interaction is arguably critical to human values and what it means to be human; it’s an important thing for robots and AIs to “get.”

Halting or pausing the advance of AI is not a viable possibility at this stage. Despite the risks, the potential economic and political benefits involved are clear and massive. The convergence of narrow AI toward AGI is also a near inevitability, because there are so many important applications where greater generality of intelligence will lead to greater practical functionality. The challenge is to make the outcome of this great civilization-level adventure as positive as possible.

Image Credit: Anton Gvozdikov / Shutterstock.com Continue reading

Posted in Human Robots