Tag Archives: version

#436180 Bipedal Robot Cassie Cal Learns to ...

There’s no particular reason why knowing how to juggle would be a useful skill for a robot. Despite this, robots are frequently taught how to juggle things. Blind robots can juggle, humanoid robots can juggle, and even drones can juggle. Why? Because juggling is hard, man! You have to think about a bunch of different things at once, and also do a bunch of different things at once, which this particular human at least finds to be overly stressful. While juggling may not stress robots out, it does require carefully coordinated sensing and computing and actuation, which means that it’s as good a task as any (and a more entertaining task than most) for testing the capabilities of your system.

UC Berkeley’s Cassie Cal robot, which consists of two legs and what could be called a torso if you were feeling charitable, has just learned to juggle by bouncing a ball on what would be her head if she had one of those. The idea is that if Cassie can juggle while balancing at the same time, she’ll be better able to do other things that require dynamic multitasking, too. And if that doesn’t work out, she’ll still be able to join the circus.

Cassie’s juggling is assisted by an external motion capture system that tracks the location of the ball, but otherwise everything is autonomous. Cassie is able to juggle the ball by leaning forwards and backwards, left and right, and moving up and down. She does this while maintaining her own balance, which is the whole point of this research—successfully executing two dynamic behaviors that may sometimes be at odds with one another. The end goal here is not to make a better juggling robot, but rather to explore dynamic multitasking, a skill that robots will need in order to be successful in human environments.

This work is from the Hybrid Robotics Lab at UC Berkeley, led by Koushil Sreenath, and is being done by Katherine Poggensee, Albert Li, Daniel Sotsaikich, Bike Zhang, and Prasanth Kotaru.

For a bit more detail, we spoke with Albert Li via email.

Image: UC Berkeley

UC Berkeley’s Cassie Cal getting ready to juggle.

IEEE Spectrum: What would be involved in getting Cassie to juggle without relying on motion capture?

Albert Li: Our motivation for starting off with motion capture was to first address the control challenge of juggling on a biped without worrying about implementing the perception. We actually do have a ball detector working on a camera, which would mean we wouldn’t have to rely on the motion capture system. However, we need to mount the camera in a way that it would provide the best upwards field of view, and we also have develop a reliable estimator. The estimator is particularly important because when the ball gets close enough to the camera, we actually can’t track the ball and have to assume our dynamic models describe its motion accurately enough until it bounces back up.

What keeps Cassie from juggling indefinitely?

There are a few factors that affect how long Cassie can sustain a juggle. While in simulation the paddle exhibits homogeneous properties like its stiffness and damping, in reality every surface has anisotropic contact properties. So, there are parts of the paddle which may be better for juggling than others (and importantly, react differently than modeled). These differences in contact are also exacerbated due to how the paddle is cantilevered when mounted on Cassie. When the ball hits these areas, it leads to a larger than expected error in a juggle. Due to the small size of the paddle, the ball may then just hit the paddle’s edge and end the juggling run. Over a very long run, this is a likely occurrence. Additionally, some large juggling errors could cause Cassie’s feet to slip slightly, which ends up changing the stable standing position over time. Since this version of the controller assumes Cassie is stationary, this change in position eventually leads to poor juggles and failure.

Would Cassie be able to juggle while walking (or hovershoe-ing)?

Walking (and hovershoe-ing) while juggling is a far more challenging problem and is certainly a goal for future research. Some of these challenges include getting the paddle to precise poses to juggle the ball while also moving to avoid any destabilizing effects of stepping incorrectly. The number of juggles per step of walking could also vary and make the mathematics of the problem more challenging. The controller goal is also more involved. While the current goal of the juggling controller is to juggle the ball to a static apex position, with a walking juggling controller, we may instead want to hit the ball forwards and also walk forwards to bounce it, juggle the ball along a particular path, etc. Solving such challenges would be the main thrusts of the follow-up research.

Can you give an example of a practical task that would be made possible by using a controller like this?

Studying juggling means studying contact behavior and leveraging our models of it to achieve a known objective. Juggling could also be used to study predictable post-contact flight behavior. Consider the scenario where a robot is attempting to make a catch, but fails, letting the ball to bounce off of its hand, and then recovering the catch. This behavior could also be intentional: It is often easier to first execute a bounce to direct the target and then perform a subsequent action. For example, volleyball players could in principle directly hit a spiked ball back, but almost always bump the ball back up and then return it.

Even beyond this motivating example, the kinds of models we employ to get juggling working are more generally applicable to any task that involves contact, which could include tasks besides bouncing like sliding and rolling. For example, clearing space on a desk by pushing objects to the side may be preferable than individually manipulating each and every object on it.

You mention collaborative juggling or juggling multiple balls—is that something you’ve tried yet? Can you talk a bit more about what you’re working on next?

We haven’t yet started working on collaborative or multi-ball juggling, but that’s also a goal for future work. Juggling multiple balls statically is probably the most reasonable next goal, but presents additional challenges. For instance, you have to encode a notion of juggling urgency (if the second ball isn’t hit hard enough, you have less time to get the first ball up before you get back to the second one).

On the other hand, collaborative human-robot juggling requires a more advanced decision-making framework. To get robust multi-agent juggling, the robot will need to employ some sort of probabilistic model of the expected human behavior (are they likely to move somewhere? Are they trying to catch the ball high or low? Is it safe to hit the ball back?). In general, developing such human models is difficult since humans are fairly unpredictable and often don’t exhibit rational behavior. This will be a focus of future work.

[ Hybrid Robotics Lab ] Continue reading

Posted in Human Robots

#436178 Within 10 Years, We’ll Travel by ...

What’s faster than autonomous vehicles and flying cars?

Try Hyperloop, rocket travel, and robotic avatars. Hyperloop is currently working towards 670 mph (1080 kph) passenger pods, capable of zipping us from Los Angeles to downtown Las Vegas in under 30 minutes. Rocket Travel (think SpaceX’s Starship) promises to deliver you almost anywhere on the planet in under an hour. Think New York to Shanghai in 39 minutes.

But wait, it gets even better…

As 5G connectivity, hyper-realistic virtual reality, and next-gen robotics continue their exponential progress, the emergence of “robotic avatars” will all but nullify the concept of distance, replacing human travel with immediate remote telepresence.

Let’s dive in.

Hyperloop One: LA to SF in 35 Minutes
Did you know that Hyperloop was the brainchild of Elon Musk? Just one in a series of transportation innovations from a man determined to leave his mark on the industry.

In 2013, in an attempt to shorten the long commute between Los Angeles and San Francisco, the California state legislature proposed a $68 billion budget allocation for what appeared to be the slowest and most expensive bullet train in history.

Musk was outraged. The cost was too high, the train too sluggish. Teaming up with a group of engineers from Tesla and SpaceX, he published a 58-page concept paper for “The Hyperloop,” a high-speed transportation network that used magnetic levitation to propel passenger pods down vacuum tubes at speeds of up to 670 mph. If successful, it would zip you across California in 35 minutes—just enough time to watch your favorite sitcom.

In January 2013, venture capitalist Shervin Pishevar, with Musk’s blessing, started Hyperloop One with myself, Jim Messina (former White House Deputy Chief of Staff for President Obama), and tech entrepreneurs Joe Lonsdale and David Sacks as founding board members. A couple of years after that, the Virgin Group invested in this idea, Richard Branson was elected chairman, and Virgin Hyperloop One was born.

“The Hyperloop exists,” says Josh Giegel, co-founder and chief technology officer of Hyperloop One, “because of the rapid acceleration of power electronics, computational modeling, material sciences, and 3D printing.”

Thanks to these convergences, there are now ten major Hyperloop One projects—in various stages of development—spread across the globe. Chicago to DC in 35 minutes. Pune to Mumbai in 25 minutes. According to Giegel, “Hyperloop is targeting certification in 2023. By 2025, the company plans to have multiple projects under construction and running initial passenger testing.”

So think about this timetable: Autonomous car rollouts by 2020. Hyperloop certification and aerial ridesharing by 2023. By 2025—going on vacation might have a totally different meaning. Going to work most definitely will.

But what’s faster than Hyperloop?

Rocket Travel
As if autonomous vehicles, flying cars, and Hyperloop weren’t enough, in September of 2017, speaking at the International Astronautical Congress in Adelaide, Australia, Musk promised that for the price of an economy airline ticket, his rockets will fly you “anywhere on Earth in under an hour.”

Musk wants to use SpaceX’s megarocket, Starship, which was designed to take humans to Mars, for terrestrial passenger delivery. The Starship travels at 17,500 mph. It’s an order of magnitude faster than the supersonic jet Concorde.

Think about what this actually means: New York to Shanghai in 39 minutes. London to Dubai in 29 minutes. Hong Kong to Singapore in 22 minutes.

So how real is the Starship?

“We could probably demonstrate this [technology] in three years,” Musk explained, “but it’s going to take a while to get the safety right. It’s a high bar. Aviation is incredibly safe. You’re safer on an airplane than you are at home.”

That demonstration is proceeding as planned. In September 2017, Musk announced his intentions to retire his current rocket fleet, both the Falcon 9 and Falcon Heavy, and replace them with the Starships in the 2020s.

Less than a year later, LA mayor Eric Garcetti tweeted that SpaceX was planning to break ground on an 18-acre rocket production facility near the port of Los Angeles. And April of this year marked an even bigger milestone: the very first test flights of the rocket.

Thus, sometime in the next decade or so, “off to Europe for lunch” may become a standard part of our lexicon.

Avatars
Wait, wait, there’s one more thing.

While the technologies we’ve discussed will decimate the traditional transportation industry, there’s something on the horizon that will disrupt travel itself. What if, to get from A to B, you didn’t have to move your body? What if you could quote Captain Kirk and just say “Beam me up, Scotty”?

Well, shy of the Star Trek transporter, there’s the world of avatars.

An avatar is a second self, typically in one of two forms. The digital version has been around for a couple of decades. It emerged from the video game industry and was popularized by virtual world sites like Second Life and books-turned-blockbusters like Ready Player One.

A VR headset teleports your eyes and ears to another location, while a set of haptic sensors shifts your sense of touch. Suddenly, you’re inside an avatar inside a virtual world. As you move in the real world, your avatar moves in the virtual.

Use this technology to give a lecture and you can do it from the comfort of your living room, skipping the trip to the airport, the cross-country flight, and the ride to the conference center.

Robots are the second form of avatars. Imagine a humanoid robot that you can occupy at will. Maybe, in a city far from home, you’ve rented the bot by the minute—via a different kind of ridesharing company—or maybe you have spare robot avatars located around the country.

Either way, put on VR goggles and a haptic suit, and you can teleport your senses into that robot. This allows you to walk around, shake hands, and take action—all without leaving your home.

And like the rest of the tech we’ve been talking about, even this future isn’t far away.

In 2018, entrepreneur Dr. Harry Kloor recommended to All Nippon Airways (ANA), Japan’s largest airline, the design of an Avatar XPRIZE. ANA then funded this vision to the tune of $10 million to speed the development of robotic avatars. Why? Because ANA knows this is one of the technologies likely to disrupt their own airline industry, and they want to be ready.

ANA recently announced its “newme” robot that humans can use to virtually explore new places. The colorful robots have Roomba-like wheeled bases and cameras mounted around eye-level, which capture surroundings viewable through VR headsets.

If the robot was stationed in your parents’ home, you could cruise around the rooms and chat with your family at any time of day. After revealing the technology at Tokyo’s Combined Exhibition of Advanced Technologies in October, ANA plans to deploy 1,000 newme robots by 2020.

With virtual avatars like newme, geography, distance, and cost will no longer limit our travel choices. From attractions like the Eiffel Tower or the pyramids of Egypt to unreachable destinations like the moon or deep sea, we will be able to transcend our own physical limits, explore the world and outer space, and access nearly any experience imaginable.

Final Thoughts
Individual car ownership has enjoyed over a century of ascendancy and dominance.

The first real threat it faced—today’s ride-sharing model—only showed up in the last decade. But that ridesharing model won’t even get ten years to dominate. Already, it’s on the brink of autonomous car displacement, which is on the brink of flying car disruption, which is on the brink of Hyperloop and rockets-to-anywhere decimation. Plus, avatars.

The most important part: All of this change will happen over the next ten years. Welcome to a future of human presence where the only constant is rapid change.

Note: This article—an excerpt from my next book The Future Is Faster Than You Think, co-authored with Steven Kotler, to be released January 28th, 2020—originally appeared on my tech blog at diamandis.com. Read the original article here.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Virgin Hyperloop One Continue reading

Posted in Human Robots

#436165 Video Friday: DJI’s Mavic Mini Is ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

DJI’s new Mavic Mini looks like a pretty great drone for US $400 ($500 for a combo with more accessories): It’s tiny, flies for 30 minutes, and will do what you need as far as pictures and video (although not a whole lot more).

DJI seems to have put a bunch of effort into making the drone 249 grams, 1 gram under what’s required for FAA registration. That means you save $5 and a few minutes of your time, but that does not mean you don’t have to follow the FAA’s rules and regulations governing drone use.

[ DJI ]

Don’t panic, but Clearpath and HEBI Robotics have armed the Jackal:

After locking eyes across a crowded room at ICRA 2019, Clearpath Robotics and HEBI Robotics basked in that warm and fuzzy feeling that comes with starting a new and exciting relationship. Over a conference hall coffee, they learned that the two companies have many overlapping interests. The most compelling was the realization that customers across a variety of industries are hunting for an elusive true love of their own – a robust but compact robotic platform combined with a long reach manipulator for remote inspection tasks.

After ICRA concluded, Arron Griffiths, Application Engineer at Clearpath, and Matthew Tesch, Software Engineer at HEBI, kept in touch and decided there had been enough magic in the air to warrant further exploration. A couple of months later, Matthew arrived at Clearpath to formally introduce the HEBI’s X-Series Arm to Clearpath’s Jackal UGV. It was love.

[ Clearpath ]

Thanks Dave!

I’m really not a fan of the people-carrying drones, but heavy lift cargo drones seem like a more okay idea.

Volocopter, the pioneer in Urban Air Mobility, presented the demonstrator of its VoloDrone. This marks Volocopters expansion into the logistics, agriculture, infrastructure and public services industry. The VoloDrone is an unmanned, fully electric, heavy-lift utility drone capable of carrying a payload of 200 kg (440 lbs) up to 40 km (25 miles). With a standardized payload attachment, VoloDrone can serve a great variety of purposes from transporting boxes, to liquids, to equipment and beyond. It can be remotely piloted or flown in automated mode on pre-set routes.

[ Volocopter ]

JAY is a mobile service robot that projects a display on the floor and plays sound with its speaker. By playing sounds and videos, it provides visual and audio entertainment in various places such as exhibition halls, airports, hotels, department stores and more.

[ Rainbow Robotics ]

The DARPA Subterranean Challenge Virtual Tunnel Circuit concluded this week—it was the same idea as the physical challenge that took place in August, just with a lot less IRL dirt.

The awards ceremony and team presentations are in this next video, and we’ll have more on this once we get back from IROS.

[ DARPA SubT ]

NASA is sending a mobile robot to the south pole of the Moon to get a close-up view of the location and concentration of water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.

About the size of a golf cart, the Volatiles Investigating Polar Exploration Rover, or VIPER, will roam several miles, using its four science instruments — including a 1-meter drill — to sample various soil environments. Planned for delivery in December 2022, VIPER will collect about 100 days of data that will be used to inform development of the first global water resource maps of the Moon.

[ NASA ]

Happy Halloween from HEBI Robotics!

[ HEBI ]

Happy Halloween from Soft Robotics!

[ Soft Robotics ]

Halloween must be really, really confusing for autonomous cars.

[ Waymo ]

Once a year at Halloween, hardworking JPL engineers put their skills to the test in a highly competitive pumpkin carving contest. The result: A pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room a Nemo-inspired pumpkin explored the sub-surface ocean of Jupiter moon Europa. Suffice to say that when the scientists and engineers at NASA’s Jet Propulsion Laboratory compete in a pumpkin-carving contest, the solar system’s the limit. Take a look at some of the masterpieces from 2019.

Now in its ninth year, the contest gives teams only one hour to carve and decorate their pumpkin though they can prepare non-pumpkin materials – like backgrounds, sound effects and motorized parts – ahead of time.

[ JPL ]

The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.

[ BPL ]

Misty II is now available to anyone who wants one, and she’s on sale for a mere $2900.

[ Misty ]

We leveraged LIDAR-based slam, in conjunction with our specialized relative localization sensor UVDAR to perform a de-centralized, communication-free swarm flight without the units knowing their absolute locations. The swarming and obstacle avoidance control is based on a modified Boids-like algorithm, while the whole swarm is controlled by directing a selected leader unit.

[ MRS ]

The MallARD robot is an autonomous surface vehicle (ASV), designed for the monitoring and inspection of wet storage facilities for example spent fuel pools or wet silos. The MallARD is holonomic, uses a LiDAR for localisation and features a robust trajectory tracking controller.

The University of Manchester’s researcher Dr Keir Groves designed and built the autonomous surface vehicle (ASV) for the challenge which came in the top three of the second round in Nov 2017. The MallARD went on to compete in a final 3rd round where it was deployed in a spent fuel pond at a nuclear power plant in Finland by the IAEA, along with two other entries. The MallARD came second overall, in November 2018.

[ RNE ]

Thanks Jennifer!

I sometimes get the sense that in the robotic grasping and manipulation world, suction cups are kinda seen as cheating at times. But, their nature allows you to do some pretty interesting things.

More clever octopus footage please.

[ CMU ]

A Personal, At-Home Teacher For Playful Learning: From academic topics to child-friendly news bulletins, fun facts and more, Miko 2 is packed with relevant and freshly updated content specially designed by educationists and child-specialists. Your little one won’t even realize they’re learning.

As we point out pretty much every time we post a video like this, keep in mind that you’re seeing a heavily edited version of a hypothetical best case scenario for how this robot can function. And things like “creating a relationship that they can then learn how to form with their peers” is almost certainly overselling things. But at $300 (shipping included), this may be a decent robot as long as your expectations are appropriately calibrated.

[ Miko ]

ICRA 2018 plenary talk by Rodney Brooks: “Robots and People: the Research Challenge.”

[ IEEE RAS ]

ICRA-X 2018 talk by Ron Arkin: “Lethal Autonomous Robots and the Plight of the Noncombatant.”

[ IEEE RAS ]

On the most recent episode of the AI Podcast, Lex Fridman interviews Garry Kasparov.

[ AI Podcast ] Continue reading

Posted in Human Robots

#436149 Blue Frog Robotics Answers (Some of) Our ...

In September of 2015, Buddy the social home robot closed its Indiegogo crowdfunding campaign more than 600 percent over its funding goal. A thousand people pledged for a robot originally scheduled to be delivered in December of 2016. But nearly three years later, the future of Buddy is still unclear. Last May, Blue Frog Robotics asked for forgiveness from its backers and announced the launch of an “equity crowdfunding campaign” to try to raise the additional funding necessary to deliver the robot in April of 2020.

By the time the crowdfunding campaign launched in August, the delivery date had slipped again, to September 2020, even as Blue Frog attempted to draw investors by estimating that sales of Buddy would “increase from 2000 robots in 2020 to 20,000 in 2023.” Blue Frog’s most recent communication with backers, in September, mentions a new CTO and a North American office, but does little to reassure backers of Buddy that they’ll ever be receiving their robot.

Backers of the robot are understandably concerned about the future of Buddy, so we sent a series of questions to the founder and CEO of Blue Frog Robotics, Rodolphe Hasselvander.

We’ve edited this interview slightly for clarity, but we should also note that Hasselvander was unable to provide answers to every question. In particular, we asked for some basic information about Blue Frog’s near-term financial plans, on which the entire future of Buddy seems to depend. We’ve left those questions in the interview anyway, along with Hasselvander’s response.

1. At this point, how much additional funding is necessary to deliver Buddy to backers?
2. Assuming funding is successful, when can backers expect to receive Buddy?
3. What happens if the fundraising goal is not met?
4. You estimate that sales of Buddy will increase 10x over three years. What is this estimate based on?

Rodolphe Hasselvander: Regarding the questions 1-4, unfortunately, as we are fundraising in a Regulation D, we do not comment on prospect, customer data, sales forecasts, or figures. Please refer to our press release here to have information about the fundraising.

5. Do you feel that you are currently being transparent enough about this process to satisfy backers?
6. Buddy’s launch date has moved from April 2020 to September 2020 over the last four months. Why should backers remain confident about Buddy’s schedule?

Since the last newsletter, we haven’t changed our communication, the backers will be the first to receive their Buddy, and we plan an official launch in September 2020.

7. What is the goal of My Buddy World?

At Blue Frog, we think that matching a great product with a big market can only happen through continual experimentation, iteration and incorporation of customer feedback. That’s why we created the forum My Buddy World. It has been designed for our Buddy Community to join us, discuss the world’s first emotional robot, and create with us. The objective is to deepen our conversation with Buddy’s fans and users, stay agile in testing our hypothesis and validate our product-market fit. We trust the value of collaboration. Behind Buddy, there is a team of roboticists, engineers, and programmers that are eager to know more about our consumers’ needs and are excited to work with them to create the perfect human/robot experience.

8. How is the current version of Buddy different from the 2015 version that backers pledged for during the successful crowdfunding campaign, in both hardware and software?

We have completely revised some parts of Buddy as well as replaced and/or added more accurate and reliable components to ensure we fully satisfy our customers’ requirements for a mature and high-quality robot from day one. We sourced more innovative components to make sure that Buddy has the most up-to-date technologies such as adding four microphones, a high def thermal matrix, a 3D camera, an 8-megapixel RGB camera, time-of-flight sensors, and touch sensors.
If you want more info, we just posted an article about what is Buddy here.

9. Will the version of Buddy that ships to backers in 2020 do everything that that was shown in the original crowdfunding video?

Concerning the capabilities of Buddy regarding the video published on YouTube, I confirm that Buddy will be able to do everything you can see, like patrol autonomously and secure your home, telepresence, mathematics applications, interactive stories for children, IoT/smart home management, face recognition, alarm clock, reminder, message/photo sharing, music, hands free call, people following, games like hide and seek (and more). In addition, everyone will be able to create their own apps thanks to the “BuddyLab” application.

10. What makes you confident that Buddy will be successful when Jibo, Kuri, and other social robots have not?

Consumer robotics is a new market. Some people think it is a tough one. But we, at Blue Frog Robotics, believe it is a path of learning, understanding, and finding new ways to serve consumers. Here are the five key factors that will make Buddy successful.

1) A market-fit robot

Blue Frog Robotics is a consumer-centric company. We know that a successful business model and a compelling fit to market Buddy must come up from solving consumers’ frustrations and problems in a way that’s new and exciting. We started from there.

By leveraged existing research and syndicated consumer data sets to understand our customers’ needs and aspirations, we get that creating a robot is not about the best tech innovation and features, but always about how well technology becomes a service to one’s basic human needs and assets: convenience, connection, security, fun, self-improvement, and time. To answer to these consumers’ needs and wants, we designed an all-in-one robot with four vital capabilities: intelligence, emotionality, mobility, and customization.

With his multi-purpose brain, he addresses a broad range of needs in modern-day life, from securing homes to carrying out his owners’ daily activities, from helping people with disabilities to educating children, from entertaining to just becoming a robot friend.

Buddy is a disruptive innovative robot that is about to transform the way we live, learn, utilize information, play, and even care about our health.
2) Endless possibilities

One of the major advantages of Buddy is his adaptability. Beyond to be adorable, playful, talkative, and to accompany anyone in their daily life at home whether you are comfortable with technology or not, he offers via his platform applications to engage his owners in a wide range of activities. From fitness to cooking, from health monitoring to education, from games to meditation, the combination of intelligence, sensors, mobility, multi-touch panel opens endless possibilities for consumers and organizations to adapt their Buddy to their own needs.
3) An affordable price

Buddy will be the first robot combining smart, social, and mobile capabilities and a developed platform with a personality to enter the U.S. market at affordable price.

Our competitors are social or assistant robots but rarely both. Competitors differentiate themselves by features: mobile, non-mobile; by shapes: humanoid or not; by skills: social versus smart; targeting a specific domain like entertainment, retail assistant, eldercare, or education for children; and by price. Regarding our six competitors: Moorebot, Elli-Q, and Olly are not mobile; Lynx and Nao are in toy category; Pepper is above $10k targeting B2B market; and finally, Temi can’t be considered an emotional robot.
Buddy remains highly differentiated as an all-in-one, best of his class experience, covering the needs for social interactions and assistance of his owners at each stage of their life at an affordable price.

The price range of Buddy will be between US $1700 and $2000.

4) A winning business model

Buddy’s great business model combines hardware, software, and services, and provides game-changing convenience for consumers, organizations, and developers.

Buddy offers a multi-sided value proposition focused on three vertical markets: direct consumers, corporations (healthcare, education, hospitality), and developers. The model creates engagement and sustained usage and produces stable and diverse cash flow.
5) A Passion for people and technology

From day one, we have always believed in the power of our dream: To bring the services and the fun of an emotional robot in every house, every hospital, in every care house. Each day, we refuse to think that we are stuck or limited; we work hard to make Buddy a reality that will help people all over the world and make them smile.

While we certainly appreciate Hasselvander’s consistent optimism and obvious enthusiasm, we’re obligated to point out that some of our most important questions were not directly answered. We haven’t learned anything that makes us all that much more confident that Blue Frog will be able to successfully deliver Buddy this time. Hasselvander also didn’t address our specific question about whether he feels like Blue Frog’s communication strategy with backers has been adequate, which is particularly relevant considering that over the four months between the last two newsletters, Buddy’s launch date slipped by six months.

At this point, all we can do is hope that the strategy Blue Frog has chosen will be successful. We’ll let you know if as soon as we learn more.

[ Buddy ] Continue reading

Posted in Human Robots

#436126 Quantum Computing Gets a Boost From AI ...

Illustration: Greg Mably

Anyone of a certain age who has even a passing interest in computers will remember the remarkable breakthrough that IBM made in 1997 when its Deep Blue chess-playing computer defeated Garry Kasparov, then the world chess champion. Computer scientists passed another such milestone in March 2016, when DeepMind (a subsidiary of Alphabet, Google’s parent company) announced that its AlphaGo program had defeated world-champion player Lee Sedol in the game of Go, a board game that had vexed AI researchers for decades. Recently, DeepMind’s algorithms have also bested human players in the computer games StarCraft IIand Quake Arena III.

Some believe that the cognitive capacities of machines will overtake those of human beings in many spheres within a few decades. Others are more cautious and point out that our inability to understand the source of our own cognitive powers presents a daunting hurdle. How can we make thinking machines if we don’t fully understand our own thought processes?

Citizen science, which enlists masses of people to tackle research problems, holds promise here, in no small part because it can be used effectively to explore the boundary between human and artificial intelligence.

Some citizen-science projects ask the public to collect data from their surroundings (as eButterfly does for butterflies) or to monitor delicate ecosystems (as Eye on the Reef does for Australia’s Great Barrier Reef). Other projects rely on online platforms on which people help to categorize obscure phenomena in the night sky (Zooniverse) or add to the understanding of the structure of proteins (Foldit). Typically, people can contribute to such projects without any prior knowledge of the subject. Their fundamental cognitive skills, like the ability to quickly recognize patterns, are sufficient.

In order to design and develop video games that can allow citizen scientists to tackle scientific problems in a variety of fields, professor and group leader Jacob Sherson founded ScienceAtHome (SAH), at Aarhus University, in Denmark. The group began by considering topics in quantum physics, but today SAH hosts games covering other areas of physics, math, psychology, cognitive science, and behavioral economics. We at SAH search for innovative solutions to real research challenges while providing insight into how people think, both alone and when working in groups.

It is computationally intractable to completely map out a higher-dimensional landscape: It is called the curse of high dimensionality, and it plagues many optimization problems.

We believe that the design of new AI algorithms would benefit greatly from a better understanding of how people solve problems. This surmise has led us to establish the Center for Hybrid Intelligence within SAH, which tries to combine human and artificial intelligence, taking advantage of the particular strengths of each. The center’s focus is on the gamification of scientific research problems and the development of interfaces that allow people to understand and work together with AI.

Our first game, Quantum Moves, was inspired by our group’s research into quantum computers. Such computers can in principle solve certain problems that would take a classical computer billions of years. Quantum computers could challenge current cryptographic protocols, aid in the design of new materials, and give insight into natural processes that require an exact solution of the equations of quantum mechanics—something normal computers are inherently bad at doing.

One candidate system for building such a computer would capture individual atoms by “freezing” them, as it were, in the interference pattern produced when a laser beam is reflected back on itself. The captured atoms can thus be organized like eggs in a carton, forming a periodic crystal of atoms and light. Using these atoms to perform quantum calculations requires that we use tightly focused laser beams, called optical tweezers, to transport the atoms from site to site in the light crystal. This is a tricky business because individual atoms do not behave like particles; instead, they resemble a wavelike liquid governed by the laws of quantum mechanics.

In Quantum Moves, a player manipulates a touch screen or mouse to move a simulated laser tweezer and pick up a trapped atom, represented by a liquidlike substance in a bowl. Then the player must bring the atom back to the tweezer’s initial position while trying to minimize the sloshing of the liquid. Such sloshing would increase the energy of the atom and ultimately introduce errors into the operations of the quantum computer. Therefore, at the end of a move, the liquid should be at a complete standstill.

To understand how people and computers might approach such a task differently, you need to know something about how computerized optimization algorithms work. The countless ways of moving a glass of water without spilling may be regarded as constituting a “solution landscape.” One solution is represented by a single point in that landscape, and the height of that point represents the quality of the solution—how smoothly and quickly the glass of water was moved. This landscape might resemble a mountain range, where the top of each mountain represents a local optimum and where the challenge is to find the highest peak in the range—the global optimum.

Illustration: Greg Mably

Researchers must compromise between searching the landscape for taller mountains (“exploration”) and climbing to the top of the nearest mountain (“exploitation”). Making such a trade-off may seem easy when exploring an actual physical landscape: Merely hike around a bit to get at least the general lay of the land before surveying in greater detail what seems to be the tallest peak. But because each possible way of changing the solution defines a new dimension, a realistic problem can have thousands of dimensions. It is computationally intractable to completely map out such a higher-dimensional landscape. We call this the curse of high dimensionality, and it plagues many optimization problems.

Although algorithms are wonderfully efficient at crawling to the top of a given mountain, finding good ways of searching through the broader landscape poses quite a challenge, one that is at the forefront of AI research into such control problems. The conventional approach is to come up with clever ways of reducing the search space, either through insights generated by researchers or with machine-learning algorithms trained on large data sets.

At SAH, we attacked certain quantum-optimization problems by turning them into a game. Our goal was not to show that people can beat computers in this arena but rather to understand the process of generating insights into such problems. We addressed two core questions: whether allowing players to explore the infinite space of possibilities will help them find good solutions and whether we can learn something by studying their behavior.

Today, more than 250,000 people have played Quantum Moves, and to our surprise, they did in fact search the space of possible moves differently from the algorithm we had put to the task. Specifically, we found that although players could not solve the optimization problem on their own, they were good at searching the broad landscape. The computer algorithms could then take those rough ideas and refine them.

Herbert A. Simon said that “solving a problem simply means representing it so as to make the solution transparent.” Apparently, that’s what our games can do with their novel user interfaces.

Perhaps even more interesting was our discovery that players had two distinct ways of solving the problem, each with a clear physical interpretation. One set of players started by placing the tweezer close to the atom while keeping a barrier between the atom trap and the tweezer. In classical physics, a barrier is an impenetrable obstacle, but because the atom liquid is a quantum-mechanical object, it can tunnel through the barrier into the tweezer, after which the player simply moved the tweezer to the target area. Another set of players moved the tweezer directly into the atom trap, picked up the atom liquid, and brought it back. We called these two strategies the “tunneling” and “shoveling” strategies, respectively.

Such clear strategies are extremely valuable because they are very difficult to obtain directly from an optimization algorithm. Involving humans in the optimization loop can thus help us gain insight into the underlying physical phenomena that are at play, knowledge that may then be transferred to other types of problems.

Quantum Moves raised several obvious issues. First, because generating an exceptional solution required further computer-based optimization, players were unable to get immediate feedback to help them improve their scores, and this often left them feeling frustrated. Second, we had tested this approach on only one scientific challenge with a clear classical analogue, that of the sloshing liquid. We wanted to know whether such gamification could be applied more generally, to a variety of scientific challenges that do not offer such immediately applicable visual analogies.

We address these two concerns in Quantum Moves 2. Here, the player first generates a number of candidate solutions by playing the original game. Then the player chooses which solutions to optimize using a built-in algorithm. As the algorithm improves a player’s solution, it modifies the solution path—the movement of the tweezer—to represent the optimized solution. Guided by this feedback, players can then improve their strategy, come up with a new solution, and iteratively feed it back into this process. This gameplay provides high-level heuristics and adds human intuition to the algorithm. The person and the machine work in tandem—a step toward true hybrid intelligence.

In parallel with the development of Quantum Moves 2, we also studied how people collaboratively solve complex problems. To that end, we opened our atomic physics laboratory to the general public—virtually. We let people from around the world dictate the experiments we would run to see if they would find ways to improve the results we were getting. What results? That’s a little tricky to explain, so we need to pause for a moment and provide a little background on the relevant physics.

One of the essential steps in building the quantum computer along the lines described above is to create the coldest state of matter in the universe, known as a Bose-Einstein condensate. Here millions of atoms oscillate in synchrony to form a wavelike substance, one of the largest purely quantum phenomena known. To create this ultracool state of matter, researchers typically use a combination of laser light and magnetic fields. There is no familiar physical analogy between such a strange state of matter and the phenomena of everyday life.

The result we were seeking in our lab was to create as much of this enigmatic substance as was possible given the equipment available. The sequence of steps to accomplish that was unknown. We hoped that gamification could help to solve this problem, even though it had no classical analogy to present to game players.

Images: ScienceAtHome

Fun and Games: The
Quantum Moves game evolved over time, from a relatively crude early version [top] to its current form [second from top] and then a major revision,
Quantum Moves 2 [third from top].
Skill Lab: Science Detective games [bottom] test players’ cognitive skills.

In October 2016, we released a game that, for two weeks, guided how we created Bose-Einstein condensates in our laboratory. By manipulating simple curves in the game interface, players generated experimental sequences for us to use in producing these condensates—and they did so without needing to know anything about the underlying physics. A player would generate such a solution, and a few minutes later we would run the sequence in our laboratory. The number of ultracold atoms in the resulting Bose-Einstein condensate was measured and fed back to the player as a score. Players could then decide either to try to improve their previous solution or to copy and modify other players’ solutions. About 600 people from all over the world participated, submitting 7,577 solutions in total. Many of them yielded bigger condensates than we had previously produced in the lab.

So this exercise succeeded in achieving our primary goal, but it also allowed us to learn something about human behavior. We learned, for example, that players behave differently based on where they sit on the leaderboard. High-performing players make small changes to their successful solutions (exploitation), while poorly performing players are willing to make more dramatic changes (exploration). As a collective, the players nicely balance exploration and exploitation. How they do so provides valuable inspiration to researchers trying to understand human problem solving in social science as well as to those designing new AI algorithms.

How could mere amateurs outperform experienced experimental physicists? The players certainly weren’t better at physics than the experts—but they could do better because of the way in which the problem was posed. By turning the research challenge into a game, we gave players the chance to explore solutions that had previously required complex programming to study. Indeed, even expert experimentalists improved their solutions dramatically by using this interface.

Insight into why that’s possible can probably be found in the words of the late economics Nobel laureate Herbert A. Simon: “Solving a problem simply means representing it so as to make the solution transparent [PDF].” Apparently, that’s what our games can do with their novel user interfaces. We believe that such interfaces might be a key to using human creativity to solve other complex research problems.

Eventually, we’d like to get a better understanding of why this kind of gamification works as well as it does. A first step would be to collect more data on what the players do while they are playing. But even with massive amounts of data, detecting the subtle patterns underlying human intuition is an overwhelming challenge. To advance, we need a deeper insight into the cognition of the individual players.

As a step forward toward this goal, ScienceAtHome created Skill Lab: Science Detective, a suite of minigames exploring visuospatial reasoning, response inhibition, reaction times, and other basic cognitive skills. Then we compare players’ performance in the games with how well these same people did on established psychological tests of those abilities. The point is to allow players to assess their own cognitive strengths and weaknesses while donating their data for further public research.

In the fall of 2018 we launched a prototype of this large-scale profiling in collaboration with the Danish Broadcasting Corp. Since then more than 20,000 people have participated, and in part because of the publicity granted by the public-service channel, participation has been very evenly distributed across ages and by gender. Such broad appeal is rare in social science, where the test population is typically drawn from a very narrow demographic, such as college students.

Never before has such a large academic experiment in human cognition been conducted. We expect to gain new insights into many things, among them how combinations of cognitive abilities sharpen or decline with age, what characteristics may be used to prescreen for mental illnesses, and how to optimize the building of teams in our work lives.

And so what started as a fun exercise in the weird world of quantum mechanics has now become an exercise in understanding the nuances of what makes us human. While we still seek to understand atoms, we can now aspire to understand people’s minds as well.

This article appears in the November 2019 print issue as “A Man-Machine Mind Meld for Quantum Computing.”

About the Authors
Ottó Elíasson, Carrie Weidner, Janet Rafner, and Shaeema Zaman Ahmed work with the ScienceAtHome project at Aarhus University in Denmark. Continue reading

Posted in Human Robots