Tag Archives: Visual

#436263 Skydio 2 Review: This Is the Drone You ...

Let me begin this review by saying that the Skydio 2 is one of the most impressive robots that I have ever seen. Over the last decade, I’ve spent enough time around robots to have a very good sense of what kinds of things are particularly challenging for them, and to set my expectations accordingly. Those expectations include things like “unstructured environments are basically impossible” and “full autonomy is impractically expensive” and “robot videos rarely reflect reality.”

Skydio’s newest drone is an exception to all of this. It’s able to fly autonomously at speed through complex environments in challenging real-world conditions in a way that’s completely effortless and stress-free for the end user, allowing you to capture the kind of video that would be otherwise impossible, even (I’m guessing) for professional drone pilots. When you see this technology in action, it’s (almost) indistinguishable from magic.

Skydio 2 Price
To be clear, the Skydio 2 is not without compromises, and the price of $999 (on pre-order with delivery of the next batch expected in spring of 2020) requires some justification. But the week I’ve had with this drone has left me feeling like its fundamental autonomous capability is so far beyond just about anything that I’ve ever experienced that I’m questioning why I would every fly anything else ever again.

We’ve written extensively about Skydio, beginning in early 2016 when the company posted a video of a prototype drone dodging trees while following a dude on a bike. Even three years ago, Skydio’s tech was way better than anything we’d seen outside of a research lab, and in early 2018, they introduced their first consumer product, the Skydio R1. A little over a year later, Skydio has introduced the Skydio 2, which is smaller, smarter, and much more affordable. Here’s an overview video just to get you caught up:

Skydio sent me a Skydio 2 review unit last week, and while I’m reasonably experienced with drones in general, this is the first time I’ve tried a Skydio drone in person. I had a pretty good idea what to expect, and I was absolutely blown away. Like, I was giggling to myself while running through the woods as the drone zoomed around, deftly avoiding trees and keeping me in sight. Robots aren’t supposed to be this good.

A week is really not enough time to explore everything that the Skydio can do, especially Thanksgiving week in Washington, D.C. (a no-fly zone) in early winter. But I found a nearby state park in which I could legally and safely fly the drone, and I did my best to put the Skydio 2 through its paces.

Note: Throughout this review, we’ve got a bunch of GIFs to help illustrate different features of the drone. To fit them all in, these GIFs had to be heavily compressed. Underneath each GIF is a timestamped link to this YouTube video (also available at the bottom of the post), which you can click on to see the an extended cut of the original 4K 30 fps footage. And there’s a bunch of interesting extra video in there as well.

Skydio 2 Specs

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2 is primarily made out of magnesium, which (while light) is both heavier and more rigid and durable than plastic. The offset props (the back pair are above the body, and the front pair are below) are necessary to maintain the field of view of the navigation cameras.

The Skydio 2 both looks and feels like a well-designed and carefully thought-out drone. It’s solid, and a little on the heavy side as far as drones go—it’s primarily made out of magnesium, which (while light) is both heavier and more rigid and durable than plastic. The blue and black color scheme is far more attractive than you typically see with drones.

Photo: Evan Ackerman/IEEE Spectrum

To detect and avoid obstacles, the Skydio 2 uses an array of six 4K hemispherical cameras that feed data into an NVIDIA Jetson TX2 at 30 fps, with the drone processing a million points in 3D space per second to plan the safest path.

The Skydio 2 is built around an array of six hemispherical obstacle-avoidance cameras and the NVIDIA Jetson TX2 computing module that they’re connected to. This defines the placement of the gimbal, the motors and props, and the battery, since all of this stuff has to be as much as possible out of the view of the cameras in order for the drone to effectively avoid obstacles in any direction.

Without the bottom-mounted battery attached, the drone is quite flat. The offset props (the back pair are above the body, and the front pair are below) are necessary to maintain the field of view of the obstacle-avoidance cameras. These hemispherical cameras are on the end of each of the prop arms as well as above and below the body of the drone. They look awfully exposed, even though each is protected from ground contact by a little fin. You need to make sure these cameras are clean and smudge-free, and Skydio includes a cleaning cloth for this purpose. Underneath the drone there are slots for microSD cards, one for recording from the camera and a second one that the drone uses to store data. The attention to detail extends to the SD card insertion, which has a sloped channel that guides the card securely into its slot.

Once you snap the battery in, the drone goes from looking streamlined to looking a little chubby. Relative to other drones, the battery almost seems like an afterthought, like Skydio designed the drone and then remembered, “oops we have to add a battery somewhere, let’s just kludge it onto the bottom.” But again, the reason for this is to leave room inside the body for the NVIDIA TX2, while making sure that the battery stays out of view of the obstacle avoidance cameras.

The magnetic latching system for the battery is both solid and satisfying. I’m not sure why it’s necessary, strictly speaking, but I do like it, and it doesn’t seem like the battery will fly off even during the most aggressive maneuvers. Each battery includes an LED array that will display its charge level in 25 percent increments, as well as a button that you push to turn the drone on and off. Charging takes place via a USB-C port in the top of the drone, which I don’t like, because it means that the batteries can’t be charged on their own (like the Parrot Anafi’s battery), and that you can’t charge one battery while flying with another, like basically every other drone ever. A separate battery charger that will charge two at once is available from Skydio for an eyebrow-raising $129.

I appreciate that all of Skydio’s stuff (batteries, controller, and beacon) charges via USB-C, though. The included USB-C adapter with its beefy cable will output at up to 65 watts, which’ll charge a mostly depleted battery in under an hour. The drone turns itself on while charging, which seems unnecessary.

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2 is not foldable, making it not nearly as easy to transport as some other drones. But it does come with a nice case that mitigates this issue somewhat, and the drone plus two batteries end up as a passably flat package about the size of a laptop case.

The most obvious compromise that Skydio made with the Skydio 2 is that the drone is not foldable. Skydio CEO Adam Bry told us that adding folding joints to the arms of the Skydio 2 would have made calibrating all six cameras a nightmare and significantly impacted performance. This makes complete sense, of course, but it does mean that the Skydio 2 is not nearly as easy to transport as some other drones.

Photo: Evan Ackerman/IEEE Spectrum

Folded and unfolded: The Skydio 2 compared to the Parrot Anafi (upper left) and the DJI Mavic Pro (upper right).

The Skydio 2 does come with a very nice case that mitigates this issue somewhat, and the drone plus two batteries end up as a passably flat package about the size of a laptop case. Still, it’s just not as convenient to toss into a backpack as my Anafi, although the Mavic Mini might be even more portable.

Photo: Evan Ackerman/IEEE Spectrum

While the Skydio 2’s case is relatively compact, the non-foldable drone is overall a significantly larger package than the Parrot Anafi.

The design of the drone leads to some other compromises as well. Since landing gear would, I assume, occlude the camera system, the drone lands directly on the bottom of its battery pack, which has a slightly rubberized pad about the size of a playing card. This does’t feel particularly stable unless you end up on a very flat surface, and made me concerned for the exposed cameras underneath the drone as well as the lower set of props. I’d recommend hand takeoffs and landings—more on those later.

Skydio 2 Camera System

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2’s primary camera is a Sony IMX577 1/2.3″ 12.3-megapixel CMOS sensor. It’s mounted to a three-axis gimbal and records 4K video at 60 fps, or 1080p video at 120 fps.

The Skydio 2 comes with a three-axis gimbal supporting a 12-megapixel camera, just enough to record 4K video at 60 fps, or 1080p video at 120 fps. Skydio has provided plenty of evidence that its imaging system is at least as good if not better than other drone cameras. Tested against my Mavic Pro and Parrot Anafi, I found no reason to doubt that. To be clear, I didn’t do exhaustive pixel-peeping comparisons between them, you’re just getting my subjective opinion that the Skydio 2 has a totally decent camera that you won’t be disappointed with. I will say that I found the HDR photo function to be not all that great under the few situations in which I tested it—after looking at a few muddy sunset shots, I turned it off and was much happier.

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2’s 12-megapixel camera is solid, although we weren’t impressed with the HDR option.

The video stabilization is fantastic, to the point where watching the video footage can be underwhelming because it doesn’t reflect the motion of the drone. I almost wish there was a way to change to unstabilized (or less-stabilized) video so that the viewer could get a little more of a wild ride. Or, ideally, there’d be a way for the drone to provide you with a visualization of what it was doing using the data collected by its cameras. That’s probably wishful thinking, though. The drone itself doesn’t record audio because all you’d get would be an annoying buzz, but the app does record audio, so the audio from your phone gets combined with the drone video. Don’t expect great quality, but it’s better than nothing.

Skydio 2 App
The app is very simple compared to every other drone app I’ve tried, and that’s a good thing. Here’s what it looks like:

Image: Skydio

Trackable subjects get a blue “+” sign over them, and if you tap them, the “+” turns into a spinny blue circle. Once you’ve got a subject selected, you can choose from a variety of cinematic skills that the drone will execute while following you.

You get the controls that you need and the information that you need, and nothing else. Manual flight with the on-screen buttons works adequately, and the double-tap to fly function on the phone works surprisingly well, making it easy to direct the drone to a particular spot above the ground.

The settings menus are limited but functional, allowing you to change settings for the camera and a few basic tweaks for controlling the drone. One unique setting to the Skydio 2 is the height floor—since the drone only avoids static obstacles, you can set it to maintain a height of at least 8 feet above the ground while flying autonomously to make sure that if you’re flying around other people, it won’t run into anyone who isn’t absurdly tall and therefore asking for it.

Trackable subjects get a blue “+” sign over them in the app, and if you tap them, the “+” turns into a spinny blue circle. Once you’ve got a subject selected, you can choose from a variety of cinematic skills that the drone will execute while following you, and in addition, you can select “one-shot” skills that involve the drone performing a specific maneuver before returning to the previously selected cinematic skill. For example, you can tell the drone to orbit around you, and then do a “rocket” one-shot where it’ll fly straight up above you (recording the whole time, of course), before returning to its orbiting.

After you’re done flying, you can scroll through your videos and easily clip out excerpts from them and save them to your phone for sharing. Again, it’s a fairly simple interface without a lot of options. You could call it limited, I guess, but I appreciate that it just does a few things that you care about and otherwise doesn’t clutter itself up.

The real limitation of the app is that it uses Wi-Fi to connect to the Skydio 2, which restricts the range. To fly much beyond a hundred meters or so, you’ll need to use the controller or beacon instead.

Skydio 2 Controller and Beacon

Photo: Evan Ackerman/IEEE Spectrum

While the Skydio 2 controller provides a better hands-on flight experience than with the phone, plus an extended range of up to 3.5 km, more experienced pilots may find manual control a bit frustrating, because the underlying autonomy will supersede your maneuvers when you start getting close to objects.

I was looking forward to using the controller, because with every other drone I’ve had, the precision that a physically controller provides is, I find, mandatory for a good flying experience and to get the photos and videos that you want. With Skydio 2, that’s all out the window. It’s not that the controller is useless or anything, it’s just that because the drone tracks you and avoids obstacles on its own, that level of control precision becomes largely unnecessary.

The controller itself is perfectly fine. It’s a rebranded Parrot Skycontroller3, which is the same as the one that you get with a Parrot Anafi. It’s too bad that the sticks don’t unscrew to make it a little more portable, and overall it’s functional rather than fancy, but it feels good to use and includes a sizeable antenna that makes a significant difference to the range that you get (up to 3.5 kilometers).

You definitely get a better hands-on flight experience with the controller than with the phone, so if you want to (say) zip the drone around some big open space for fun, it’s good for that. And it’s nice to be able to hand the controller to someone who’s never flown a drone before and let them take it for a spin without freaking out about them crashing it the whole time. For more experienced pilots, though, the controller is ultimately just a bit frustrating, because the underlying autonomy will supersede your control when you start getting close to objects, which (again) limits how useful the controller is relative to your phone.

I do still prefer the controller over the phone, but I’m not sure that it’s worth the extra $150, unless you plan to fly the Skydio 2 at very long distances or primarily in manual mode. And honestly, if either of those two things are your top priority, the Skydio 2 is probably not the drone for you.

Photo: Evan Ackerman/IEEE Spectrum

The Skydio 2 beacon uses GPS tracking to help the drone follow you, extending range up to 1.5 km. You can also fly the with the beacon alone, no phone necessary.

The purpose of the beacon, according to Skydio, is to give the drone a way of tracking you if it can’t see you, which can happen, albeit infrequently. My initial impression of the beacon was that it was primarily useful as a range-extending bridge between my phone and the drone. But I accidentally left my phone at home one day (oops) and had to fly the drone with only the beacon, and it was a surprisingly decent experience. The beacon allows for full manual control of a sort—you can tap different buttons to rotate, fly forward, and ascend or descend. This is sufficient for takeoff, landing, to make sure that the drone is looking at you when you engage visual tracking, and to rescue it if it gets trapped somewhere.

The rest of the beacon’s control functions are centered around a few different tracking modes, and with these, it works just about as well as your phone. You have fewer options overall, but all the basic stuff is there with just a few intuitive button clicks, including tracking range and angle. If you’re willing to deal with this relatively minor compromise, it’s nice to not have your phone available for other things rather than being monopolized by the drone.

Skydio 2 In Flight

GIF: Evan Ackerman/IEEE Spectrum

Hand takeoffs are simple and reliable.
Click here for a full resolution clip.

Starting up the Skydio 2 doesn’t require any kind of unusual calibration steps or anything like that. It prefers to be kept still, but you can start it up while holding it, it’ll just take a few seconds longer to tell you that it’s ready to go. While the drone will launch from any flat surface with significant clearance around it (it’ll tell you if it needs more room), the small footprint of the battery means that I was more comfortable hand launching it. This is not a “throw” launch; you just let the drone rest on your palm, tell it to take off, and then stay still while it gets its motors going and then gently lifts off. The lift off is so gentle that you have to be careful not to pull your hand away too soon—I did that once and the drone, being not quite ready, dropped towards the ground, but managed to recover without much drama.

GIF: Evan Ackerman/IEEE Spectrum

Hand landings always look scary, but the Skydio 2 is incredibly gentle. After trying this once, it became the only way I ever landed the drone.
Click here for a full resolution clip.

Catching the drone for landing is perhaps very slightly more dangerous, but not any more difficult. You put the drone above and in front of you facing away, tell it to land in the app or with the beacon, and then put your hand underneath it to grasp it as it slowly descends. It settles delicately and promptly turns itself off. Every drone should land this way. The battery pack provides a good place to grip, although you do have to be mindful of the forward set of props, which (since they’re the pair that are beneath the body of drone) are quite close to your fingers. You’ll certainly be mindful after you catch a blade with your fingers once. Which I did. For the purposes of this review and totally not by accident. No damage, for the record.

Photo: Evan Ackerman/IEEE Spectrum

You won’t be disappointed with the Skydio 2’s in-flight performance, unless you’re looking for a dedicated racing drone.

In normal flight, the Skydio 2 performs as well as you’d expect. It’s stable and manages light to moderate wind without any problems, although I did notice some occasional lateral drifting when the drone should have been in a stationary hover. While the controller gains are adjustable, the Skydio 2 isn’t quite as aggressive in flight as my Mavic Pro on Sport Mode, but again, if you’re looking for a high-speed drone, that’s really not what the Skydio is all about.

The Skydio 2 is substantially louder than my Anafi, although the Anafi is notably quiet for a drone. It’s not annoying to hear (not a high-pitched whine), but you can hear it from a ways away, and farther away than my Mavic Pro. I’m not sure whether that’s because of the absolute volume or the volume plus the pitch. In some ways, this is a feature, since you can hear the drone following you even if you’re not looking at it, you just need to be aware of the noise it makes when you’re flying it around people.

Obstacle Avoidance
The primary reason Skydio 2 is the drone that you want to fly is because of its autonomous subject tracking and obstacle avoidance. Skydio’s PR videos make this capability look almost too good, and since I hadn’t tried out one of their drones before, the first thing I did with it was exactly what you’d expect: attempt to fly it directly into the nearest tree.

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 deftly slides around trees and branches. The control inputs here were simple “forward” or “turn,” all obstacle avoidance is autonomous.
Click here for a full resolution clip.

And it just won’t do it. It slows down a bit, and then slides right around one tree after another, going over and under and around branches. I pointed the drone into a forest and just held down “forward” and away it went, without any fuss, effortlessly ducking and weaving its way around. Of course, it wasn’t effortless at all—six 4K cameras were feeding data into the NVIDIA TX2 at 30 fps, and the drone was processing a million points in 3D space per second to plan the safest path while simultaneously taking into account where I wanted it to go. I spent about 10 more minutes doing my level best to crash the drone into anything at all using a flying technique probably best described as “reckless,” but the drone was utterly unfazed. It’s incredible.

What knocked my socks off was telling the drone to pass through treetops—in the clip below, I’m just telling the drone to fly straight down. Watch as it weaves its way through gaps between the branches:

GIF: Evan Ackerman/IEEE Spectrum

The result of parking the Skydio 2 above some trees and holding “down” on the controller is this impressive fully autonomous descent through the branches.
Click here for a full resolution clip.

Here’s one more example, where I sent the drone across a lake and started poking around in a tree. Sometimes the Skydio 2 isn’t sure where you want it to go, and you have to give it a little bit of a nudge in a clear direction, but that’s it.

GIF: Evan Ackerman/IEEE Spectrum

In obstacle-heavy environments, the Skydio 2 prudently slows down, but it can pick its way through almost anything that it can see.
Click here for a full resolution clip.

It’s important to keep in mind that all of the Skydio 2’s intelligence is based on vision. It uses cameras to see the world, which means that it has similar challenges as your eyes do. Specifically, Skydio warns against flying in the following conditions:

Skydio 2 can’t see certain visually challenging obstacles. Do not fly around thin branches, telephone or power lines, ropes, netting, wires, chain link fencing or other objects less than ½ inch in diameter.
Do not fly around transparent surfaces like windows or reflective surfaces like mirrors greater than 60 cm wide.
When the sun is low on the horizon, it can temporarily blind Skydio 2’s cameras depending on the angle of flight. Your drone may be cautious or jerky when flying directly toward the sun.

Basically, if you’d have trouble seeing a thing, or seeing under some specific flight conditions, then the Skydio 2 almost certainly will also. It gets even more problematic when challenging obstacles are combined with challenging flight conditions, which is what I’m pretty sure led to the only near-crash I had with the drone. Here’s a video:

GIF: Evan Ackerman/IEEE Spectrum

Flying around very thin branches and into the sun can cause problems for the Skydio 2’s obstacle avoidance.
Click here for a full resolution clip.

I had the Skydio 2 set to follow me on my bike (more about following and tracking in a bit). It was mid afternoon, but since it’s late fall here in Washington, D.C., the sun doesn’t get much higher than 30 degrees above the horizon. Late fall also means that most of the deciduous trees have lost their leaves, and so there are a bunch of skinny branches all over the place. The drone was doing a pretty good job of following me along the road at a relatively slow speed, and then it clipped the branch that you can just barely see in the video above. It recovered in an acrobatic maneuver that has been mostly video-stabilized out, and resumed tracking me before I freaked and told it to land. You can see another example here, where the drone (again) clips a branch that has the sun behind it, and this clip shows me stopping my bike before the drone runs into another branch in a similar orientation. As the video shows, it’s very hard to see the branches until it’s too late.

As far as I can tell, the drone is no worse for wear from any of this, apart from a small nick in one of the props. But, this is a good illustration of a problematic situation for the Skydio 2: flying into a low sun angle around small bare branches. Should I not have been flying the drone in this situation? It’s hard to say. These probably qualify as “thin branches,” although there was plenty of room along with middle of the road. There is an open question with the Skydio 2 as to exactly how much responsibility the user should have about when and where it’s safe to fly—for branches, how thin is too thin? How low can the sun be? What if the branches are only kinda thin and the sun is only kinda low, but it’s also a little windy? Better to be safe than sorry, of course, but there’s really no way for the user (or the drone) to know what it can’t handle until it can’t handle it.

Edge cases like these aside, the obstacle avoidance just works. Even if you’re not deliberately trying to fly into branches, it’s keeping a lookout for you all the time, which means that flying the drone goes from somewhat stressful to just pure fun. I can’t emphasize enough how amazing it is to be able to fly without worrying about running into things, and how great it feels to be able to hand the controller to someone who’s never flown a drone before and say, with complete confidence, “go ahead, fly it around!”

Skydio 2 vs. DJI Mavic

Photo: Evan Ackerman/IEEE Spectrum

Both the Skydio 2 and many models of DJI’s Mavic use visual obstacle avoidance, but the Skydio 2 is so much more advanced that you can’t really compare the two systems.

It’s important to note that there’s a huge difference between the sort of obstacle avoidance that you get with a DJI Mavic, and the sort of obstacle avoidance that you get with the Skydio 2. The objective of the Mavic’s obstacle avoidance is really there to prevent you from accidentally running into things, and in that capacity, it usually works. But there are two things to keep in mind here—first, not running into things is not the same as avoiding things, because avoiding things means planning several steps ahead, not just one step.

Second, there’s the fact that the Mavic’s obstacle detection only works most of the time. Fundamentally, I don’t trust my Mavic Pro, because sometimes the safety system doesn’t kick in for whatever reason and the drone ends up alarmingly close to something. And that’s actually fine, because with the Mavic, I expect to be piloting it. It’s for this same reason that I don’t care that my Parrot Anafi doesn’t have obstacle avoidance at all: I’m piloting it anyway, and I’m a careful pilot, so it just doesn’t matter. The Skydio 2 is totally and completely different. It’s in a class by itself, and you can’t compare what it can do to what anything else out there right now. Period.

Skydio 2 Tracking
Skydio’s big selling point on the Skydio 2 is that it’ll autonomously track you while avoiding obstacles. It does this visually, by watching where you go, predicting your future motion, and then planning its own motion to keep you in frame. The works better than you might expect, in that it’s really very good at not losing you. Obviously, the drone prioritizes not running into stuff over tracking you, which means that it may not always be where you feel like it should be. It’s probably trying to get there, but in obstacle dense environments, it can take some creative paths.

Having said that, I found it to be very consistent with keeping me in the frame, and I only managed to lose it when changing direction while fully occluded by an obstacle, or while it was executing an avoidance maneuver that was more dynamic than normal. If you deliberately try to hide from the drone it’s not that hard to do so if there are enough obstacles around, but I didn’t find the tracking to be something that I had to worry about it most cases. When tracking does fail and you’re not using the beacon, the drone will come to a hover. It won’t try and find you, but it will reacquire you if you get back into its field of view.

The Skydio 2 had no problem tracking me running through fairly dense trees:

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 had no problem chasing me around through these trees, even while I was asking it to continually change its tracking angle.
Click here for a full resolution clip.

It also managed to keep up with me as I rode my bike along a tree-lined road:

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 is easily fast enough to keep up with me on a bike, even while avoiding tree branches.
Click here for a full resolution clip.

It lost me when I asked it to follow very close behind me as I wove through some particularly branch-y trees, but it fails more or less gracefully by just sort of nope-ing out of situations when they start to get bad and coming to a hover somewhere safe.

GIF: Evan Ackerman/IEEE Spectrum

The Skydio 2 knows better than to put itself into situations that it can’t handle, and will bail to a safe spot if things get too complicated.
Click here for a full resolution clip.

After a few days of playing with the drone, I started to get to the point where I could set it to track me and then just forget about it while I rode my bike or whatever, as opposed to constantly turning around to make sure it was still behind me, which is what I was doing initially. It’s a level of trust that I don’t think would be possible with any other drone.

Should You Buy a Skydio 2?

Photo: Evan Ackerman/IEEE Spectrum

We think the Skydio 2 is fun and relaxing to fly, with unique autonomous intelligence that makes it worth the cost.

In case I haven’t said it often enough in this review, the Skydio 2 is an incredible piece of technology. As far as I know (as a robotics journalist, mind you), this represents the state of the art in commercial drone autonomy, and quite possibly the state of the art in drone autonomy, period. And it’s available for $999, which is expensive, but less money than a Mavic Pro 2. If you’re interested in a new drone, you should absolutely consider the Skydio 2.

There are some things to keep in mind—battery life is a solid but not stellar 20 minutes. Extra batteries are expensive at $99 each (the base kit includes just one). The controller and the beacon are also expensive, at $150 each. And while I think the Skydio 2 is definitely the drone you want to fly, it may not be the drone you want to travel with, since it’s bulky compared to other options.

But there’s no denying the fact that the experience is uniquely magical. Once you’ve flown the Skydio 2, you won’t want to fly anything else. This drone makes it possible to get pictures and videos that would be otherwise impossible, and you can do it completely on your own. You can trust the drone to do what it promises, as long as you’re mindful of some basic and common sense safety guidelines. And we’ve been told that the drone is only going to get smarter and more capable over time.

If you buy a Skydio 2, it comes with the following warranty from Skydio:

“If you’re operating your Skydio 2 within our Safe Flight guidelines, and it crashes, we’ll repair or replace it for free.”

Skydio trusts their drone to go out into a chaotic and unstructured world and dodge just about anything that comes its way. And after a week with this drone, I can see how they’re able to offer this kind of guarantee. This is the kind of autonomy that robots have been promising for years, and the Skydio 2 makes it real.

Detailed technical specifications are available on Skydio’s website, and if you have any questions, post a comment—we’ve got this drone for a little while longer, and I’d be happy to try out (nearly) anything with it.

Skydio 2 Review Video Highlights
This video is about 7 minutes of 4K, 30 fps footage directly from the Skydio 2. The only editing I did was cutting clips together, no stabilization or color correcting or anything like that. The drone will record in 4K 60 fps, so it gets smoother than this, but I, er, forgot to change the setting.

[ Skydio ] Continue reading

Posted in Human Robots

#436188 The Blogger Behind “AI ...

Sure, artificial intelligence is transforming the world’s societies and economies—but can an AI come up with plausible ideas for a Halloween costume?

Janelle Shane has been asking such probing questions since she started her AI Weirdness blog in 2016. She specializes in training neural networks (which underpin most of today’s machine learning techniques) on quirky data sets such as compilations of knitting instructions, ice cream flavors, and names of paint colors. Then she asks the neural net to generate its own contributions to these categories—and hilarity ensues. AI is not likely to disrupt the paint industry with names like “Ronching Blue,” “Dorkwood,” and “Turdly.”

Shane’s antics have a serious purpose. She aims to illustrate the serious limitations of today’s AI, and to counteract the prevailing narrative that describes AI as well on its way to superintelligence and complete human domination. “The danger of AI is not that it’s too smart,” Shane writes in her new book, “but that it’s not smart enough.”

The book, which came out on Tuesday, is called You Look Like a Thing and I Love You. It takes its odd title from a list of AI-generated pick-up lines, all of which would at least get a person’s attention if shouted, preferably by a robot, in a crowded bar. Shane’s book is shot through with her trademark absurdist humor, but it also contains real explanations of machine learning concepts and techniques. It’s a painless way to take AI 101.

She spoke with IEEE Spectrum about the perils of placing too much trust in AI systems, the strange AI phenomenon of “giraffing,” and her next potential Halloween costume.

Janelle Shane on . . .

The un-delicious origin of her blog
“The narrower the problem, the smarter the AI will seem”
Why overestimating AI is dangerous
Giraffing!
Machine and human creativity

The un-delicious origin of her blog IEEE Spectrum: You studied electrical engineering as an undergrad, then got a master’s degree in physics. How did that lead to you becoming the comedian of AI?
Janelle Shane: I’ve been interested in machine learning since freshman year of college. During orientation at Michigan State, a professor who worked on evolutionary algorithms gave a talk about his work. It was full of the most interesting anecdotes–some of which I’ve used in my book. He told an anecdote about people setting up a machine learning algorithm to do lens design, and the algorithm did end up designing an optical system that works… except one of the lenses was 50 feet thick, because they didn’t specify that it couldn’t do that.
I started working in his lab on optics, doing ultra-short laser pulse work. I ended up doing a lot more optics than machine learning, but I always found it interesting. One day I came across a list of recipes that someone had generated using a neural net, and I thought it was hilarious and remembered why I thought machine learning was so cool. That was in 2016, ages ago in machine learning land.
Spectrum: So you decided to “establish weirdness as your goal” for your blog. What was the first weird experiment that you blogged about?
Shane: It was generating cookbook recipes. The neural net came up with ingredients like: “Take ¼ pounds of bones or fresh bread.” That recipe started out: “Brown the salmon in oil, add creamed meat to the mixture.” It was making mistakes that showed the thing had no memory at all.
Spectrum: You say in the book that you can learn a lot about AI by giving it a task and watching it flail. What do you learn?
Shane: One thing you learn is how much it relies on surface appearances rather than deep understanding. With the recipes, for example: It got the structure of title, category, ingredients, instructions, yield at the end. But when you look more closely, it has instructions like “Fold the water and roll it into cubes.” So clearly this thing does not understand water, let alone the other things. It’s recognizing certain phrases that tend to occur, but it doesn’t have a concept that these recipes are describing something real. You start to realize how very narrow the algorithms in this world are. They only know exactly what we tell them in our data set.
BACK TO TOP↑ “The narrower the problem, the smarter the AI will seem” Spectrum: That makes me think of DeepMind’s AlphaGo, which was universally hailed as a triumph for AI. It can play the game of Go better than any human, but it doesn’t know what Go is. It doesn’t know that it’s playing a game.
Shane: It doesn’t know what a human is, or if it’s playing against a human or another program. That’s also a nice illustration of how well these algorithms do when they have a really narrow and well-defined problem.
The narrower the problem, the smarter the AI will seem. If it’s not just doing something repeatedly but instead has to understand something, coherence goes down. For example, take an algorithm that can generate images of objects. If the algorithm is restricted to birds, it could do a recognizable bird. If this same algorithm is asked to generate images of any animal, if its task is that broad, the bird it generates becomes an unrecognizable brown feathered smear against a green background.
Spectrum: That sounds… disturbing.
Shane: It’s disturbing in a weird amusing way. What’s really disturbing is the humans it generates. It hasn’t seen them enough times to have a good representation, so you end up with an amorphous, usually pale-faced thing with way too many orifices. If you asked it to generate an image of a person eating pizza, you’ll have blocks of pizza texture floating around. But if you give that image to an image-recognition algorithm that was trained on that same data set, it will say, “Oh yes, that’s a person eating pizza.”
BACK TO TOP↑ Why overestimating AI is dangerous Spectrum: Do you see it as your role to puncture the AI hype?
Shane: I do see it that way. Not a lot of people are bringing out this side of AI. When I first started posting my results, I’d get people saying, “I don’t understand, this is AI, shouldn’t it be better than this? Why doesn't it understand?” Many of the impressive examples of AI have a really narrow task, or they’ve been set up to hide how little understanding it has. There’s a motivation, especially among people selling products based on AI, to represent the AI as more competent and understanding than it actually is.
Spectrum: If people overestimate the abilities of AI, what risk does that pose?
Shane: I worry when I see people trusting AI with decisions it can’t handle, like hiring decisions or decisions about moderating content. These are really tough tasks for AI to do well on. There are going to be a lot of glitches. I see people saying, “The computer decided this so it must be unbiased, it must be objective.”

“If the algorithm’s task is to replicate human hiring decisions, it’s going to glom onto gender bias and race bias.”
—Janelle Shane, AI Weirdness blogger
That’s another thing I find myself highlighting in the work I’m doing. If the data includes bias, the algorithm will copy that bias. You can’t tell it not to be biased, because it doesn’t understand what bias is. I think that message is an important one for people to understand.
If there’s bias to be found, the algorithm is going to go after it. It’s like, “Thank goodness, finally a signal that’s reliable.” But for a tough problem like: Look at these resumes and decide who’s best for the job. If its task is to replicate human hiring decisions, it’s going to glom onto gender bias and race bias. There’s an example in the book of a hiring algorithm that Amazon was developing that discriminated against women, because the historical data it was trained on had that gender bias.
Spectrum: What are the other downsides of using AI systems that don’t really understand their tasks?
Shane: There is a risk in putting too much trust in AI and not examining its decisions. Another issue is that it can solve the wrong problems, without anyone realizing it. There have been a couple of cases in medicine. For example, there was an algorithm that was trained to recognize things like skin cancer. But instead of recognizing the actual skin condition, it latched onto signals like the markings a surgeon makes on the skin, or a ruler placed there for scale. It was treating those things as a sign of skin cancer. It’s another indication that these algorithms don’t understand what they’re looking at and what the goal really is.
BACK TO TOP↑ Giraffing Spectrum: In your blog, you often have neural nets generate names for things—such as ice cream flavors, paint colors, cats, mushrooms, and types of apples. How do you decide on topics?
Shane: Quite often it’s because someone has written in with an idea or a data set. They’ll say something like, “I’m the MIT librarian and I have a whole list of MIT thesis titles.” That one was delightful. Or they’ll say, “We are a high school robotics team, and we know where there’s a list of robotics team names.” It’s fun to peek into a different world. I have to be careful that I’m not making fun of the naming conventions in the field. But there’s a lot of humor simply in the neural net’s complete failure to understand. Puns in particular—it really struggles with puns.
Spectrum: Your blog is quite absurd, but it strikes me that machine learning is often absurd in itself. Can you explain the concept of giraffing?
Shane: This concept was originally introduced by [internet security expert] Melissa Elliott. She proposed this phrase as a way to describe the algorithms’ tendency to see giraffes way more often than would be likely in the real world. She posted a whole bunch of examples, like a photo of an empty field in which an image-recognition algorithm has confidently reported that there are giraffes. Why does it think giraffes are present so often when they’re actually really rare? Because they’re trained on data sets from online. People tend to say, “Hey look, a giraffe!” And then take a photo and share it. They don’t do that so often when they see an empty field with rocks.
There’s also a chatbot that has a delightful quirk. If you show it some photo and ask it how many giraffes are in the picture, it will always answer with some non zero number. This quirk comes from the way the training data was generated: These were questions asked and answered by humans online. People tended not to ask the question “How many giraffes are there?” when the answer was zero. So you can show it a picture of someone holding a Wii remote. If you ask it how many giraffes are in the picture, it will say two.
BACK TO TOP↑ Machine and human creativity Spectrum: AI can be absurd, and maybe also creative. But you make the point that AI art projects are really human-AI collaborations: Collecting the data set, training the algorithm, and curating the output are all artistic acts on the part of the human. Do you see your work as a human-AI art project?
Shane: Yes, I think there is artistic intent in my work; you could call it literary or visual. It’s not so interesting to just take a pre-trained algorithm that’s been trained on utilitarian data, and tell it to generate a bunch of stuff. Even if the algorithm isn’t one that I’ve trained myself, I think about, what is it doing that’s interesting, what kind of story can I tell around it, and what do I want to show people.

The Halloween costume algorithm “was able to draw on its knowledge of which words are related to suggest things like sexy barnacle.”
—Janelle Shane, AI Weirdness blogger
Spectrum: For the past three years you’ve been getting neural nets to generate ideas for Halloween costumes. As language models have gotten dramatically better over the past three years, are the costume suggestions getting less absurd?
Shane: Yes. Before I would get a lot more nonsense words. This time I got phrases that were related to real things in the data set. I don’t believe the training data had the words Flying Dutchman or barnacle. But it was able to draw on its knowledge of which words are related to suggest things like sexy barnacle and sexy Flying Dutchman.
Spectrum: This year, I saw on Twitter that someone made the gothy giraffe costume happen. Would you ever dress up for Halloween in a costume that the neural net suggested?
Shane: I think that would be fun. But there would be some challenges. I would love to go as the sexy Flying Dutchman. But my ambition may constrict me to do something more like a list of leg parts.
BACK TO TOP↑ Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436165 Video Friday: DJI’s Mavic Mini Is ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

DJI’s new Mavic Mini looks like a pretty great drone for US $400 ($500 for a combo with more accessories): It’s tiny, flies for 30 minutes, and will do what you need as far as pictures and video (although not a whole lot more).

DJI seems to have put a bunch of effort into making the drone 249 grams, 1 gram under what’s required for FAA registration. That means you save $5 and a few minutes of your time, but that does not mean you don’t have to follow the FAA’s rules and regulations governing drone use.

[ DJI ]

Don’t panic, but Clearpath and HEBI Robotics have armed the Jackal:

After locking eyes across a crowded room at ICRA 2019, Clearpath Robotics and HEBI Robotics basked in that warm and fuzzy feeling that comes with starting a new and exciting relationship. Over a conference hall coffee, they learned that the two companies have many overlapping interests. The most compelling was the realization that customers across a variety of industries are hunting for an elusive true love of their own – a robust but compact robotic platform combined with a long reach manipulator for remote inspection tasks.

After ICRA concluded, Arron Griffiths, Application Engineer at Clearpath, and Matthew Tesch, Software Engineer at HEBI, kept in touch and decided there had been enough magic in the air to warrant further exploration. A couple of months later, Matthew arrived at Clearpath to formally introduce the HEBI’s X-Series Arm to Clearpath’s Jackal UGV. It was love.

[ Clearpath ]

Thanks Dave!

I’m really not a fan of the people-carrying drones, but heavy lift cargo drones seem like a more okay idea.

Volocopter, the pioneer in Urban Air Mobility, presented the demonstrator of its VoloDrone. This marks Volocopters expansion into the logistics, agriculture, infrastructure and public services industry. The VoloDrone is an unmanned, fully electric, heavy-lift utility drone capable of carrying a payload of 200 kg (440 lbs) up to 40 km (25 miles). With a standardized payload attachment, VoloDrone can serve a great variety of purposes from transporting boxes, to liquids, to equipment and beyond. It can be remotely piloted or flown in automated mode on pre-set routes.

[ Volocopter ]

JAY is a mobile service robot that projects a display on the floor and plays sound with its speaker. By playing sounds and videos, it provides visual and audio entertainment in various places such as exhibition halls, airports, hotels, department stores and more.

[ Rainbow Robotics ]

The DARPA Subterranean Challenge Virtual Tunnel Circuit concluded this week—it was the same idea as the physical challenge that took place in August, just with a lot less IRL dirt.

The awards ceremony and team presentations are in this next video, and we’ll have more on this once we get back from IROS.

[ DARPA SubT ]

NASA is sending a mobile robot to the south pole of the Moon to get a close-up view of the location and concentration of water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.

About the size of a golf cart, the Volatiles Investigating Polar Exploration Rover, or VIPER, will roam several miles, using its four science instruments — including a 1-meter drill — to sample various soil environments. Planned for delivery in December 2022, VIPER will collect about 100 days of data that will be used to inform development of the first global water resource maps of the Moon.

[ NASA ]

Happy Halloween from HEBI Robotics!

[ HEBI ]

Happy Halloween from Soft Robotics!

[ Soft Robotics ]

Halloween must be really, really confusing for autonomous cars.

[ Waymo ]

Once a year at Halloween, hardworking JPL engineers put their skills to the test in a highly competitive pumpkin carving contest. The result: A pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room a Nemo-inspired pumpkin explored the sub-surface ocean of Jupiter moon Europa. Suffice to say that when the scientists and engineers at NASA’s Jet Propulsion Laboratory compete in a pumpkin-carving contest, the solar system’s the limit. Take a look at some of the masterpieces from 2019.

Now in its ninth year, the contest gives teams only one hour to carve and decorate their pumpkin though they can prepare non-pumpkin materials – like backgrounds, sound effects and motorized parts – ahead of time.

[ JPL ]

The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.

[ BPL ]

Misty II is now available to anyone who wants one, and she’s on sale for a mere $2900.

[ Misty ]

We leveraged LIDAR-based slam, in conjunction with our specialized relative localization sensor UVDAR to perform a de-centralized, communication-free swarm flight without the units knowing their absolute locations. The swarming and obstacle avoidance control is based on a modified Boids-like algorithm, while the whole swarm is controlled by directing a selected leader unit.

[ MRS ]

The MallARD robot is an autonomous surface vehicle (ASV), designed for the monitoring and inspection of wet storage facilities for example spent fuel pools or wet silos. The MallARD is holonomic, uses a LiDAR for localisation and features a robust trajectory tracking controller.

The University of Manchester’s researcher Dr Keir Groves designed and built the autonomous surface vehicle (ASV) for the challenge which came in the top three of the second round in Nov 2017. The MallARD went on to compete in a final 3rd round where it was deployed in a spent fuel pond at a nuclear power plant in Finland by the IAEA, along with two other entries. The MallARD came second overall, in November 2018.

[ RNE ]

Thanks Jennifer!

I sometimes get the sense that in the robotic grasping and manipulation world, suction cups are kinda seen as cheating at times. But, their nature allows you to do some pretty interesting things.

More clever octopus footage please.

[ CMU ]

A Personal, At-Home Teacher For Playful Learning: From academic topics to child-friendly news bulletins, fun facts and more, Miko 2 is packed with relevant and freshly updated content specially designed by educationists and child-specialists. Your little one won’t even realize they’re learning.

As we point out pretty much every time we post a video like this, keep in mind that you’re seeing a heavily edited version of a hypothetical best case scenario for how this robot can function. And things like “creating a relationship that they can then learn how to form with their peers” is almost certainly overselling things. But at $300 (shipping included), this may be a decent robot as long as your expectations are appropriately calibrated.

[ Miko ]

ICRA 2018 plenary talk by Rodney Brooks: “Robots and People: the Research Challenge.”

[ IEEE RAS ]

ICRA-X 2018 talk by Ron Arkin: “Lethal Autonomous Robots and the Plight of the Noncombatant.”

[ IEEE RAS ]

On the most recent episode of the AI Podcast, Lex Fridman interviews Garry Kasparov.

[ AI Podcast ] Continue reading

Posted in Human Robots

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots