Tag Archives: walking

#436180 Bipedal Robot Cassie Cal Learns to ...

There’s no particular reason why knowing how to juggle would be a useful skill for a robot. Despite this, robots are frequently taught how to juggle things. Blind robots can juggle, humanoid robots can juggle, and even drones can juggle. Why? Because juggling is hard, man! You have to think about a bunch of different things at once, and also do a bunch of different things at once, which this particular human at least finds to be overly stressful. While juggling may not stress robots out, it does require carefully coordinated sensing and computing and actuation, which means that it’s as good a task as any (and a more entertaining task than most) for testing the capabilities of your system.

UC Berkeley’s Cassie Cal robot, which consists of two legs and what could be called a torso if you were feeling charitable, has just learned to juggle by bouncing a ball on what would be her head if she had one of those. The idea is that if Cassie can juggle while balancing at the same time, she’ll be better able to do other things that require dynamic multitasking, too. And if that doesn’t work out, she’ll still be able to join the circus.

Cassie’s juggling is assisted by an external motion capture system that tracks the location of the ball, but otherwise everything is autonomous. Cassie is able to juggle the ball by leaning forwards and backwards, left and right, and moving up and down. She does this while maintaining her own balance, which is the whole point of this research—successfully executing two dynamic behaviors that may sometimes be at odds with one another. The end goal here is not to make a better juggling robot, but rather to explore dynamic multitasking, a skill that robots will need in order to be successful in human environments.

This work is from the Hybrid Robotics Lab at UC Berkeley, led by Koushil Sreenath, and is being done by Katherine Poggensee, Albert Li, Daniel Sotsaikich, Bike Zhang, and Prasanth Kotaru.

For a bit more detail, we spoke with Albert Li via email.

Image: UC Berkeley

UC Berkeley’s Cassie Cal getting ready to juggle.

IEEE Spectrum: What would be involved in getting Cassie to juggle without relying on motion capture?

Albert Li: Our motivation for starting off with motion capture was to first address the control challenge of juggling on a biped without worrying about implementing the perception. We actually do have a ball detector working on a camera, which would mean we wouldn’t have to rely on the motion capture system. However, we need to mount the camera in a way that it would provide the best upwards field of view, and we also have develop a reliable estimator. The estimator is particularly important because when the ball gets close enough to the camera, we actually can’t track the ball and have to assume our dynamic models describe its motion accurately enough until it bounces back up.

What keeps Cassie from juggling indefinitely?

There are a few factors that affect how long Cassie can sustain a juggle. While in simulation the paddle exhibits homogeneous properties like its stiffness and damping, in reality every surface has anisotropic contact properties. So, there are parts of the paddle which may be better for juggling than others (and importantly, react differently than modeled). These differences in contact are also exacerbated due to how the paddle is cantilevered when mounted on Cassie. When the ball hits these areas, it leads to a larger than expected error in a juggle. Due to the small size of the paddle, the ball may then just hit the paddle’s edge and end the juggling run. Over a very long run, this is a likely occurrence. Additionally, some large juggling errors could cause Cassie’s feet to slip slightly, which ends up changing the stable standing position over time. Since this version of the controller assumes Cassie is stationary, this change in position eventually leads to poor juggles and failure.

Would Cassie be able to juggle while walking (or hovershoe-ing)?

Walking (and hovershoe-ing) while juggling is a far more challenging problem and is certainly a goal for future research. Some of these challenges include getting the paddle to precise poses to juggle the ball while also moving to avoid any destabilizing effects of stepping incorrectly. The number of juggles per step of walking could also vary and make the mathematics of the problem more challenging. The controller goal is also more involved. While the current goal of the juggling controller is to juggle the ball to a static apex position, with a walking juggling controller, we may instead want to hit the ball forwards and also walk forwards to bounce it, juggle the ball along a particular path, etc. Solving such challenges would be the main thrusts of the follow-up research.

Can you give an example of a practical task that would be made possible by using a controller like this?

Studying juggling means studying contact behavior and leveraging our models of it to achieve a known objective. Juggling could also be used to study predictable post-contact flight behavior. Consider the scenario where a robot is attempting to make a catch, but fails, letting the ball to bounce off of its hand, and then recovering the catch. This behavior could also be intentional: It is often easier to first execute a bounce to direct the target and then perform a subsequent action. For example, volleyball players could in principle directly hit a spiked ball back, but almost always bump the ball back up and then return it.

Even beyond this motivating example, the kinds of models we employ to get juggling working are more generally applicable to any task that involves contact, which could include tasks besides bouncing like sliding and rolling. For example, clearing space on a desk by pushing objects to the side may be preferable than individually manipulating each and every object on it.

You mention collaborative juggling or juggling multiple balls—is that something you’ve tried yet? Can you talk a bit more about what you’re working on next?

We haven’t yet started working on collaborative or multi-ball juggling, but that’s also a goal for future work. Juggling multiple balls statically is probably the most reasonable next goal, but presents additional challenges. For instance, you have to encode a notion of juggling urgency (if the second ball isn’t hit hard enough, you have less time to get the first ball up before you get back to the second one).

On the other hand, collaborative human-robot juggling requires a more advanced decision-making framework. To get robust multi-agent juggling, the robot will need to employ some sort of probabilistic model of the expected human behavior (are they likely to move somewhere? Are they trying to catch the ball high or low? Is it safe to hit the ball back?). In general, developing such human models is difficult since humans are fairly unpredictable and often don’t exhibit rational behavior. This will be a focus of future work.

[ Hybrid Robotics Lab ] Continue reading

Posted in Human Robots

#436155 This MIT Robot Wants to Use Your ...

MIT researchers have demonstrated a new kind of teleoperation system that allows a two-legged robot to “borrow” a human operator’s physical skills to move with greater agility. The system works a bit like those haptic suits from the Spielberg movie “Ready Player One.” But while the suits in the film were used to connect humans to their VR avatars, the MIT suit connects the operator to a real robot.

The robot is called Little HERMES, and it’s currently just a pair of little legs, about a third the size of an average adult. It can step and jump in place or walk a short distance while supported by a gantry. While that in itself is not very impressive, the researchers say their approach could help bring capable disaster robots closer to reality. They explain that, despite recent advances, building fully autonomous robots with motor and decision-making skills comparable to those of humans remains a challenge. That’s where a more advanced teleoperation system could help.

The researchers, João Ramos, now an assistant professor at the University of Illinois at Urbana-Champaign, and Sangbae Kim, director of MIT’s Biomimetic Robotics Lab, describe the project in this week’s issue of Science Robotics. In the paper, they argue that existing teleoperation systems often can’t effectively match the operator’s motions to that of a robot. In addition, conventional systems provide no physical feedback to the human teleoperator about what the robot is doing. Their new approach addresses these two limitations, and to see how it would work in practice, they built Little HERMES.

Image: Science Robotics

The main components of MIT’s bipedal robot Little HERMES: (A) Custom actuators designed to withstand impact and capable of producing high torque. (B) Lightweight limbs with low inertia and fast leg swing. (C) Impact-robust and lightweight foot sensors with three-axis contact force sensor. (D) Ruggedized IMU to estimates the robot’s torso posture, angular rate, and linear acceleration. (E) Real-time computer sbRIO 9606 from National Instruments for robot control. (F) Two three-cell lithium-polymer batteries in series. (G) Rigid and lightweight frame to minimize the robot mass.

Early this year, the MIT researchers wrote an in-depth article for IEEE Spectrum about the project, which includes Little HERMES and also its big brother, HERMES (for Highly Efficient Robotic Mechanisms and Electromechanical System). In that article, they describe the two main components of the system:

[…] We are building a telerobotic system that has two parts: a humanoid capable of nimble, dynamic behaviors, and a new kind of two-way human-machine interface that sends your motions to the robot and the robot’s motions to you. So if the robot steps on debris and starts to lose its balance, the operator feels the same instability and instinctively reacts to avoid falling. We then capture that physical response and send it back to the robot, which helps it avoid falling, too. Through this human-robot link, the robot can harness the operator’s innate motor skills and split-second reflexes to keep its footing.

You could say we’re putting a human brain inside the machine.

Image: Science Robotics

The human-machine interface built by the MIT researchers for controlling Little HERMES is different from conventional ones in that it relies on the operator’s reflexes to improve the robot’s stability. The researchers call it the balance-feedback interface, or BFI. The main modules of the BFI include: (A) Custom interface attachments for torso and feet designed to capture human motion data at high speed (1 kHz). (B) Two underactuated modules to track the position and orientation of the torso and apply forces to the operator. (C) Each actuation module has three DoFs, one of which is a push/pull rod actuated by a DC brushless motor. (D) A series of linkages with passive joints connected to the operator’s feet and track their spatial translation. (E) Real-time controller cRIO 9082 from National Instruments to close the BFI control loop. (F) Force plate to estimated the operator’s center of pressure position and measure the shear and normal components of the operator’s net contact force.

Here’s more footage of the experiments, showing Little HERMES stepping and jumping in place, walking a few steps forward and backward, and balancing. Watch until the end to see a compilation of unsuccessful stepping experiments. Poor Little HERMES!

In the new Science Robotics paper, the MIT researchers explain how they solved one of the key challenges in making their teleoperation system effective:

The challenge of this strategy lies in properly mapping human body motion to the machine while simultaneously informing the operator how closely the robot is reproducing the movement. Therefore, we propose a solution for this bilateral feedback policy to control a bipedal robot to take steps, jump, and walk in synchrony with a human operator. Such dynamic synchronization was achieved by (i) scaling the core components of human locomotion data to robot proportions in real time and (ii) applying feedback forces to the operator that are proportional to the relative velocity between human and robot.

Little HERMES is now taking its first steps, quite literally, but the researchers say they hope to use robotic legs with similar design as part of a more advanced humanoid. One possibility they’ve envisioned is a fast-moving quadruped robot that could run through various kinds of terrain and then transform into a bipedal robot that would use its hands to perform dexterous manipulations. This could involve merging some of the robots the MIT researchers have built in their lab, possibly creating hybrids between Cheetah and HERMES, or Mini Cheetah and Little HERMES. We can’t wait to see what the resulting robots will look like.

[ Science Robotics ] Continue reading

Posted in Human Robots

#436146 Video Friday: Kuka’s Robutt Is a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Kuka’s “robutt” can, according to the company, simulate “thousands of butts in the pursuit of durability and comfort.” Two of the robots are used at a Ford development center in Germany to evaluate new car seats. The tests are quite exhaustive, consisting of around 25,000 simulated sitting motions for each new seat design.” Or as Kuka puts it, “Pleasing all the butts on the planet is serious business.”

[ Kuka ]

Here’s a clever idea: 3D printing manipulators, and then using the 3D printer head to move those manipulators around and do stuff with them:

[ Paper ]

Two former soldiers performed a series of tests to see if the ONYX Exoskeleton gave them extra strength and endurance in difficult environments.

So when can I rent one of these to help me move furniture?

[ Lockheed ]

One of the defining characteristics of legged robots in general (and humanoid robots in particular) is the ability of walking on various types of terrain. In this video, we show our humanoid robot TORO walking dynamically over uneven (on grass outside the lab), rough (large gravel), and compliant terrain (a soft gym mattress). The robot can maintain its balance, even when the ground shifts rapidly under foot, such as when walking over gravel. This behaviour showcases the torque-control capability of quickly adapting the contact forces compared to position control methods.

An in-depth discussion of the current implementation is presented in the paper “Dynamic Walking on Compliant and Uneven Terrain using DCM and Passivity-based Whole-body Control”.

[ DLR RMC ]

Tsuki is a ROS-enabled quadruped designed and built by Lingkang Zhang. It’s completely position controlled, with no contact sensors on the feet, or even an IMU.

It can even do flips!

[ Tsuki ]

Thanks Lingkang!

TRI CEO Dr. Gill Pratt presents TRI’s contributions to Toyota’s New “LQ” Concept Vehicle, which includes onboard artificial intelligence agent “Yui” and LQ’s automated driving technology.

[ TRI ]

Hooman Hedayati wrote in to share some work (presented at HRI this year) on using augmented reality to make drone teleoperation more intuitive. Get a virtual drone to do what you want first, and then the real drone will follow.

[ Paper ]

Thanks Hooman!

You can now order a Sphero RVR for $250. It’s very much not spherical, but it does other stuff, so we’ll give it a pass.

[ Sphero ]

The AI Gamer Q56 robot is an expert at whatever this game is, using AI plus actual physical control manipulation. Watch until the end!

[ Bandai Namco ]

We present a swarm of autonomous flying robots for the exploration of unknown environments. The tiny robots do not make maps of their environment, but deal with obstacles on the fly. In robotics, the algorithms for navigating like this are called “bug algorithms”. The navigation of the robots involves them first flying away from the base station and later finding their way back with the help of a wireless beacon.

[ MAVLab ]

Okay Soft Robotics you successfully and disgustingly convinced us that vacuum grippers should never be used for food handling. Yuck!

[ Soft Robotics ]

Beyond the asteroid belt are “fossils of planet formation” known as the Trojan asteroids. These primitive bodies share Jupiter’s orbit in two vast swarms, and may hold clues to the formation and evolution of our solar system. Now, NASA is preparing to explore the Trojan asteroids for the first time. A mission called Lucy will launch in 2021 and visit seven asteroids over the course of twelve years – one in the main belt and six in Jupiter’s Trojan swarms.

[ NASA ]

I’m not all that impressed by this concept car from Lexus except that it includes some kind of super-thin autonomous luggage-carrying drone.

The LF-30 Electrified also carries the ‘Lexus Airporter’ drone-technology support vehicle. Using autonomous control, the Lexus Airporter is capable of such tasks as independently transporting baggage from a household doorstep to the vehicle’s luggage area.

[ Lexus ]

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

Tech United Eindhoven is looking good for RoboCup@Home 2020.

[ Tech United ]

Penn engineers participated in the Subterranean (SubT) Challenge hosted by DARPA, the Defense Advanced Research Projects Agency. The goal of this Challenge is for teams to develop automated systems that can work in underground environments so they could be deployed after natural disasters or on dangerous search-and-rescue missions.

[ Team PLUTO ]

It’s BeetleCam vs White Rhinos in Kenya, and the White Rhinos don’t seem to mind at all.

[ Will Burrard-Lucas ] Continue reading

Posted in Human Robots

#436094 Agility Robotics Unveils Upgraded Digit ...

Last time we saw Agility Robotics’ Digit biped, it was picking up a box from a Ford delivery van and autonomously dropping it off on a porch, while at the same time managing to not trip over stairs, grass, or small children. As a demo, it was pretty impressive, but of course there’s an enormous gap between making a video of a robot doing a successful autonomous delivery and letting that robot out into the semi-structured world and expecting it to reliably do a good job.

Agility Robotics is aware of this, of course, and over the last six months they’ve been making substantial improvements to Digit to make it more capable and robust. A new video posted today shows what’s new with the latest version of Digit—Digit v2.

We appreciate Agility Robotics foregoing music in the video, which lets us hear exactly what Digit sounds like in operation. The most noticeable changes are in Digit’s feet, torso, and arms, and I was particularly impressed to see Digit reposition the box on the table before grasping it to make sure that it could get a good grip. Otherwise, it’s hard to tell what’s new, so we asked Agility Robotics’ CEO Damion Shelton to get us up to speed.

IEEE Spectrum: Can you summarize the differences between Digit v1 and v2? We’re particularly interested in the new feet.

Damion Shelton: The feet now include a roll degree of freedom, so that Digit can resist lateral forces without needing to side step. This allows Digit v2 to balance on one foot statically, which Digit v1 and Cassie could not do. The larger foot also dramatically decreases load per unit area, for improved performance on very soft surfaces like sand.

The perception stack includes four Intel RealSense cameras used for obstacle detection and pick/place, plus the lidar. In Digit v1, the perception systems were brought up incrementally over time for development purposes. In Digit v2, all perception systems are active from the beginning and tied to a dedicated computer. The perception system is used for a number of additional things beyond manipulation, which we’ll start to show in the next few weeks.

The torso changes are a bit more behind-the-scenes. All of the electronics in it are now fully custom, thermally managed, and environmentally sealed. We’ve also included power and ethernet to a payload bay that can fit either a NUC or Jetson module (or other customer payload).

What exactly are we seeing in the video in terms of Digit’s autonomous capabilities?

At the moment this is a demonstration of shared autonomy. Picking and placing the box is fully autonomous. Balance and footstep placement are fully autonomous, but guidance and obstacle avoidance are under local teleop. It’s no longer a radio controller as in early videos; we’re not ready to reveal our current controller design but it’s a reasonably significant upgrade. This is v2 hardware, so there’s one more full version in development prior to the 2020 launch, which will expand the autonomy envelope significantly.

“This is a demonstration of shared autonomy. Picking and placing the box is fully autonomous. Balance and footstep placement are fully autonomous, but guidance and obstacle avoidance are under local teleop. It’s no longer a radio controller as in early videos; we’re not ready to reveal our current controller design but it’s a reasonably significant upgrade”
—Damion Shelton, Agility Robotics

What are some unique features or capabilities of Digit v2 that might not be obvious from the video?

For those who’ve used Cassie robots, the power-up and power-down ergonomics are a lot more user friendly. Digit can be disassembled into carry-on luggage sized pieces (give or take) in under 5 minutes for easy transport. The battery charges in-situ using a normal laptop-style charger.

I’m curious about this “stompy” sort of gait that we see in Digit and many other bipedal robots—are there significant challenges or drawbacks to implementing a more human-like (and presumably quieter) heel-toe gait?

There are no drawbacks other than increased complexity in controls and foot design. With Digit v2, the larger surface area helps with the noise, and v2 has similar or better passive-dynamic performance as compared to Cassie or Digit v1. The foot design is brand new, and new behaviors like heel-toe are an active area of development.

How close is Digit v2 to a system that you’d be comfortable operating commercially?

We’re on track for a 2020 launch for Digit v3. Changes from v2 to v3 are mostly bug-fix in nature, with a few regulatory upgrades like full battery certification. Safety is a major concern for us, and we have launch customers that will be operating Digit in a safe environment, with a phased approach to relaxing operational constraints. Digit operates almost exclusively under force control (as with cobots more generally), but at the moment we’ll err on the side of caution during operation until we have the stats to back up safety and reliability. The legged robot industry has too much potential for us to screw it up by behaving irresponsibly.

It will be a while before Digit (or any other humanoid robot) is operating fully autonomously in crowds of people, but there are so many large market opportunities (think indoor factory/warehouse environments) to address prior to that point that we expect to mature the operational safety side of things well in advance of having saturated the more robot-tolerant markets.

[ Agility Robotics ] Continue reading

Posted in Human Robots

#435806 Boston Dynamics’ Spot Robot Dog ...

Boston Dynamics is announcing this morning that Spot, its versatile quadruped robot, is now for sale. The machine’s animal-like behavior regularly electrifies crowds at tech conferences, and like other Boston Dynamics’ robots, Spot is a YouTube sensation whose videos amass millions of views.

Now anyone interested in buying a Spot—or a pack of them—can go to the company’s website and submit an order form. But don’t pull out your credit card just yet. Spot may cost as much as a luxury car, and it is not really available to consumers. The initial sale, described as an “early adopter program,” is targeting businesses. Boston Dynamics wants to find customers in select industries and help them deploy Spots in real-world scenarios.

“What we’re doing is the productization of Spot,” Boston Dynamics CEO Marc Raibert tells IEEE Spectrum. “It’s really a milestone for us going from robots that work in the lab to these that are hardened for work out in the field.”

Boston Dynamics has always been a secretive company, but last month, in preparation for launching Spot (formerly SpotMini), it allowed our photographers into its headquarters in Waltham, Mass., for a special shoot. In that session, we captured Spot and also Atlas—the company’s highly dynamic humanoid—in action, walking, climbing, and jumping.

You can see Spot’s photo interactives on our Robots Guide. (The Atlas interactives will appear in coming weeks.)

Gif: Bob O’Connor/Robots.ieee.org

And if you’re in the market for a robot dog, here’s everything we know about Boston Dynamics’ plans for Spot.

Who can buy a Spot?
If you’re interested in one, you should go to Boston Dynamics’ website and take a look at the information the company requires from potential buyers. Again, the focus is on businesses. Boston Dynamics says it wants to get Spots out to initial customers that “either have a compelling use case or a development team that we believe can do something really interesting with the robot,” says VP of business development Michael Perry. “Just because of the scarcity of the robots that we have, we’re going to have to be selective about which partners we start working together with.”

What can Spot do?
As you’ve probably seen on the YouTube videos, Spot can walk, trot, avoid obstacles, climb stairs, and much more. The robot’s hardware is almost completely custom, with powerful compute boards for control, and five sensor modules located on every side of Spot’s body, allowing it to survey the space around itself from any direction. The legs are powered by 12 custom motors with a reduction, with a top speed of 1.6 meters per second. The robot can operate for 90 minutes on a charge. In addition to the basic configuration, you can integrate up to 14 kilograms of extra hardware to a payload interface. Among the payload packages Boston Dynamics plans to offer are a 6 degrees-of-freedom arm, a version of which can be seen in some of the YouTube videos, and a ring of cameras called SpotCam that could be used to create Street View–type images inside buildings.

Image: Boston Dynamics

How do you control Spot?
Learning to drive the robot using its gaming-style controller “takes 15 seconds,” says CEO Marc Raibert. He explains that while teleoperating Spot, you may not realize that the robot is doing a lot of the work. “You don’t really see what that is like until you’re operating the joystick and you go over a box and you don’t have to do anything,” he says. “You’re practically just thinking about what you want to do and the robot takes care of everything.” The control methods have evolved significantly since the company’s first quadruped robots, machines like BigDog and LS3. “The control in those days was much more monolithic, and now we have what we call a sequential composition controller,” Raibert says, “which lets the system have control of the dynamics in a much broader variety of situations.” That means that every time one of Spot’s feet touches or doesn’t touch the ground, this different state of the body affects the basic physical behavior of the robot, and the controller adjusts accordingly. “Our controller is designed to understand what that state is and have different controls depending upon the case,” he says.

How much does Spot cost?
Boston Dynamics would not give us specific details about pricing, saying only that potential customers should contact them for a quote and that there is going to be a leasing option. It’s understandable: As with any expensive and complex product, prices can vary on a case by case basis and depend on factors such as configuration, availability, level of support, and so forth. When we pressed the company for at least an approximate base price, Perry answered: “Our general guidance is that the total cost of the early adopter program lease will be less than the price of a car—but how nice a car will depend on the number of Spots leased and how long the customer will be leasing the robot.”

Can Spot do mapping and SLAM out of the box?
The robot’s perception system includes cameras and 3D sensors (there is no lidar), used to avoid obstacles and sense the terrain so it can climb stairs and walk over rubble. It’s also used to create 3D maps. According to Boston Dynamics, the first software release will offer just teleoperation. But a second release, to be available in the next few weeks, will enable more autonomous behaviors. For example, it will be able to do mapping and autonomous navigation—similar to what the company demonstrated in a video last year, showing how you can drive the robot through an environment, create a 3D point cloud of the environment, and then set waypoints within that map for Spot to go out and execute that mission. For customers that have their own autonomy stack and are interested in using those on Spot, Boston Dynamics made it “as plug and play as possible in terms of how third-party software integrates into Spot’s system,” Perry says. This is done mainly via an API.

How does Spot’s API works?
Boston Dynamics built an API so that customers can create application-level products with Spot without having to deal with low-level control processes. “Rather than going and building joint-level kinematic access to the robot,” Perry explains, “we created a high-level API and SDK that allows people who are used to Web app development or development of missions for drones to use that same scope, and they’ll be able to build applications for Spot.”

What applications should we see first?
Boston Dynamics envisions Spot as a platform: a versatile mobile robot that companies can use to build applications based on their needs. What types of applications? The company says the best way to find out is to put Spot in the hands of as many users as possible and let them develop the applications. Some possibilities include performing remote data collection and light manipulation in construction sites; monitoring sensors and infrastructure at oil and gas sites; and carrying out dangerous missions such as bomb disposal and hazmat inspections. There are also other promising areas such as security, package delivery, and even entertainment. “We have some initial guesses about which markets could benefit most from this technology, and we’ve been engaging with customers doing proof-of-concept trials,” Perry says. “But at the end of the day, that value story is really going to be determined by people going out and exploring and pushing the limits of the robot.”

Photo: Bob O'Connor

How many Spots have been produced?
Last June, Boston Dynamics said it was planning to build about a hundred Spots by the end of the year, eventually ramping up production to a thousand units per year by the middle of this year. The company admits that it is not quite there yet. It has built close to a hundred beta units, which it has used to test and refine the final design. This version is now being mass manufactured, but the company is still “in the early tens of robots,” Perry says.

How did Boston Dynamics test Spot?

The company has tested the robots during proof-of-concept trials with customers, and at least one is already using Spot to survey construction sites. The company has also done reliability tests at its facility in Waltham, Mass. “We drive around, not quite day and night, but hundreds of miles a week, so that we can collect reliability data and find bugs,” Raibert says.

What about competitors?
In recent years, there’s been a proliferation of quadruped robots that will compete in the same space as Spot. The most prominent of these is ANYmal, from ANYbotics, a Swiss company that spun out of ETH Zurich. Other quadrupeds include Vision from Ghost Robotics, used by one of the teams in the DARPA Subterranean Challenge; and Laikago and Aliengo from Unitree Robotics, a Chinese startup. Raibert views the competition as a positive thing. “We’re excited to see all these companies out there helping validate the space,” he says. “I think we’re more in competition with finding the right need [that robots can satisfy] than we are with the other people building the robots at this point.”

Why is Boston Dynamics selling Spot now?
Boston Dynamics has long been an R&D-centric firm, with most of its early funding coming from military programs, but it says commercializing robots has always been a goal. Productizing its machines probably accelerated when the company was acquired by Google’s parent company, Alphabet, which had an ambitious (and now apparently very dead) robotics program. The commercial focus likely continued after Alphabet sold Boston Dynamics to SoftBank, whose famed CEO, Masayoshi Son, is known for his love of robots—and profits.

Which should I buy, Spot or Aibo?
Don’t laugh. We’ve gotten emails from individuals interested in purchasing a Spot for personal use after seeing our stories on the robot. Alas, Spot is not a bigger, fancier Aibo pet robot. It’s an expensive, industrial-grade machine that requires development and maintenance. If you’re maybe Jeff Bezos you could probably convince Boston Dynamics to sell you one, but otherwise the company will prioritize businesses.

What’s next for Boston Dynamics?
On the commercial side of things, other than Spot, Boston Dynamics is interested in the logistics space. Earlier this year it announced the acquisition of Kinema Systems, a startup that had developed vision sensors and deep-learning software to enable industrial robot arms to locate and move boxes. There’s also Handle, the mobile robot on whegs (wheels + legs), that can pick up and move packages. Boston Dynamics is hiring both in Waltham, Mass., and Mountain View, Calif., where Kinema was located.

Okay, can I watch a cool video now?
During our visit to Boston Dynamics’ headquarters last month, we saw Atlas and Spot performing some cool new tricks that we unfortunately are not allowed to tell you about. We hope that, although the company is putting a lot of energy and resources into its commercial programs, Boston Dynamics will still find plenty of time to improve its robots, build new ones, and of course, keep making videos. [Update: The company has just released a new Spot video, which we’ve embedded at the top of the post.][Update 2: We should have known. Boston Dynamics sure knows how to create buzz for itself: It has just released a second video, this time of Atlas doing some of those tricks we saw during our visit and couldn’t tell you about. Enjoy!]

[ Boston Dynamics ] Continue reading

Posted in Human Robots