Tag Archives: complexity

#431828 This Self-Driving AI Is Learning to ...

I don’t have to open the doors of AImotive’s white 2015 Prius to see that it’s not your average car. This particular Prius has been christened El Capitan, the name written below the rear doors, and two small cameras are mounted on top of the car. Bundles of wire snake out from them, as well as from the two additional cameras on the car’s hood and trunk.
Inside is where things really get interesting, though. The trunk holds a computer the size of a microwave, and a large monitor covers the passenger glove compartment and dashboard. The center console has three switches labeled “Allowed,” “Error,” and “Active.”
Budapest-based AImotive is working to provide scalable self-driving technology alongside big players like Waymo and Uber in the autonomous vehicle world. On a highway test ride with CEO Laszlo Kishonti near the company’s office in Mountain View, California, I got a glimpse of just how complex that world is.
Camera-Based Feedback System
AImotive’s approach to autonomous driving is a little different from that of some of the best-known systems. For starters, they’re using cameras, not lidar, as primary sensors. “The traffic system is visual and the cost of cameras is low,” Kishonti said. “A lidar can recognize when there are people near the car, but a camera can differentiate between, say, an elderly person and a child. Lidar’s resolution isn’t high enough to recognize the subtle differences of urban driving.”
Image Credit: AImotive
The company’s aiDrive software uses data from the camera sensors to feed information to its algorithms for hierarchical decision-making, grouped under four concurrent activities: recognition, location, motion, and control.
Kishonti pointed out that lidar has already gotten more cost-efficient, and will only continue to do so.
“Ten years ago, lidar was best because there wasn’t enough processing power to do all the calculations by AI. But the cost of running AI is decreasing,” he said. “In our approach, computer vision and AI processing are key, and for safety, we’ll have fallback sensors like radar or lidar.”
aiDrive currently runs on Nvidia chips, which Kishonti noted were originally designed for graphics, and are not terribly efficient given how power-hungry they are. “We’re planning to substitute lower-cost, lower-energy chips in the next six months,” he said.
Testing in Virtual Reality
Waymo recently announced its fleet has now driven four million miles autonomously. That’s a lot of miles, and hard to compete with. But AImotive isn’t trying to compete, at least not by logging more real-life test miles. Instead, the company is doing 90 percent of its testing in virtual reality. “This is what truly differentiates us from competitors,” Kishonti said.
He outlined the three main benefits of VR testing: it can simulate scenarios too dangerous for the real world (such as hitting something), too costly (not every company has Waymo’s funds to run hundreds of cars on real roads), or too time-consuming (like waiting for rain, snow, or other weather conditions to occur naturally and repeatedly).
“Real-world traffic testing is very skewed towards the boring miles,” he said. “What we want to do is test all the cases that are hard to solve.”
On a screen that looked not unlike multiple games of Mario Kart, he showed me the simulator. Cartoon cars cruised down winding streets, outfitted with all the real-world surroundings: people, trees, signs, other cars. As I watched, a furry kangaroo suddenly hopped across one screen. “Volvo had an issue in Australia,” Kishonti explained. “A kangaroo’s movement is different than other animals since it hops instead of running.” Talk about cases that are hard to solve.
AImotive is currently testing around 1,000 simulated scenarios every night, with a steadily-rising curve of successful tests. These scenarios are broken down into features, and the car’s behavior around those features fed into a neural network. As the algorithms learn more features, the level of complexity the vehicles can handle goes up.
On the Road
After Kishonti and his colleagues filled me in on the details of their product, it was time to test it out. A safety driver sat in the driver’s seat, a computer operator in the passenger seat, and Kishonti and I in back. The driver maintained full control of the car until we merged onto the highway. Then he flicked the “Allowed” switch, his copilot pressed the “Active” switch, and he took his hands off the wheel.
What happened next, you ask?
A few things. El Capitan was going exactly the speed limit—65 miles per hour—which meant all the other cars were passing us. When a car merged in front of us or cut us off, El Cap braked accordingly (if a little abruptly). The monitor displayed the feed from each of the car’s cameras, plus multiple data fields and a simulation where a blue line marked the center of the lane, measured by the cameras tracking the lane markings on either side.
I noticed El Cap wobbling out of our lane a bit, but it wasn’t until two things happened in a row that I felt a little nervous: first we went under a bridge, then a truck pulled up next to us, both bridge and truck casting a complete shadow over our car. At that point El Cap lost it, and we swerved haphazardly to the right, narrowly missing the truck’s rear wheels. The safety driver grabbed the steering wheel and took back control of the car.
What happened, Kishonti explained, was that the shadows made it hard for the car’s cameras to see the lane markings. This was a new scenario the algorithm hadn’t previously encountered. If we’d only gone under a bridge or only been next to the truck for a second, El Cap may not have had so much trouble, but the two events happening in a row really threw the car for a loop—almost literally.
“This is a new scenario we’ll add to our testing,” Kishonti said. He added that another way for the algorithm to handle this type of scenario, rather than basing its speed and positioning on the lane markings, is to mimic nearby cars. “The human eye would see that other cars are still moving at the same speed, even if it can’t see details of the road,” he said.
After another brief—and thankfully uneventful—hands-off cruise down the highway, the safety driver took over, exited the highway, and drove us back to the office.
Driving into the Future
I climbed out of the car feeling amazed not only that self-driving cars are possible, but that driving is possible at all. I squint when driving into a tunnel, swerve to avoid hitting a stray squirrel, and brake gradually at stop signs—all without consciously thinking to do so. On top of learning to steer, brake, and accelerate, self-driving software has to incorporate our brains’ and bodies’ unconscious (but crucial) reactions, like our pupils dilating to let in more light so we can see in a tunnel.
Despite all the progress of machine learning, artificial intelligence, and computing power, I have a wholly renewed appreciation for the thing that’s been in charge of driving up till now: the human brain.
Kishonti seemed to feel similarly. “I don’t think autonomous vehicles in the near future will be better than the best drivers,” he said. “But they’ll be better than the average driver. What we want to achieve is safe, good-quality driving for everyone, with scalability.”
AImotive is currently working with American tech firms and with car and truck manufacturers in Europe, China, and Japan.
Image Credit: Alex Oakenman / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431690 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search Is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431682 Oxford Study Says Alien Life Would ...

The alternative universe known as science fiction has given our culture a menagerie of alien species. From overstuffed teddy bears like Ewoks and Wookies to terrifying nightmares such as Alien and Predator, our collective imagination of what form alien life from another world may take has been irrevocably imprinted by Hollywood.
It might all be possible, or all these bug-eyed critters might turn out to be just B-movie versions of how real extraterrestrials will appear if and when they finally make the evening news.
One thing for certain is that aliens from another world will be shaped by the same evolutionary forces as here on Earth—natural selection. That’s the conclusion of a team of scientists from the University of Oxford in a study published this month in the International Journal of Astrobiology.
A complex alien that comprises a hierarchy of entities, where each lower level collection of entities has aligned evolutionary interests.Image Credit: Helen S. Cooper/University of Oxford.
The researchers suggest that evolutionary theory—famously put forth by Charles Darwin in his seminal book On the Origin of Species 158 years ago this month—can be used to make some predictions about alien species. In particular, the team argues that extraterrestrials will undergo natural selection, because that is the only process by which organisms can adapt to their environment.
“Adaptation is what defines life,” lead author Samuel Levin tells Singularity Hub.
While it’s likely that NASA or some SpaceX-like private venture will eventually kick over a few space rocks and discover microbial life in the not-too-distant future, the sorts of aliens Levin and his colleagues are interested in describing are more complex. That’s because natural selection is at work.
A quick evolutionary theory 101 refresher: Natural selection is the process by which certain traits are favored over others in a given population. For example, take a group of brown and green beetles. It just so happens that birds prefer foraging on green beetles, allowing more brown beetles to survive and reproduce than the more delectable green ones. Eventually, if these population pressures persist, brown beetles will become the dominant type. Brown wins, green loses.
And just as human beings are the result of millions of years of adaptations—eyes and thumbs, for example—aliens will similarly be constructed from parts that were once free living but through time came together to work as one organism.
“Life has so many intricate parts, so much complexity, for that to happen (randomly),” Levin explains. “It’s too complex and too many things working together in a purposeful way for that to happen by chance, as how certain molecules come about. Instead you need a process for making it, and natural selection is that process.”
Just don’t expect ET to show up as a bipedal humanoid with a large head and almond-shaped eyes, Levin says.
“They can be built from entirely different chemicals and so visually, superficially, unfamiliar,” he explains. “They will have passed through the same evolutionary history as us. To me, that’s way cooler and more exciting than them having two legs.”
Need for Data
Seth Shostak, a lead astronomer at the SETI Institute and host of the organization’s Big Picture Science radio show, wrote that while the argument is interesting, it doesn’t answer the question of ET’s appearance.
Shostak argues that a more productive approach would invoke convergent evolution, where similar environments lead to similar adaptations, at least assuming a range of Earth-like conditions such as liquid oceans and thick atmospheres. For example, an alien species that evolved in a liquid environment would evolve a streamlined body to move through water.
“Happenstance and the specifics of the environment will produce variations on an alien species’ planet as it has on ours, and there’s really no way to predict these,” Shostak concludes. “Alas, an accurate cosmic bestiary cannot be written by the invocation of biological mechanisms alone. We need data. That requires more than simply thinking about alien life. We need to actually discover it.”
Search is On
The search is on. On one hand, the task seems easy enough: There are at least 100 billion planets in the Milky Way alone, and at least 20 percent of those are likely to be capable of producing a biosphere. Even if the evolution of life is exceedingly rare—take a conservative estimate of .001 percent or 200,000 planets, as proposed by the Oxford paper—you have to like the odds.
Of course, it’s not that easy by a billion light years.
Planet hunters can’t even agree on what signatures of life they should focus on. The idea is that where there’s smoke there’s fire. In the case of an alien world home to biological life, astrobiologists are searching for the presence of “biosignature gases,” vapors that could only be produced by alien life.
As Quanta Magazine reported, scientists do this by measuring a planet’s atmosphere against starlight. Gases in the atmosphere absorb certain frequencies of starlight, offering a clue as to what is brewing around a particular planet.
The presence of oxygen would seem to be a biological no-brainer, but there are instances where a planet can produce a false positive, meaning non-biological processes are responsible for the exoplanet’s oxygen. Scientists like Sara Seager, an astrophysicist at MIT, have argued there are plenty of examples of other types of gases produced by organisms right here on Earth that could also produce the smoking gun, er, planet.

Life as We Know It
Indeed, the existence of Earth-bound extremophiles—organisms that defy conventional wisdom about where life can exist, such as in the vacuum of space—offer another clue as to what kind of aliens we might eventually meet.
Lynn Rothschild, an astrobiologist and synthetic biologist in the Earth Science Division at NASA’s Ames Research Center in Silicon Valley, takes extremophiles as a baseline and then supersizes them through synthetic biology.
For example, say a bacteria is capable of surviving at 120 degrees Celsius. Rothschild’s lab might tweak an organism’s DNA to see if it could metabolize at 150 degrees. The idea, as she explains, is to expand the envelope for life without ever getting into a rocket ship.

While researchers may not always agree on the “where” and “how” and “what” of the search for extraterrestrial life, most do share one belief: Alien life must be out there.
“It would shock me if there weren’t [extraterrestrials],” Levin says. “There are few things that would shock me more than to find out there aren’t any aliens…If I had to bet on it, I would bet on the side of there being lots and lots of aliens out there.”
Image Credit: NASA Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431599 8 Ways AI Will Transform Our Cities by ...

How will AI shape the average North American city by 2030? A panel of experts assembled as part of a century-long study into the impact of AI thinks its effects will be profound.
The One Hundred Year Study on Artificial Intelligence is the brainchild of Eric Horvitz, technical fellow and a managing director at Microsoft Research.
Every five years a panel of experts will assess the current state of AI and its future directions. The first panel, comprised of experts in AI, law, political science, policy, and economics, was launched last fall and decided to frame their report around the impact AI will have on the average American city. Here’s how they think it will affect eight key domains of city life in the next fifteen years.
1. Transportation
The speed of the transition to AI-guided transport may catch the public by surprise. Self-driving vehicles will be widely adopted by 2020, and it won’t just be cars — driverless delivery trucks, autonomous delivery drones, and personal robots will also be commonplace.
Uber-style “cars as a service” are likely to replace car ownership, which may displace public transport or see it transition towards similar on-demand approaches. Commutes will become a time to relax or work productively, encouraging people to live further from home, which could combine with reduced need for parking to drastically change the face of modern cities.
Mountains of data from increasing numbers of sensors will allow administrators to model individuals’ movements, preferences, and goals, which could have major impact on the design city infrastructure.
Humans won’t be out of the loop, though. Algorithms that allow machines to learn from human input and coordinate with them will be crucial to ensuring autonomous transport operates smoothly. Getting this right will be key as this will be the public’s first experience with physically embodied AI systems and will strongly influence public perception.
2. Home and Service Robots
Robots that do things like deliver packages and clean offices will become much more common in the next 15 years. Mobile chipmakers are already squeezing the power of last century’s supercomputers into systems-on-a-chip, drastically boosting robots’ on-board computing capacity.
Cloud-connected robots will be able to share data to accelerate learning. Low-cost 3D sensors like Microsoft’s Kinect will speed the development of perceptual technology, while advances in speech comprehension will enhance robots’ interactions with humans. Robot arms in research labs today are likely to evolve into consumer devices around 2025.
But the cost and complexity of reliable hardware and the difficulty of implementing perceptual algorithms in the real world mean general-purpose robots are still some way off. Robots are likely to remain constrained to narrow commercial applications for the foreseeable future.
3. Healthcare
AI’s impact on healthcare in the next 15 years will depend more on regulation than technology. The most transformative possibilities of AI in healthcare require access to data, but the FDA has failed to find solutions to the difficult problem of balancing privacy and access to data. Implementation of electronic health records has also been poor.
If these hurdles can be cleared, AI could automate the legwork of diagnostics by mining patient records and the scientific literature. This kind of digital assistant could allow doctors to focus on the human dimensions of care while using their intuition and experience to guide the process.
At the population level, data from patient records, wearables, mobile apps, and personal genome sequencing will make personalized medicine a reality. While fully automated radiology is unlikely, access to huge datasets of medical imaging will enable training of machine learning algorithms that can “triage” or check scans, reducing the workload of doctors.
Intelligent walkers, wheelchairs, and exoskeletons will help keep the elderly active while smart home technology will be able to support and monitor them to keep them independent. Robots may begin to enter hospitals carrying out simple tasks like delivering goods to the right room or doing sutures once the needle is correctly placed, but these tasks will only be semi-automated and will require collaboration between humans and robots.
4. Education
The line between the classroom and individual learning will be blurred by 2030. Massive open online courses (MOOCs) will interact with intelligent tutors and other AI technologies to allow personalized education at scale. Computer-based learning won’t replace the classroom, but online tools will help students learn at their own pace using techniques that work for them.
AI-enabled education systems will learn individuals’ preferences, but by aggregating this data they’ll also accelerate education research and the development of new tools. Online teaching will increasingly widen educational access, making learning lifelong, enabling people to retrain, and increasing access to top-quality education in developing countries.
Sophisticated virtual reality will allow students to immerse themselves in historical and fictional worlds or explore environments and scientific objects difficult to engage with in the real world. Digital reading devices will become much smarter too, linking to supplementary information and translating between languages.
5. Low-Resource Communities
In contrast to the dystopian visions of sci-fi, by 2030 AI will help improve life for the poorest members of society. Predictive analytics will let government agencies better allocate limited resources by helping them forecast environmental hazards or building code violations. AI planning could help distribute excess food from restaurants to food banks and shelters before it spoils.
Investment in these areas is under-funded though, so how quickly these capabilities will appear is uncertain. There are fears valueless machine learning could inadvertently discriminate by correlating things with race or gender, or surrogate factors like zip codes. But AI programs are easier to hold accountable than humans, so they’re more likely to help weed out discrimination.
6. Public Safety and Security
By 2030 cities are likely to rely heavily on AI technologies to detect and predict crime. Automatic processing of CCTV and drone footage will make it possible to rapidly spot anomalous behavior. This will not only allow law enforcement to react quickly but also forecast when and where crimes will be committed. Fears that bias and error could lead to people being unduly targeted are justified, but well-thought-out systems could actually counteract human bias and highlight police malpractice.
Techniques like speech and gait analysis could help interrogators and security guards detect suspicious behavior. Contrary to concerns about overly pervasive law enforcement, AI is likely to make policing more targeted and therefore less overbearing.
7. Employment and Workplace
The effects of AI will be felt most profoundly in the workplace. By 2030 AI will be encroaching on skilled professionals like lawyers, financial advisers, and radiologists. As it becomes capable of taking on more roles, organizations will be able to scale rapidly with relatively small workforces.
AI is more likely to replace tasks rather than jobs in the near term, and it will also create new jobs and markets, even if it’s hard to imagine what those will be right now. While it may reduce incomes and job prospects, increasing automation will also lower the cost of goods and services, effectively making everyone richer.
These structural shifts in the economy will require political rather than purely economic responses to ensure these riches are shared. In the short run, this may include resources being pumped into education and re-training, but longer term may require a far more comprehensive social safety net or radical approaches like a guaranteed basic income.
8. Entertainment
Entertainment in 2030 will be interactive, personalized, and immeasurably more engaging than today. Breakthroughs in sensors and hardware will see virtual reality, haptics and companion robots increasingly enter the home. Users will be able to interact with entertainment systems conversationally, and they will show emotion, empathy, and the ability to adapt to environmental cues like the time of day.
Social networks already allow personalized entertainment channels, but the reams of data being collected on usage patterns and preferences will allow media providers to personalize entertainment to unprecedented levels. There are concerns this could endow media conglomerates with unprecedented control over people’s online experiences and the ideas to which they are exposed.
But advances in AI will also make creating your own entertainment far easier and more engaging, whether by helping to compose music or choreograph dances using an avatar. Democratizing the production of high-quality entertainment makes it nearly impossible to predict how highly fluid human tastes for entertainment will develop.
Image Credit: Asgord / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment

#431427 Why the Best Healthcare Hacks Are the ...

Technology has the potential to solve some of our most intractable healthcare problems. In fact, it’s already doing so, with inventions getting us closer to a medical Tricorder, and progress toward 3D printed organs, and AIs that can do point-of-care diagnosis.
No doubt these applications of cutting-edge tech will continue to push the needle on progress in medicine, diagnosis, and treatment. But what if some of the healthcare hacks we need most aren’t high-tech at all?
According to Dr. Darshak Sanghavi, this is exactly the case. In a talk at Singularity University’s Exponential Medicine last week, Sanghavi told the audience, “We often think in extremely complex ways, but I think a lot of the improvements in health at scale can be done in an analog way.”
Sanghavi is the chief medical officer and senior vice president of translation at OptumLabs, and was previously director of preventive and population health at the Center for Medicare and Medicaid Innovation, where he oversaw the development of large pilot programs aimed at improving healthcare costs and quality.
“How can we improve health at scale, not for only a small number of people, but for entire populations?” Sanghavi asked. With programs that benefit a small group of people, he explained, what tends to happen is that the average health of a population improves, but the disparities across the group worsen.
“My mantra became, ‘The denominator is everybody,’” he said. He shared details of some low-tech but crucial fixes he believes could vastly benefit the US healthcare system.
1. Regulatory Hacking
Healthcare regulations are ultimately what drive many aspects of patient care, for better or worse. Worse because the mind-boggling complexity of regulations (exhibit A: the Affordable Care Act is reportedly about 20,000 pages long) can make it hard for people to get the care they need at a cost they can afford, but better because, as Sanghavi explained, tweaking these regulations in the right way can result in across-the-board improvements in a given population’s health.
An adjustment to Medicare hospitalization rules makes for a relevant example. The code was updated to state that if people who left the hospital were re-admitted within 30 days, that hospital had to pay a penalty. The result was hospitals taking more care to ensure patients were released not only in good health, but also with a solid understanding of what they had to do to take care of themselves going forward. “Here, arguably the writing of a few lines of regulatory code resulted in a remarkable decrease in 30-day re-admissions, and the savings of several billion dollars,” Sanghavi said.
2. Long-Term Focus
It’s easy to focus on healthcare hacks that have immediate, visible results—but what about fixes whose benefits take years to manifest? How can we motivate hospitals, regulators, and doctors to take action when they know they won’t see changes anytime soon?
“I call this the reality TV problem,” Sanghavi said. “Reality shows don’t really care about who’s the most talented recording artist—they care about getting the most viewers. That is exactly how we think about health care.”
Sanghavi’s team wanted to address this problem for heart attacks. They found they could reliably determine someone’s 10-year risk of having a heart attack based on a simple risk profile. Rather than monitoring patients’ cholesterol, blood pressure, weight, and other individual factors, the team took the average 10-year risk across entire provider panels, then made providers responsible for controlling those populations.
“Every percentage point you lower that risk, by hook or by crook, you get some people to stop smoking, you get some people on cholesterol medication. It’s patient-centered decision-making, and the provider then makes money. This is the world’s first predictive analytic model, at scale, that’s actually being paid for at scale,” he said.
3. Aligned Incentives
If hospitals are held accountable for the health of the communities they’re based in, those hospitals need to have the right incentives to follow through. “Hospitals have to spend money on community benefit, but linking that benefit to a meaningful population health metric can catalyze significant improvements,” Sanghavi said.
Darshak Sanghavi speaking at Singularity University’s 2017 Exponential Medicine Summit in San Diego, CA.
He used smoking cessation as an example. His team designed a program where hospitals were given a score (determined by the Centers for Disease Control and Prevention) based on the smoking rate in the counties where they’re located, then given monetary incentives to improve their score. Improving their score, in turn, resulted in better health for their communities, which meant fewer patients to treat for smoking-related health problems.
4. Social Determinants of Health
Social determinants of health include factors like housing, income, family, and food security. The answer to getting people to pay attention to these factors at scale, and creating aligned incentives, Sanghavi said, is “Very simple. We just have to measure it to start with, and measure it universally.”
His team was behind a $157 million pilot program called Accountable Health Communities that went live this year. The program requires all Medicare and Medicaid beneficiaries get screened for various social determinants of health. With all that data being collected, analysts can pinpoint local trends, then target funds to address the underlying problem, whether it’s job training, drug use, or nutritional education. “You’re then free to invest the dollars where they’re needed…this is how we can improve health at scale, with very simple changes in the incentive structures that are created,” he said.
5. ‘Securitizing’ Public Health
Sanghavi’s final point tied back to his discussion of aligning incentives. As misguided as it may seem, the reality is that financial incentives can make a huge difference in healthcare outcomes, from both a patient and a provider perspective.
Sanghavi’s team did an experiment in which they created outcome benchmarks for three major health problems that exist across geographically diverse areas: smoking, adolescent pregnancy, and binge drinking. The team proposed measuring the baseline of these issues then creating what they called a social impact bond. If communities were able to lower their frequency of these conditions by a given percent within a stated period of time, they’d get paid for it.
“What that did was essentially say, ‘you have a buyer for this outcome if you can achieve it,’” Sanghavi said. “And you can try to get there in any way you like.” The program is currently in CMS clearance.
AI and Robots Not Required
Using robots to perform surgery and artificial intelligence to diagnose disease will undoubtedly benefit doctors and patients around the US and the world. But Sanghavi’s talk made it clear that our healthcare system needs much more than this, and that improving population health on a large scale is really a low-tech project—one involving more regulatory and financial innovation than technological innovation.
“The things that get measured are the things that get changed,” he said. “If we choose the right outcomes to predict long-term benefit, and we pay for those outcomes, that’s the way to make progress.”
Image Credit: Wonderful Nature / Shutterstock.com Continue reading

Posted in Human Robots | Tagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a comment