Tag Archives: The Humanoid

#437423 Robonaut2 joins ISS (2011)

Space Shuttle Discovery carried the humanoid robot Robonaut2 (also known as R2) to the International Space Station (ISS) as part of STS-133. Robonaut2 originally consisted only of a torso, made out of nickel-plated carbon fiber and aluminum. A pair of … Continue reading

Posted in Human Robots

#437091 India’s half-sized space humanoid

On January 23, 2020, the Indian Space Research Organisation (ISRO) introduced Vyommitra, a female half-humanoid (only a torso, no legs). She is able to perform switch panel operations, environment control and life support system functions, and is able to recognize … Continue reading

Posted in Human Robots

#437805 Video Friday: Quadruped Robot HyQ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Four-legged HyQ balancing on two legs. Nice results from the team at IIT’s Dynamic Legged Systems Lab. And we can’t wait to see the “ninja walk,” currently shown in simulation, implemented with the real robot!

The development of balance controllers for legged robots with point feet remains a challenge when they have to traverse extremely constrained environments. We present a balance controller that has the potential to achieve line walking for quadruped robots. Our initial experiments show the 90-kg robot HyQ balancing on two feet and recovering from external pushes, as well as some changes in posture achieved without losing balance.

[ IIT ]

Thanks Victor!

Ava Robotics’ telepresence robot has been beheaded by MIT, and it now sports a coronavirus-destroying UV array.

UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation. The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.

[ MIT ]

While it’s hard enough to get quadrupedal robots to walk in complex environments, this work from the Robotic Systems Lab at ETH Zurich shows some impressive whole body planning that allows ANYmal to squeeze its body through small or weirdly shaped spaces.

[ RSL ]

Engineering researchers at North Carolina State University and Temple University have developed soft robots inspired by jellyfish that can outswim their real-life counterparts. More practically, the new jellyfish-bots highlight a technique that uses pre-stressed polymers to make soft robots more powerful.

The researchers also used the technique to make a fast-moving robot that resembles a larval insect curling its body, then jumping forward as it quickly releases its stored energy. Lastly, the researchers created a three-pronged gripping robot – with a twist. Most grippers hang open when “relaxed,” and require energy to hold on to their cargo as it is lifted and moved from point A to point B. But this claw’s default position is clenched shut. Energy is required to open the grippers, but once they’re in position, the grippers return to their “resting” mode – holding their cargo tight.

[ NC State ]

As control skills increase, we are more and more impressed by what a Cassie bipedal robot can do. Those who have been following our channel, know that we always show the limitations of our work. So while there is still much to do, you gotta like the direction things are going. Later this year, you will see this controller integrated with our real-time planner and perception system. Autonomy with agility! Watch out for us!

[ University of Michigan ]

GITAI’s S1 arm is a little less exciting than their humanoid torso, but it looks like this one might actually be going to the ISS next year.

Here’s how the humanoid would handle a similar task:

[ GITAI ]

Thanks Fan!

If you need a robot that can lift 250 kg at 10 m/s across a workspace of a thousand cubic meters, here’s your answer.

[ Fraunhofer ]

Penn engineers with funding from the National Science Foundation, have nanocardboard plates able to levitate when bright light is shone on them. This fleet of tiny aircraft could someday explore the skies of other worlds, including Mars. The thinner atmosphere there would give the flyers a boost, enabling them to carry payloads ten times as massive as they are, making them an efficient, light-weight alternative to the Mars helicopter.

[ UPenn ]

Erin Sparks, assistant professor in Plant and Soil Sciences, dreamed of a robot she could use in her research. A perfect partnership was formed when Adam Stager, then a mechanical engineering Ph.D. student, reached out about a robot he had a gut feeling might be useful in agriculture. The pair moved forward with their research with corn at the UD Farm, using the robot to capture dynamic phenotyping information of brace roots over time.

[ Sparks Lab ]

This is a video about robot spy turtles but OMG that bird drone landing gear.

[ PBS ]

If you have a DJI Mavic, you now have something new to worry about.

[ DroGone ]

I was able to spot just one single person in the warehouse footage in this video.

[ Berkshire Grey ]

Flyability has partnered with the ROBINS Project to help fill gaps in the technology used in ship inspections. Watch this video to learn more about the ROBINS project and how Flyability’s drones for confined spaces are helping make inspections on ships safer, cheaper, and more efficient.

[ Flyability ]

In this video, a mission of the Alpha Aerial Scout of Team CERBERUS during the DARPA Subterranean Challenge Urban Circuit event is presented. The Alpha Robot operates inside the Satsop Abandoned Power Plant and performs autonomous exploration. This deployment took place during the 3rd field trial of team CERBERUS during the Urban Circuit event of the DARPA Subterranean Challenge.

[ ARL ]

More excellent talks from the remote Legged Robots ICRA workshop- we’ve posted three here, but there are several other good talks this week as well.

[ ICRA 2020 Legged Robots Workshop ] Continue reading

Posted in Human Robots

#437608 Video Friday: Agility Robotics Raises ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Digit is now in full commercial production and we’re excited to announce a $20M funding rounding round co-led by DCVC and Playground Global!

Digits for everyone!

[ Agility Robotics ]

A flexible rover that has both ability to travel long distances and rappel down hard-to-reach areas of scientific interest has undergone a field test in the Mojave Desert in California to showcase its versatility. Composed of two Axel robots, DuAxel is designed to explore crater walls, pits, scarps, vents and other extreme terrain on the moon, Mars and beyond.

This technology demonstration developed at NASA’s Jet Propulsion Laboratory in Southern California showcases the robot’s ability to split in two and send one of its halves — a two-wheeled Axle robot — over an otherwise inaccessible slope, using a tether as support and to supply power.

The rappelling Axel can then autonomously seek out areas to study, safely overcome slopes and rocky obstacles, and then return to dock with its other half before driving to another destination. Although the rover doesn’t yet have a mission, key technologies are being developed that might, one day, help us explore the rocky planets and moons throughout the solar system.

[ JPL ]

A rectangular robot as tiny as a few human hairs can travel throughout a colon by doing back flips, Purdue University engineers have demonstrated in live animal models. Why the back flips? Because the goal is to use these robots to transport drugs in humans, whose colons and other organs have rough terrain. Side flips work, too. Why a back-flipping robot to transport drugs? Getting a drug directly to its target site could remove side effects, such as hair loss or stomach bleeding, that the drug may otherwise cause by interacting with other organs along the way.

[ Purdue ]

This video shows the latest results in the whole-body locomotion control of the humanoid robot iCub achieved by the Dynamic Interaction Control line at IIT-Istituto Italiano di Tecnologia in Genova (Italy). In particular, the iCub now keeps the balance while walking and receiving pushes from an external user. The implemented control algorithms also ensure the robot to remain compliant during locomotion and human-robot interaction, a fundamental property to lower the possibility to harm humans that share the robot surrounding environment.

This is super impressive, considering that iCub was only able to crawl and was still tethered not too long ago. Also, it seems to be blinking properly now, so it doesn’t look like it’s always sleepy.

[ IIT ]

This video shows a set of new tests we performed on Bolt. We conducted tests on 5 different scenarios, 1) walking forward/backward 2) uneven surface 3) soft surface 4) push recovery 5) slippage recovery. Thanks to our feedback control based on Model Predictive Control, the robot can perform walking in the presence of all these uncertainties. We will open-source all the codes in a near future.

[ ODRI ]

The title of this video is “Can you throw your robot into a lake?” The title of this video should be, “Can you throw your robot into a lake and drive it out again?”

[ Norlab ]

AeroVironment Successfully Completes Sunglider Solar HAPS Stratospheric Test Flight, Surpassing 60,000 Feet Altitude and Demonstrating Broadband Mobile Connectivity.

[ AeroVironment ]

We present CoVR, a novel robotic interface providing strong kinesthetic feedback (100 N) in a room-scale VR arena. It consists of a physical column mounted on a 2D Cartesian ceiling robot (XY displacements) with the capacity of (1) resisting to body-scaled users actions such as pushing or leaning; (2) acting on the users by pulling or transporting them as well as (3) carrying multiple potentially heavy objects (up to 80kg) that users can freely manipulate or make interact with each other.

[ DeepAI ]

In a new video, personnel from Swiss energy supply company Kraftwerke Oberhasli AG (KWO) explain how they were able to keep employees out of harm’s way by using Flyability’s Elios 2 to collect visual data while building a new dam.

[ Flyability ]

Enjoy our Ascento robot fail compilation! With every failure we experience, we learn more and we can improve our robot for its next iteration, which will come soon… Stay tuned for more!

FYI posting a robot fails video will pretty much guarantee you a spot in Video Friday!

[ Ascento ]

Humans are remarkably good at using chopsticks. The Guinness World Record witnessed a person using chopsticks to pick up 65 M&Ms in just a minute. We aim to collect demonstrations from humans and to teach robot to use chopsticks.

[ UW Personal Robotics Lab ]

A surprising amount of personality from these Yaskawa assembly robots.

[ Yaskawa ]

This paper presents the system design, modeling, and control of the Aerial Robotic Chain Manipulator. This new robot design offers the potential to exert strong forces and moments to the environment, carry and lift significant payloads, and simultaneously navigate through narrow corridors. The presented experimental studies include a valve rotation task, a pick-and-release task, and the verification of load oscillation suppression to demonstrate the stability and performance of the system.

[ ARL ]

Whether animals or plants, whether in the water, on land or in the air, nature provides the model for many technical innovations and inventions. This is summed up in the term bionics, which is a combination of the words ‘biology‘ and ‘electronics’. At Festo, learning from nature has a long history, as our Bionic Learning Network is based on using nature as the source for future technologies like robots, assistance systems or drive solutions.

[ Festo ]

Dogs! Selfies! Thousands of LEGO bricks! This video has it all.

[ LEGO ]

An IROS workshop talk on “Cassie and Mini Cheetah Autonomy” by Maani Ghaffari and Jessy Grizzle from the University of Michigan.

[ Michigan Robotics ]

David Schaefer’s Cozmo robots are back with this mind-blowing dance-off!

What you just saw represents hundreds of hours of work, David tells us: “I wrote over 10,000 lines of code to create the dance performance as I had to translate the beats per minute of the song into motor rotations in order to get the right precision needed to make the moves look sharp. The most challenging move was the SpongeBob SquareDance as any misstep would send the Cozmos crashing into each other. LOL! Fortunately for me, Cozmo robots are pretty resilient.”

[ Life with Cozmo ]

Thanks David!

This week’s GRASP on Robotics seminar is by Sangbae Kim from MIT, on “Robots with Physical Intelligence.”

While industrial robots are effective in repetitive, precise kinematic tasks in factories, the design and control of these robots are not suited for physically interactive performance that humans do easily. These tasks require ‘physical intelligence’ through complex dynamic interactions with environments whereas conventional robots are designed primarily for position control. In order to develop a robot with ‘physical intelligence’, we first need a new type of machines that allow dynamic interactions. This talk will discuss how the new design paradigm allows dynamic interactive tasks. As an embodiment of such a robot design paradigm, the latest version of the MIT Cheetah robots and force-feedback teleoperation arms will be presented.

[ GRASP ]

This week’s CMU Ri Seminar is by Kevin Lynch from Northwestern, on “Robotics and Biosystems.”

Research at the Center for Robotics and Biosystems at Northwestern University encompasses bio-inspiration, neuromechanics, human-machine systems, and swarm robotics, among other topics. In this talk I will give an overview of some of our recent work on in-hand manipulation, robot locomotion on yielding ground, and human-robot systems.

[ CMU RI ] Continue reading

Posted in Human Robots

#435681 Video Friday: This NASA Robot Uses ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Let us know if you have suggestions for next week, and enjoy today’s videos.

Robots can land on the Moon and drive on Mars, but what about the places they can’t reach? Designed by engineers as NASA’s Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence to find its way around obstacles. In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff, scanning the rock for ancient fossils from the sea that once filled the area.

The LEMUR project has since concluded, but it helped lead to a new generation of walking, climbing and crawling robots. In future missions to Mars or icy moons, robots with AI and climbing technology derived from LEMUR could discover similar signs of life. Those robots are being developed now, honing technology that may one day be part of future missions to distant worlds.

[ NASA ]

This video demonstrates the autonomous footstep planning developed by IHMC. Robots in this video are the Atlas humanoid robot (DRC version) and the NASA Valkyrie. The operator specifies a goal location in the world, which is modeled as planar regions using the robot’s perception sensors. The planner then automatically computes the necessary steps to reach the goal using a Weighted A* algorithm. The algorithm does not reject footholds that have a certain amount of support, but instead modifies them after the plan is found to try and increase that support area.

Currently, narrow terrain has a success rate of about 50%, rough terrain is about 90%, whereas flat ground is near 100%. We plan on increasing planner speed and the ability to plan through mazes and to unseen goals by including a body-path planner as the first step. Control, Perception, and Planning algorithms by IHMC Robotics.

[ IHMC ]

I’ve never really been able to get into watching people play poker, but throw an AI from CMU and Facebook into a game of no-limit Texas hold’em with five humans, and I’m there.

[ Facebook ]

In this video, Cassie Blue is navigating autonomously. Right now, her world is very small, the Wavefield at the University of Michigan, where she is told to turn left at intersections. You’re right, that is not a lot of independence, but it’s a first step away from a human and an RC controller!

Using a RealSense RGBD Camera, an IMU, and our version of an InEKF with contact factors, Cassie Blue is building a 3D semantic map in real time that identifies sidewalks, grass, poles, bicycles, and buildings. From the semantic map, occupancy and cost maps are built with the sidewalk identified as walk-able area and everything else considered as an obstacle. A planner then sets a goal to stay approximately 50 cm to the right of the sidewalk’s left edge and plans a path around obstacles and corners using D*. The path is translated into way-points that are achieved via Cassie Blue’s gait controller.

[ University of Michigan ]

Thanks Jesse!

Dave from HEBI Robotics wrote in to share some new actuators that are designed to get all kinds of dirty: “The R-Series takes HEBI’s X-Series to the next level, providing a sealed robotics solution for rugged, industrial applications and laying the groundwork for industrial users to address challenges that are not well met by traditional robotics. To prove it, we shot some video right in the Allegheny River here in Pittsburgh. Not a bad way to spend an afternoon :-)”

The R-Series Actuator is a full-featured robotic component as opposed to a simple servo motor. The output rotates continuously, requires no calibration or homing on boot-up, and contains a thru-bore for easy daisy-chaining of wiring. Modular in nature, R-Series Actuators can be used in everything from wheeled robots to collaborative robotic arms. They are sealed to IP67 and designed with a lightweight form factor for challenging field applications, and they’re packed with sensors that enable simultaneous control of position, velocity, and torque.

[ HEBI Robotics ]

Thanks Dave!

If your robot hands out karate chops on purpose, that’s great. If it hands out karate chops accidentally, maybe you should fix that.

COVR is short for “being safe around collaborative and versatile robots in shared spaces”. Our mission is to significantly reduce the complexity in safety certifying cobots. Increasing safety for collaborative robots enables new innovative applications, thus increasing production and job creation for companies utilizing the technology. Whether you’re an established company seeking to deploy cobots or an innovative startup with a prototype of a cobot related product, COVR will help you analyze, test and validate the safety for that application.

[ COVR ]

Thanks Anna!

EPFL startup Flybotix has developed a novel drone with just two propellers and an advanced stabilization system that allow it to fly for twice as long as conventional models. That fact, together with its small size, makes it perfect for inspecting hard-to-reach parts of industrial facilities such as ducts.

[ Flybotix ]

SpaceBok is a quadruped robot designed and built by a Swiss student team from ETH Zurich and ZHAW Zurich, currently being tested using Automation and Robotics Laboratories (ARL) facilities at our technical centre in the Netherlands. The robot is being used to investigate the potential of ‘dynamic walking’ and jumping to get around in low gravity environments.

SpaceBok could potentially go up to 2 m high in lunar gravity, although such a height poses new challenges. Once it comes off the ground the legged robot needs to stabilise itself to come down again safely – like a mini-spacecraft. So, like a spacecraft. SpaceBok uses a reaction wheel to control its orientation.

[ ESA ]

A new video from GITAI showing progress on their immersive telepresence robot for space.

[ GITAI ]

Tech United’s HERO robot (a Toyota HSR) competed in the RoboCup@Home competition, and it had a couple of garbage-related hiccups.

[ Tech United ]

Even small drones are getting better at autonomous obstacle avoidance in cluttered environments at useful speeds, as this work from the HKUST Aerial Robotics Group shows.

[ HKUST ]

DelFly Nimbles now come in swarms.

[ DelFly Nimble ]

This is a very short video, but it’s a fairly impressive look at a Baxter robot collaboratively helping someone put a shirt on, a useful task for folks with disabilities.

[ Shibata Lab ]

ANYmal can inspect the concrete in sewers for deterioration by sliding its feet along the ground.

[ ETH Zurich ]

HUG is a haptic user interface for teleoperating advanced robotic systems as the humanoid robot Justin or the assistive robotic system EDAN. With its lightweight robot arms, HUG can measure human movements and simultaneously display forces from the distant environment. In addition to such teleoperation applications, HUG serves as a research platform for virtual assembly simulations, rehabilitation, and training.

[ DLR ]

This video about “image understanding” from CMU in 1979 (!) is amazing, and even though it’s long, you won’t regret watching until 3:30. Or maybe you will.

[ ARGOS (pdf) ]

Will Burrard-Lucas’ BeetleCam turned 10 this month, and in this video, he recounts the history of his little robotic camera.

[ BeetleCam ]

In this week’s episode of Robots in Depth, Per speaks with Gabriel Skantze from Furhat Robotics.

Gabriel Skantze is co-founder and Chief Scientist at Furhat Robotics and Professor in speech technology at KTH with a specialization in conversational systems. He has a background in research into how humans use spoken communication to interact.

In this interview, Gabriel talks about how the social robot revolution makes it necessary to communicate with humans in a human ways through speech and facial expressions. This is necessary as we expand the number of people that interact with robots as well as the types of interaction. Gabriel gives us more insight into the many challenges of implementing spoken communication for co-bots, where robots and humans work closely together. They need to communicate about the world, the objects in it and how to handle them. We also get to hear how having an embodied system using the Furhat robot head helps the interaction between humans and the system.

[ Robots in Depth ] Continue reading

Posted in Human Robots