Tag Archives: the brain

#431385 Here’s How to Get to Conscious ...

“We cannot be conscious of what we are not conscious of.” – Julian Jaynes, The Origin of Consciousness in the Breakdown of the Bicameral Mind
Unlike the director leads you to believe, the protagonist of Ex Machina, Andrew Garland’s 2015 masterpiece, isn’t Caleb, a young programmer tasked with evaluating machine consciousness. Rather, it’s his target Ava, a breathtaking humanoid AI with a seemingly child-like naïveté and an enigmatic mind.
Like most cerebral movies, Ex Machina leaves the conclusion up to the viewer: was Ava actually conscious? In doing so, it also cleverly avoids a thorny question that has challenged most AI-centric movies to date: what is consciousness, and can machines have it?
Hollywood producers aren’t the only people stumped. As machine intelligence barrels forward at breakneck speed—not only exceeding human performance on games such as DOTA and Go, but doing so without the need for human expertise—the question has once more entered the scientific mainstream.
Are machines on the verge of consciousness?
This week, in a review published in the prestigious journal Science, cognitive scientists Drs. Stanislas Dehaene, Hakwan Lau and Sid Kouider of the Collège de France, University of California, Los Angeles and PSL Research University, respectively, argue: not yet, but there is a clear path forward.
The reason? Consciousness is “resolutely computational,” the authors say, in that it results from specific types of information processing, made possible by the hardware of the brain.
There is no magic juice, no extra spark—in fact, an experiential component (“what is it like to be conscious?”) isn’t even necessary to implement consciousness.
If consciousness results purely from the computations within our three-pound organ, then endowing machines with a similar quality is just a matter of translating biology to code.
Much like the way current powerful machine learning techniques heavily borrow from neurobiology, the authors write, we may be able to achieve artificial consciousness by studying the structures in our own brains that generate consciousness and implementing those insights as computer algorithms.
From Brain to Bot
Without doubt, the field of AI has greatly benefited from insights into our own minds, both in form and function.
For example, deep neural networks, the architecture of algorithms that underlie AlphaGo’s breathtaking sweep against its human competitors, are loosely based on the multi-layered biological neural networks that our brain cells self-organize into.
Reinforcement learning, a type of “training” that teaches AIs to learn from millions of examples, has roots in a centuries-old technique familiar to anyone with a dog: if it moves toward the right response (or result), give a reward; otherwise ask it to try again.
In this sense, translating the architecture of human consciousness to machines seems like a no-brainer towards artificial consciousness. There’s just one big problem.
“Nobody in AI is working on building conscious machines because we just have nothing to go on. We just don’t have a clue about what to do,” said Dr. Stuart Russell, the author of Artificial Intelligence: A Modern Approach in a 2015 interview with Science.
Multilayered consciousness
The hard part, long before we can consider coding machine consciousness, is figuring out what consciousness actually is.
To Dehaene and colleagues, consciousness is a multilayered construct with two “dimensions:” C1, the information readily in mind, and C2, the ability to obtain and monitor information about oneself. Both are essential to consciousness, but one can exist without the other.
Say you’re driving a car and the low fuel light comes on. Here, the perception of the fuel-tank light is C1—a mental representation that we can play with: we notice it, act upon it (refill the gas tank) and recall and speak about it at a later date (“I ran out of gas in the boonies!”).
“The first meaning we want to separate (from consciousness) is the notion of global availability,” explains Dehaene in an interview with Science. When you’re conscious of a word, your whole brain is aware of it, in a sense that you can use the information across modalities, he adds.
But C1 is not just a “mental sketchpad.” It represents an entire architecture that allows the brain to draw multiple modalities of information from our senses or from memories of related events, for example.
Unlike subconscious processing, which often relies on specific “modules” competent at a defined set of tasks, C1 is a global workspace that allows the brain to integrate information, decide on an action, and follow through until the end.
Like The Hunger Games, what we call “conscious” is whatever representation, at one point in time, wins the competition to access this mental workspace. The winners are shared among different brain computation circuits and are kept in the spotlight for the duration of decision-making to guide behavior.
Because of these features, C1 consciousness is highly stable and global—all related brain circuits are triggered, the authors explain.
For a complex machine such as an intelligent car, C1 is a first step towards addressing an impending problem, such as a low fuel light. In this example, the light itself is a type of subconscious signal: when it flashes, all of the other processes in the machine remain uninformed, and the car—even if equipped with state-of-the-art visual processing networks—passes by gas stations without hesitation.
With C1 in place, the fuel tank would alert the car computer (allowing the light to enter the car’s “conscious mind”), which in turn checks the built-in GPS to search for the next gas station.
“We think in a machine this would translate into a system that takes information out of whatever processing module it’s encapsulated in, and make it available to any of the other processing modules so they can use the information,” says Dehaene. “It’s a first sense of consciousness.”
Meta-cognition
In a way, C1 reflects the mind’s capacity to access outside information. C2 goes introspective.
The authors define the second facet of consciousness, C2, as “meta-cognition:” reflecting on whether you know or perceive something, or whether you just made an error (“I think I may have filled my tank at the last gas station, but I forgot to keep a receipt to make sure”). This dimension reflects the link between consciousness and sense of self.
C2 is the level of consciousness that allows you to feel more or less confident about a decision when making a choice. In computational terms, it’s an algorithm that spews out the probability that a decision (or computation) is correct, even if it’s often experienced as a “gut feeling.”
C2 also has its claws in memory and curiosity. These self-monitoring algorithms allow us to know what we know or don’t know—so-called “meta-memory,” responsible for that feeling of having something at the tip of your tongue. Monitoring what we know (or don’t know) is particularly important for children, says Dehaene.
“Young children absolutely need to monitor what they know in order to…inquire and become curious and learn more,” he explains.
The two aspects of consciousness synergize to our benefit: C1 pulls relevant information into our mental workspace (while discarding other “probable” ideas or solutions), while C2 helps with long-term reflection on whether the conscious thought led to a helpful response.
Going back to the low fuel light example, C1 allows the car to solve the problem in the moment—these algorithms globalize the information, so that the car becomes aware of the problem.
But to solve the problem, the car would need a “catalog of its cognitive abilities”—a self-awareness of what resources it has readily available, for example, a GPS map of gas stations.
“A car with this sort of self-knowledge is what we call having C2,” says Dehaene. Because the signal is globally available and because it’s being monitored in a way that the machine is looking at itself, the car would care about the low gas light and behave like humans do—lower fuel consumption and find a gas station.
“Most present-day machine learning systems are devoid of any self-monitoring,” the authors note.
But their theory seems to be on the right track. The few examples whereby a self-monitoring system was implemented—either within the structure of the algorithm or as a separate network—the AI has generated “internal models that are meta-cognitive in nature, making it possible for an agent to develop a (limited, implicit, practical) understanding of itself.”
Towards conscious machines
Would a machine endowed with C1 and C2 behave as if it were conscious? Very likely: a smartcar would “know” that it’s seeing something, express confidence in it, report it to others, and find the best solutions for problems. If its self-monitoring mechanisms break down, it may also suffer “hallucinations” or even experience visual illusions similar to humans.
Thanks to C1 it would be able to use the information it has and use it flexibly, and because of C2 it would know the limit of what it knows, says Dehaene. “I think (the machine) would be conscious,” and not just merely appearing so to humans.
If you’re left with a feeling that consciousness is far more than global information sharing and self-monitoring, you’re not alone.
“Such a purely functional definition of consciousness may leave some readers unsatisfied,” the authors acknowledge.
“But we’re trying to take a radical stance, maybe simplifying the problem. Consciousness is a functional property, and when we keep adding functions to machines, at some point these properties will characterize what we mean by consciousness,” Dehaene concludes.
Image Credit: agsandrew / Shutterstock.com Continue reading

Posted in Human Robots

#431189 Researchers Develop New Tech to Predict ...

It is one of the top 10 deadliest diseases in the United States, and it cannot be cured or prevented. But new studies are finding ways to diagnose Alzheimer’s disease in its earliest stages, while some of the latest research says technologies like artificial intelligence can detect dementia years before the first symptoms occur.
These advances, in turn, will help bolster clinical trials seeking a cure or therapies to slow or prevent the disease. Catching Alzheimer’s disease or other forms of dementia early in their progression can help ease symptoms in some cases.
“Often neurodegeneration is diagnosed late when massive brain damage has already occurred,” says professor Francis L Martin at the University of Central Lancashire in the UK, in an email to Singularity Hub. “As we know more about the molecular basis of the disease, there is the possibility of clinical interventions that might slow or halt the progress of the disease, i.e., before brain damage. Extending cognitive ability for even a number of years would have huge benefit.”
Blood Diamond
Martin is the principal investigator on a project that has developed a technique to analyze blood samples to diagnose Alzheimer’s disease and distinguish between other forms of dementia.
The researchers used sensor-based technology with a diamond core to analyze about 550 blood samples. They identified specific chemical bonds within the blood after passing light through the diamond core and recording its interaction with the sample. The results were then compared against blood samples from cases of Alzheimer’s disease and other neurodegenerative diseases, along with those from healthy individuals.
“From a small drop of blood, we derive a fingerprint spectrum. That fingerprint spectrum contains numerical data, which can be inputted into a computational algorithm we have developed,” Martin explains. “This algorithm is validated for prediction of unknown samples. From this we determine sensitivity and specificity. Although not perfect, my clinical colleagues reliably tell me our results are far better than anything else they have seen.”
Martin says the breakthrough is the result of more than 10 years developing sensor-based technologies for routine screening, monitoring, or diagnosing neurodegenerative diseases and cancers.
“My vision was to develop something low-cost that could be readily applied in a typical clinical setting to handle thousands of samples potentially per day or per week,” he says, adding that the technology also has applications in environmental science and food security.
The new test can also distinguish accurately between Alzheimer’s disease and other forms of neurodegeneration, such as Lewy body dementia, which is one of the most common causes of dementia after Alzheimer’s.
“To this point, other than at post-mortem, there has been no single approach towards classifying these pathologies,” Martin notes. “MRI scanning is often used but is labor-intensive, costly, difficult to apply to dementia patients, and not a routine point-of-care test.”
Crystal Ball
Canadian researchers at McGill University believe they can predict Alzheimer’s disease up to two years before its onset using big data and artificial intelligence. They developed an algorithm capable of recognizing the signatures of dementia using a single amyloid PET scan of the brain of patients at risk of developing the disease.
Alzheimer’s is caused by the accumulation of two proteins—amyloid beta and tau. The latest research suggests that amyloid beta leads to the buildup of tau, which is responsible for damaging nerve cells and connections between cells called synapses.
The work was recently published in the journal Neurobiology of Aging.
“Despite the availability of biomarkers capable of identifying the proteins causative of Alzheimer’s disease in living individuals, the current technologies cannot predict whether carriers of AD pathology in the brain will progress to dementia,” Sulantha Mathotaarachchi, lead author on the paper and an expert in artificial neural networks, tells Singularity Hub by email.
The algorithm, trained on a population with amnestic mild cognitive impairment observed over 24 months, proved accurate 84.5 percent of the time. Mathotaarachchi says the algorithm can be trained on different populations for different observational periods, meaning the system can grow more comprehensive with more data.
“The more biomarkers we incorporate, the more accurate the prediction could be,” Mathotaarachchi adds. “However, right now, acquiring [the] required amount of training data is the biggest challenge. … In Alzheimer’s disease, it is known that the amyloid protein deposition occurs decades before symptoms onset.”
Unfortunately, the same process occurs in normal aging as well. “The challenge is to identify the abnormal patterns of deposition that lead to the disease later on,” he says
One of the key goals of the project is to improve the research in Alzheimer’s disease by ensuring those patients with the highest probability to develop dementia are enrolled in clinical trials. That will increase the efficiency of clinical programs, according to Mathotaarachchi.
“One of the most important outcomes from our study was the pilot, online, real-time prediction tool,” he says. “This can be used as a framework for patient screening before recruiting for clinical trials. … If a disease-modifying therapy becomes available for patients, a predictive tool might have clinical applications as well, by providing to the physician information regarding clinical progression.”
Pixel by Pixel Prediction
Private industry is also working toward improving science’s predictive powers when it comes to detecting dementia early. One startup called Darmiyan out of San Francisco claims its proprietary software can pick up signals before the onset of Alzheimer’s disease by up to 15 years.
Darmiyan didn’t respond to a request for comment for this article. Venture Beat reported that the company’s MRI-analyzing software “detects cell abnormalities at a microscopic level to reveal what a standard MRI scan cannot” and that the “software measures and highlights subtle microscopic changes in the brain tissue represented in every pixel of the MRI image long before any symptoms arise.”
Darmiyan claims to have a 90 percent accuracy rate and says its software has been vetted by top academic institutions like New York University, Rockefeller University, and Stanford, according to Venture Beat. The startup is awaiting FDA approval to proceed further but is reportedly working with pharmaceutical companies like Amgen, Johnson & Johnson, and Pfizer on pilot programs.
“Our technology enables smarter drug selection in preclinical animal studies, better patient selection for clinical trials, and much better drug-effect monitoring,” Darmiyan cofounder and CEO Padideh Kamali-Zare told Venture Beat.
Conclusions
An estimated 5.5 million Americans have Alzheimer’s, and one in 10 people over age 65 have been diagnosed with the disease. By mid-century, the number of Alzheimer’s patients could rise to 16 million. Health care costs in 2017 alone are estimated to be $259 billion, and by 2050 the annual price tag could be more than $1 trillion.
In sum, it’s a disease that cripples people and the economy.
Researchers are always after more data as they look to improve outcomes, with the hope of one day developing a cure or preventing the onset of neurodegeneration altogether. If interested in seeing this medical research progress, you can help by signing up on the Brain Health Registry to improve the quality of clinical trials.
Image Credit: rudall30 / Shutterstock.com Continue reading

Posted in Human Robots

#431165 Intel Jumps Into Brain-Like Computing ...

The brain has long inspired the design of computers and their software. Now Intel has become the latest tech company to decide that mimicking the brain’s hardware could be the next stage in the evolution of computing.
On Monday the company unveiled an experimental “neuromorphic” chip called Loihi. Neuromorphic chips are microprocessors whose architecture is configured to mimic the biological brain’s network of neurons and the connections between them called synapses.
While neural networks—the in vogue approach to artificial intelligence and machine learning—are also inspired by the brain and use layers of virtual neurons, they are still implemented on conventional silicon hardware such as CPUs and GPUs.
The main benefit of mimicking the architecture of the brain on a physical chip, say neuromorphic computing’s proponents, is energy efficiency—the human brain runs on roughly 20 watts. The “neurons” in neuromorphic chips carry out the role of both processor and memory which removes the need to shuttle data back and forth between separate units, which is how traditional chips work. Each neuron also only needs to be powered while it’s firing.

At present, most machine learning is done in data centers due to the massive energy and computing requirements. Creating chips that capture some of nature’s efficiency could allow AI to be run directly on devices like smartphones, cars, and robots.
This is exactly the kind of application Michael Mayberry, managing director of Intel’s research arm, touts in a blog post announcing Loihi. He talks about CCTV cameras that can run image recognition to identify missing persons or traffic lights that can track traffic flow to optimize timing and keep vehicles moving.
There’s still a long way to go before that happens though. According to Wired, so far Intel has only been working with prototypes, and the first full-size version of the chip won’t be built until November.
Once complete, it will feature 130,000 neurons and 130 million synaptic connections split between 128 computing cores. The device will be 1,000 times more energy-efficient than standard approaches, according to Mayberry, but more impressive are claims the chip will be capable of continuous learning.
Intel’s newly launched self-learning neuromorphic chip.
Normally deep learning works by training a neural network on giant datasets to create a model that can then be applied to new data. The Loihi chip will combine training and inference on the same chip, which will allow it to learn on the fly, constantly updating its models and adapting to changing circumstances without having to be deliberately re-trained.
A select group of universities and research institutions will be the first to get their hands on the new chip in the first half of 2018, but Mayberry said it could be years before it’s commercially available. Whether commercialization happens at all may largely depend on whether early adopters can get the hardware to solve any practically useful problems.
So far neuromorphic computing has struggled to gain traction outside the research community. IBM released a neuromorphic chip called TrueNorth in 2014, but the device has yet to showcase any commercially useful applications.
Lee Gomes summarizes the hurdles facing neuromorphic computing excellently in IEEE Spectrum. One is that deep learning can run on very simple, low-precision hardware that can be optimized to use very little power, which suggests complicated new architectures may struggle to find purchase.
It’s also not easy to transfer deep learning approaches developed on conventional chips over to neuromorphic hardware, and even Intel Labs chief scientist Narayan Srinivasa admitted to Forbes Loihi wouldn’t work well with some deep learning models.
Finally, there’s considerable competition in the quest to develop new computer architectures specialized for machine learning. GPU vendors Nvidia and AMD have pivoted to take advantage of this newfound market and companies like Google and Microsoft are developing their own in-house solutions.
Intel, for its part, isn’t putting all its eggs in one basket. Last year it bought two companies building chips for specialized machine learning—Movidius and Nervana—and this was followed up with the $15 billion purchase of self-driving car chip- and camera-maker Mobileye.
And while the jury is still out on neuromorphic computing, it makes sense for a company eager to position itself as the AI chipmaker of the future to have its fingers in as many pies as possible. There are a growing number of voices suggesting that despite its undoubted power, deep learning alone will not allow us to imbue machines with the kind of adaptable, general intelligence humans possess.
What new approaches will get us there are hard to predict, but it’s entirely possible they will only work on hardware that closely mimics the one device we already know is capable of supporting this kind of intelligence—the human brain.
Image Credit: Intel Continue reading

Posted in Human Robots

#431142 Will Privacy Survive the Future?

Technological progress has radically transformed our concept of privacy. How we share information and display our identities has changed as we’ve migrated to the digital world.
As the Guardian states, “We now carry with us everywhere devices that give us access to all the world’s information, but they can also offer almost all the world vast quantities of information about us.” We are all leaving digital footprints as we navigate through the internet. While sometimes this information can be harmless, it’s often valuable to various stakeholders, including governments, corporations, marketers, and criminals.
The ethical debate around privacy is complex. The reality is that our definition and standards for privacy have evolved over time, and will continue to do so in the next few decades.
Implications of Emerging Technologies
Protecting privacy will only become more challenging as we experience the emergence of technologies such as virtual reality, the Internet of Things, brain-machine interfaces, and much more.
Virtual reality headsets are already gathering information about users’ locations and physical movements. In the future all of our emotional experiences, reactions, and interactions in the virtual world will be able to be accessed and analyzed. As virtual reality becomes more immersive and indistinguishable from physical reality, technology companies will be able to gather an unprecedented amount of data.
It doesn’t end there. The Internet of Things will be able to gather live data from our homes, cities and institutions. Drones may be able to spy on us as we live our everyday lives. As the amount of genetic data gathered increases, the privacy of our genes, too, may be compromised.
It gets even more concerning when we look farther into the future. As companies like Neuralink attempt to merge the human brain with machines, we are left with powerful implications for privacy. Brain-machine interfaces by nature operate by extracting information from the brain and manipulating it in order to accomplish goals. There are many parties that can benefit and take advantage of the information from the interface.
Marketing companies, for instance, would take an interest in better understanding how consumers think and consequently have their thoughts modified. Employers could use the information to find new ways to improve productivity or even monitor their employees. There will notably be risks of “brain hacking,” which we must take extreme precaution against. However, it is important to note that lesser versions of these risks currently exist, i.e., by phone hacking, identify fraud, and the like.
A New Much-Needed Definition of Privacy
In many ways we are already cyborgs interfacing with technology. According to theories like the extended mind hypothesis, our technological devices are an extension of our identities. We use our phones to store memories, retrieve information, and communicate. We use powerful tools like the Hubble Telescope to extend our sense of sight. In parallel, one can argue that the digital world has become an extension of the physical world.
These technological tools are a part of who we are. This has led to many ethical and societal implications. Our Facebook profiles can be processed to infer secondary information about us, such as sexual orientation, political and religious views, race, substance use, intelligence, and personality. Some argue that many of our devices may be mapping our every move. Your browsing history could be spied on and even sold in the open market.
While the argument to protect privacy and individuals’ information is valid to a certain extent, we may also have to accept the possibility that privacy will become obsolete in the future. We have inherently become more open as a society in the digital world, voluntarily sharing our identities, interests, views, and personalities.

“The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental?”

There also seems to be a contradiction with the positive trend towards mass transparency and the need to protect privacy. Many advocate for a massive decentralization and openness of information through mechanisms like blockchain.
The question we are left with is, at what point does the tradeoff between transparency and privacy become detrimental? We want to live in a world of fewer secrets, but also don’t want to live in a world where our every move is followed (not to mention our every feeling, thought and interaction). So, how do we find a balance?
Traditionally, privacy is used synonymously with secrecy. Many are led to believe that if you keep your personal information secret, then you’ve accomplished privacy. Danny Weitzner, director of the MIT Internet Policy Research Initiative, rejects this notion and argues that this old definition of privacy is dead.
From Witzner’s perspective, protecting privacy in the digital age means creating rules that require governments and businesses to be transparent about how they use our information. In other terms, we can’t bring the business of data to an end, but we can do a better job of controlling it. If these stakeholders spy on our personal information, then we should have the right to spy on how they spy on us.
The Role of Policy and Discourse
Almost always, policy has been too slow to adapt to the societal and ethical implications of technological progress. And sometimes the wrong laws can do more harm than good. For instance, in March, the US House of Representatives voted to allow internet service providers to sell your web browsing history on the open market.
More often than not, the bureaucratic nature of governance can’t keep up with exponential growth. New technologies are emerging every day and transforming society. Can we confidently claim that our world leaders, politicians, and local representatives are having these conversations and debates? Are they putting a focus on the ethical and societal implications of emerging technologies? Probably not.
We also can’t underestimate the role of public awareness and digital activism. There needs to be an emphasis on educating and engaging the general public about the complexities of these issues and the potential solutions available. The current solution may not be robust or clear, but having these discussions will get us there.
Stock Media provided by blasbike / Pond5 Continue reading

Posted in Human Robots

#431078 This Year’s Awesome Robot Stories From ...

Each week we scour the web for great articles and fascinating advances across our core topics, from AI to biotech and the brain. But robots have a special place in our hearts. This week, we took a look back at 2017 so far and unearthed a few favorite robots for your reading and viewing pleasure.
Tarzan the Swinging Robot Could Be the Future of FarmingMariella Moon | Engadget“Tarzan will be able to swing over crops using its 3D-printed claws and parallel guy-wires stretched over fields. It will then take measurements and pictures of each plant with its built-in camera while suspended…While it may take some time to achieve that goal, the researchers plan to start testing the robot soon.”
Grasping Robots Compete to Rule Amazon’s Warehouses Tom Simonite | Wired“Robots able to help with so-called picking tasks would boost Amazon’s efficiency—and make it much less reliant on human workers. It’s why the company has invited a motley crew of mechanical arms, grippers, suction cups—and their human handlers—to Nagoya, Japan, this week to show off their manipulation skills.”
Robots Learn to Speak Body LanguageAlyssa Pagano | IEEE Spectrum“One notable feature of the OpenPose system is that it can track not only a person’s head, torso, and limbs but also individual fingers. To do that, the researchers used CMU’s Panoptic Studio, a dome lined with 500 cameras, where they captured body poses at a variety of angles and then used those images to build a data set.”
I Watched Two Robots Chat Together on Stage at a Tech EventJon Russell | TechCrunch“The robots in question are Sophia and Han, and they belong to Hanson Robotics, a Hong Kong-based company that is developing and deploying artificial intelligence in humanoids. The duo took to the stage at Rise in Hong Kong with Hanson Robotics’ Chief Scientist Ben Goertzel directing the banter. The conversation, which was partially scripted, wasn’t as slick as the human-to-human panels at the show, but it was certainly a sight to behold for the packed audience.”
How This Japanese Robotics Master Is Building Better, More Human AndroidsHarry McCracken | Fast Company“On the tech side, making a robot look and behave like a person involves everything from electronics to the silicone Ishiguro’s team uses to simulate skin. ‘We have a technology to precisely control pneumatic actuators,’ he says, noting, as an example of what they need to re-create, that ‘the human shoulder has four degrees of freedom.’”
Stock Media provided by Besjunior / Pond5 Continue reading

Posted in Human Robots