Tag Archives: spot

#437805 Video Friday: Quadruped Robot HyQ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Four-legged HyQ balancing on two legs. Nice results from the team at IIT’s Dynamic Legged Systems Lab. And we can’t wait to see the “ninja walk,” currently shown in simulation, implemented with the real robot!

The development of balance controllers for legged robots with point feet remains a challenge when they have to traverse extremely constrained environments. We present a balance controller that has the potential to achieve line walking for quadruped robots. Our initial experiments show the 90-kg robot HyQ balancing on two feet and recovering from external pushes, as well as some changes in posture achieved without losing balance.

[ IIT ]

Thanks Victor!

Ava Robotics’ telepresence robot has been beheaded by MIT, and it now sports a coronavirus-destroying UV array.

UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation. The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.

[ MIT ]

While it’s hard enough to get quadrupedal robots to walk in complex environments, this work from the Robotic Systems Lab at ETH Zurich shows some impressive whole body planning that allows ANYmal to squeeze its body through small or weirdly shaped spaces.

[ RSL ]

Engineering researchers at North Carolina State University and Temple University have developed soft robots inspired by jellyfish that can outswim their real-life counterparts. More practically, the new jellyfish-bots highlight a technique that uses pre-stressed polymers to make soft robots more powerful.

The researchers also used the technique to make a fast-moving robot that resembles a larval insect curling its body, then jumping forward as it quickly releases its stored energy. Lastly, the researchers created a three-pronged gripping robot – with a twist. Most grippers hang open when “relaxed,” and require energy to hold on to their cargo as it is lifted and moved from point A to point B. But this claw’s default position is clenched shut. Energy is required to open the grippers, but once they’re in position, the grippers return to their “resting” mode – holding their cargo tight.

[ NC State ]

As control skills increase, we are more and more impressed by what a Cassie bipedal robot can do. Those who have been following our channel, know that we always show the limitations of our work. So while there is still much to do, you gotta like the direction things are going. Later this year, you will see this controller integrated with our real-time planner and perception system. Autonomy with agility! Watch out for us!

[ University of Michigan ]

GITAI’s S1 arm is a little less exciting than their humanoid torso, but it looks like this one might actually be going to the ISS next year.

Here’s how the humanoid would handle a similar task:

[ GITAI ]

Thanks Fan!

If you need a robot that can lift 250 kg at 10 m/s across a workspace of a thousand cubic meters, here’s your answer.

[ Fraunhofer ]

Penn engineers with funding from the National Science Foundation, have nanocardboard plates able to levitate when bright light is shone on them. This fleet of tiny aircraft could someday explore the skies of other worlds, including Mars. The thinner atmosphere there would give the flyers a boost, enabling them to carry payloads ten times as massive as they are, making them an efficient, light-weight alternative to the Mars helicopter.

[ UPenn ]

Erin Sparks, assistant professor in Plant and Soil Sciences, dreamed of a robot she could use in her research. A perfect partnership was formed when Adam Stager, then a mechanical engineering Ph.D. student, reached out about a robot he had a gut feeling might be useful in agriculture. The pair moved forward with their research with corn at the UD Farm, using the robot to capture dynamic phenotyping information of brace roots over time.

[ Sparks Lab ]

This is a video about robot spy turtles but OMG that bird drone landing gear.

[ PBS ]

If you have a DJI Mavic, you now have something new to worry about.

[ DroGone ]

I was able to spot just one single person in the warehouse footage in this video.

[ Berkshire Grey ]

Flyability has partnered with the ROBINS Project to help fill gaps in the technology used in ship inspections. Watch this video to learn more about the ROBINS project and how Flyability’s drones for confined spaces are helping make inspections on ships safer, cheaper, and more efficient.

[ Flyability ]

In this video, a mission of the Alpha Aerial Scout of Team CERBERUS during the DARPA Subterranean Challenge Urban Circuit event is presented. The Alpha Robot operates inside the Satsop Abandoned Power Plant and performs autonomous exploration. This deployment took place during the 3rd field trial of team CERBERUS during the Urban Circuit event of the DARPA Subterranean Challenge.

[ ARL ]

More excellent talks from the remote Legged Robots ICRA workshop- we’ve posted three here, but there are several other good talks this week as well.

[ ICRA 2020 Legged Robots Workshop ] Continue reading

Posted in Human Robots

#437769 Q&A: Facebook’s CTO Is at War With ...

Photo: Patricia de Melo Moreira/AFP/Getty Images

Facebook chief technology officer Mike Schroepfer leads the company’s AI and integrity efforts.

Facebook’s challenge is huge. Billions of pieces of content—short and long posts, images, and combinations of the two—are uploaded to the site daily from around the world. And any tiny piece of that—any phrase, image, or video—could contain so-called bad content.

In its early days, Facebook relied on simple computer filters to identify potentially problematic posts by their words, such as those containing profanity. These automatically filtered posts, as well as posts flagged by users as offensive, went to humans for adjudication.

In 2015, Facebook started using artificial intelligence to cull images that contained nudity, illegal goods, and other prohibited content; those images identified as possibly problematic were sent to humans for further review.

By 2016, more offensive photos were reported by Facebook’s AI systems than by Facebook users (and that is still the case).

In 2018, Facebook CEO Mark Zuckerberg made a bold proclamation: He predicted that within five or ten years, Facebook’s AI would not only look for profanity, nudity, and other obvious violations of Facebook’s policies. The tools would also be able to spot bullying, hate speech, and other misuse of the platform, and put an immediate end to them.

Today, automated systems using algorithms developed with AI scan every piece of content between the time when a user completes a post and when it is visible to others on the site—just fractions of a second. In most cases, a violation of Facebook’s standards is clear, and the AI system automatically blocks the post. In other cases, the post goes to human reviewers for a final decision, a workforce that includes 15,000 content reviewers and another 20,000 employees focused on safety and security, operating out of more than 20 facilities around the world.

In the first quarter of this year, Facebook removed or took other action (like appending a warning label) on more than 9.6 million posts involving hate speech, 8.6 million involving child nudity or exploitation, almost 8 million posts involving the sale of drugs, 2.3 million posts involving bullying and harassment, and tens of millions of posts violating other Facebook rules.

Right now, Facebook has more than 1,000 engineers working on further developing and implementing what the company calls “integrity” tools. Using these systems to screen every post that goes up on Facebook, and doing so in milliseconds, is sucking up computing resources. Facebook chief technology officer Mike Schroepfer, who is heading up Facebook’s AI and integrity efforts, spoke with IEEE Spectrum about the team’s progress on building an AI system that detects bad content.

Since that discussion, Facebook’s policies around hate speech have come under increasing scrutiny, with particular attention on divisive posts by political figures. A group of major advertisers in June announced that they would stop advertising on the platform while reviewing the situation, and civil rights groups are putting pressure on others to follow suit until Facebook makes policy changes related to hate speech and groups that promote hate, misinformation, and conspiracies.

Facebook CEO Mark Zuckerberg responded with news that Facebook will widen the category of what it considers hateful content in ads. Now the company prohibits claims that people from a specific race, ethnicity, national origin, religious affiliation, caste, sexual orientation, gender identity, or immigration status are a threat to the physical safety, health, or survival of others. The policy change also aims to better protect immigrants, migrants, refugees, and asylum seekers from ads suggesting these groups are inferior or expressing contempt. Finally, Zuckerberg announced that the company will label some problematic posts by politicians and government officials as content that violates Facebook’s policies.

However, civil rights groups say that’s not enough. And an independent audit released in July also said that Facebook needs to go much further in addressing civil rights concerns and disinformation.

Schroepfer indicated that Facebook’s AI systems are designed to quickly adapt to changes in policy. “I don’t expect considerable technical changes are needed to adjust,” he told Spectrum.

This interview has been edited and condensed for clarity.

IEEE Spectrum: What are the stakes of content moderation? Is this an existential threat to Facebook? And is it critical that you deal well with the issue of election interference this year?

Schroepfer: It’s probably existential; it’s certainly massive. We are devoting a tremendous amount of our attention to it.

The idea that anyone could meddle in an election is deeply disturbing and offensive to all of us here, just as people and citizens of democracies. We don’t want to see that happen anywhere, and certainly not on our watch. So whether it’s important to the company or not, it’s important to us as people. And I feel a similar way on the content-moderation side.

There are not a lot of easy choices here. The only way to prevent people, with certainty, from posting bad things is to not let them post anything. We can take away all voice and just say, “Sorry, the Internet’s too dangerous. No one can use it.” That will certainly get rid of all hate speech online. But I don’t want to end up in that world. And there are variants of that world that various governments are trying to implement, where they get to decide what’s true or not, and you as a person don’t. I don’t want to get there either.

My hope is that we can build a set of tools that make it practical for us to do a good enough job, so that everyone is still excited about the idea that anyone can share what they want, and so that Facebook is a safe and reasonable place for people to operate in.

Spectrum: You joined Facebook in 2008, before AI was part of the company’s toolbox. When did that change? When did you begin to think that AI tools would be useful to Facebook?

Schroepfer: Ten years ago, AI wasn’t commercially practical; the technology just didn’t work very well. In 2012, there was one of those moments that a lot of people point to as the beginning of the current revolution in deep learning and AI. A computer-vision model—a neural network—was trained using what we call supervised training, and it turned out to be better than all the existing models.

Spectrum: How is that training done, and how did computer-vision models come to Facebook?

Image: Facebook

Just Broccoli? Facebook’s image analysis algorithms can tell the difference between marijuana [left] and tempura broccoli [right] better than some humans.

Schroepfer: Say I take a bunch of photos and I have people look at them. If they see a photo of a cat, they put a text label that says cat; if it’s one of a dog, the text label says dog. If you build a big enough data set and feed that to the neural net, it learns how to tell the difference between cats and dogs.

Prior to 2012, it didn’t work very well. And then in 2012, there was this moment where it seemed like, “Oh wow, this technique might work.” And a few years later we were deploying that form of technology to help us detect problematic imagery.

Spectrum: Do your AI systems work equally well on all types of prohibited content?

Schroepfer: Nudity was technically easiest. I don’t need to understand language or culture to understand that this is either a naked human or not. Violence is a much more nuanced problem, so it was harder technically to get it right. And with hate speech, not only do you have to understand the language, it may be very contextual, even tied to recent events. A week before the Christchurch shooting [New Zealand, 2019], saying “I wish you were in the mosque” probably doesn’t mean anything. A week after, that might be a terrible thing to say.

Spectrum: How much progress have you made on hate speech?

Schroepfer: AI, in the first quarter of 2020, proactively detected 88.8 percent of the hate-speech content we removed, up from 80.2 percent in the previous quarter. In the first quarter of 2020, we took action on 9.6 million pieces of content for violating our hate-speech policies.

Image: Facebook

Off Label: Sometimes image analysis isn’t enough to determine whether a picture posted violates the company’s policies. In considering these candy-colored vials of marijuana, for example, the algorithms can look at any accompanying text and, if necessary, comments on the post.

Spectrum: It sounds like you’ve expanded beyond tools that analyze images and are also using AI tools that analyze text.

Schroepfer: AI started off as very siloed. People worked on language, people worked on computer vision, people worked on video. We’ve put these things together—in production, not just as research—into multimodal classifiers.

[Schroepfer shows a photo of a pan of Rice Krispies treats, with text referring to it as a “potent batch”] This is a case in which you have an image, and then you have the text on the post. This looks like Rice Krispies. On its own, this image is fine. You put the text together with it in a bigger model; that can then understand what’s going on. That didn’t work five years ago.

Spectrum: Today, every post that goes up on Facebook is immediately checked by automated systems. Can you explain that process?

Image: Facebook

Bigger Picture: Identifying hate speech is often a matter of context. Either the text or the photo in this post isn’t hateful standing alone, but putting them together tells a different story.

Schroepfer: You upload an image and you write some text underneath it, and the systems look at both the image and the text to try to see which, if any, policies it violates. Those decisions are based on our Community Standards. It will also look at other signals on the posts, like the comments people make.

It happens relatively instantly, though there may be times things happen after the fact. Maybe you uploaded a post that had misinformation in it, and at the time you uploaded it, we didn’t know it was misinformation. The next day we fact-check something and scan again; we may find your post and take it down. As we learn new things, we’re going to go back through and look for violations of what we now know to be a problem. Or, as people comment on your post, we might update our understanding of it. If people are saying, “That’s terrible,” or “That’s mean,” or “That looks fake,” those comments may be an interesting signal.

Spectrum: How is Facebook applying its AI tools to the problem of election interference?

Schroepfer: I would split election interference into two categories. There are times when you’re going after the content, and there are times you’re going after the behavior or the authenticity of the person.

On content, if you’re sharing misinformation, saying, “It’s super Wednesday, not super Tuesday, come vote on Wednesday,” that’s a problem whether you’re an American sitting in California or a foreign actor.

Other times, people create a series of Facebook pages pretending they’re Americans, but they’re really a foreign entity. That is a problem on its own, even if all the content they’re sharing completely meets our Community Standards. The problem there is that you have a foreign government running an information operation.

There, you need different tools. What you’re trying to do is put pieces together, to say, “Wait a second. All of these pages—Martians for Justice, Moonlings for Justice, and Venusians for Justice”—are all run by an administrator with an IP address that’s outside the United States. So they’re all connected, even though they’re pretending to not be connected. That’s a very different problem than me sitting in my office in Menlo Park [Calif.] sharing misinformation.

I’m not going to go into lots of technical detail, because this is an area of adversarial nature. The fundamental problem you’re trying to solve is that there’s one entity coordinating the activity of a bunch of things that look like they’re not all one thing. So this is a series of Instagram accounts, or a series of Facebook pages, or a series of WhatsApp accounts, and they’re pretending to be totally different things. We’re looking for signals that these things are related in some way. And we’re looking through the graph [what Facebook calls its map of relationships between users] to understand the properties of this network.

Spectrum: What cutting-edge AI tools and methods have you been working on lately?

Schroepfer: Supervised learning, with humans setting up the instruction process for the AI systems, is amazingly effective. But it has a very obvious flaw: the speed at which you can develop these things is limited by how fast you can curate the data sets. If you’re dealing in a problem domain where things change rapidly, you have to rebuild a new data set and retrain the whole thing.

Self-supervision is inspired by the way people learn, by the way kids explore the world around them. To get computers to do it themselves, we take a bunch of raw data and build a way for the computer to construct its own tests. For language, you scan a bunch of Web pages, and the computer builds a test where it takes a sentence, eliminates one of the words, and figures out how to predict what word belongs there. And because it created the test, it actually knows the answer. I can use as much raw text as I can find and store because it’s processing everything itself and doesn’t require us to sit down and build the information set. In the last two years there has been a revolution in language understanding as a result of AI self-supervised learning.

Spectrum: What else are you excited about?

Schroepfer: What we’ve been working on over the last few years is multilingual understanding. Usually, when I’m trying to figure out, say, whether something is hate speech or not I have to go through the whole process of training the model in every language. I have to do that one time for every language. When you make a post, the first thing we have to figure out is what language your post is in. “Ah, that’s Spanish. So send it to the Spanish hate-speech model.”

We’ve started to build a multilingual model—one box where you can feed in text in 40 different languages and it determines whether it’s hate speech or not. This is way more effective and easier to deploy.

To geek out for a second, just the idea that you can build a model that understands a concept in multiple languages at once is crazy cool. And it not only works for hate speech, it works for a variety of things.

When we started working on this multilingual model years ago, it performed worse than every single individual model. Now, it not only works as well as the English model, but when you get to the languages where you don’t have enough data, it’s so much better. This rapid progress is very exciting.

Spectrum: How do you move new AI tools from your research labs into operational use?

Schroepfer: Engineers trying to make the next breakthrough will often say, “Cool, I’ve got a new thing and it achieved state-of-the-art results on machine translation.” And we say, “Great. How long does it take to run in production?” They say, “Well, it takes 10 seconds for every sentence to run on a CPU.” And we say, “It’ll eat our whole data center if we deploy that.” So we take that state-of-the-art model and we make it 10 or a hundred or a thousand times more efficient, maybe at the cost of a little bit of accuracy. So it’s not as good as the state-of-the-art version, but it’s something we can actually put into our data centers and run in production.

Spectrum: What’s the role of the humans in the loop? Is it true that Facebook currently employs 35,000 moderators?

Schroepfer: Yes. Right now our goal is not to reduce that. Our goal is to do a better job catching bad content. People often think that the end state will be a fully automated system. I don’t see that world coming anytime soon.

As automated systems get more sophisticated, they take more and more of the grunt work away, freeing up the humans to work on the really gnarly stuff where you have to spend an hour researching.

We also use AI to give our human moderators power tools. Say I spot this new meme that is telling everyone to vote on Wednesday rather than Tuesday. I have a tool in front of me that says, “Find variants of that throughout the system. Find every photo with the same text, find every video that mentions this thing and kill it in one shot.” Rather than, I found this one picture, but then a bunch of other people upload that misinformation in different forms.

Another important aspect of AI is that anything I can do to prevent a person from having to look at terrible things is time well spent. Whether it’s a person employed by us as a moderator or a user of our services, looking at these things is a terrible experience. If I can build systems that take the worst of the worst, the really graphic violence, and deal with that in an automated fashion, that’s worth a lot to me. Continue reading

Posted in Human Robots

#437758 Remotely Operated Robot Takes Straight ...

Roboticists love hard problems. Challenges like the DRC and SubT have helped (and are still helping) to catalyze major advances in robotics, but not all hard problems require a massive amount of DARPA funding—sometimes, a hard problem can just be something very specific that’s really hard for a robot to do, especially relative to the ease with which a moderately trained human might be able to do it. Catching a ball. Putting a peg in a hole. Or using a straight razor to shave someone’s face without Sweeney Todd-izing them.

This particular roboticist who sees straight-razor face shaving as a hard problem that robots should be solving is John Peter Whitney, who we first met back at IROS 2014 in Chicago when (working at Disney Research) he introduced an elegant fluidic actuator system. These actuators use tubes containing a fluid (like air or water) to transmit forces from a primary robot to a secondary robot in a very efficient way that also allows for either compliance or very high fidelity force feedback, depending on the compressibility of the fluid.

Photo: John Peter Whitney/Northeastern University

Barber meets robot: Boston based barber Jesse Cabbage [top, right] observes the machine created by roboticist John Peter Whitney. Before testing the robot on Whitney’s face, they used his arm for a quick practice [bottom].

Whitney is now at Northeastern University, in Boston, and he recently gave a talk at the RSS workshop on “Reacting to Contact,” where he suggested that straight razor shaving would be an interesting and valuable problem for robotics to work toward, due to its difficulty and requirement for an extremely high level of both performance and reliability.

Now, a straight razor is sort of like a safety razor, except with the safety part removed, which in fact does make it significantly less safe for humans, much less robots. Also not ideal for those worried about safety is that as part of the process the razor ends up in distressingly close proximity to things like the artery that is busily delivering your brain’s entire supply of blood, which is very close to the top of the list of things that most people want to keep blades very far away from. But that didn’t stop Whitney from putting his whiskers where his mouth is and letting his robotic system mediate the ministrations of a professional barber. It’s not an autonomous robotic straight-razor shave (because Whitney is not totally crazy), but it’s a step in that direction, and requires that the hardware Whitney developed be dead reliable.

Perhaps that was a poor choice of words. But, rest assured that Whitney lived long enough to answer our questions after. Here’s the video; it’s part of a longer talk, but it should start in the right spot, at about 23:30.

If Whitney looked a little bit nervous to you, that’s because he was. “This was the first time I’d ever been shaved by someone (something?!) else with a straight razor,” he told us, and while having a professional barber at the helm was some comfort, “the lack of feeling and control on my part was somewhat unsettling.” Whitney says that the barber, Jesse Cabbage of Dentes Barbershop in Somerville, Mass., was surprised by how well he could feel the tactile sensations being transmitted from the razor. “That’s one of the reasons we decided to make this video,” Whitney says. “I can’t show someone how something feels, so the next best thing is to show a delicate task that either from experience or intuition makes it clear to the viewer that the system must have these properties—otherwise the task wouldn’t be possible.”

And as for when Whitney might be comfortable getting shaved by a robotic system without a human in the loop? It’s going to take a lot of work, as do most other hard problems in robotics. “There are two parts to this,” he explains. “One is fault-tolerance of the components themselves (software, electronics, etc.) and the second is the quality of the perception and planning algorithms.”

He offers a comparison to self-driving cars, in which similar (or greater) risks are incurred: “To learn how to perceive, interpret, and adapt, we need a very high-fidelity model of the problem, or a wealth of data and experience, or both” he says. “But in the case of shaving we are greatly lacking in both!” He continues with the analogy: “I think there is a natural progression—the community started with autonomous driving of toy cars on closed courses and worked up to real cars carrying human passengers; in robotic manipulation we are beginning to move out of the ‘toy car’ stage and so I think it’s good to target high-consequence hard problems to help drive progress.”

The ultimate goal is much more general than the creation of a dedicated straight razor shaving robot. This particular hardware system is actually a testbed for exploring MRI-compatible remote needle biopsy.

Of course, the ultimate goal here is much more general than the creation of a dedicated straight razor shaving robot; it’s a challenge that includes a host of sub-goals that will benefit robotics more generally. This particular hardware system Whitney is developing is actually a testbed for exploring MRI-compatible remote needle biopsy, and he and his students are collaborating with Brigham and Women’s Hospital in Boston on adapting this technology to prostate biopsy and ablation procedures. They’re also exploring how delicate touch can be used as a way to map an environment and localize within it, especially where using vision may not be a good option. “These traits and behaviors are especially interesting for applications where we must interact with delicate and uncertain environments,” says Whitney. “Medical robots, assistive and rehabilitation robots and exoskeletons, and shared-autonomy teleoperation for delicate tasks.”
A paper with more details on this robotic system, “Series Elastic Force Control for Soft Robotic Fluid Actuators,” is available on arXiv. Continue reading

Posted in Human Robots

#437745 Video Friday: Japan’s Giant Gundam ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AWS Cloud Robotics Summit – August 18-19, 2020 – [Online Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
ICSR 2020 – November 14-16, 2020 – Golden, Co., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

It’s coming together—literally! Japan’s giant Gundam appears nearly finished and ready for its first steps. In a recent video, Gundam Factory Yokohama, which is constructing the 18-meter-tall, 25-ton walking robot, provided an update on the project. The video shows the Gundam getting its head attached—after being blessed by Shinto priests.

In the video update, they say the project is “steadily progressing” and further details will be announced around the end of September.

[ Gundam Factory Yokohama ]

Creating robots with emotional personalities will transform the usability of robots in the real-world. As previous emotive social robots are mostly based on statically stable robots whose mobility is limited, this work develops an animation to real-world pipeline that enables dynamic bipedal robots that can twist, wiggle, and walk to behave with emotions.

So that’s where Cassie’s eyes go.

[ Berkeley ]

Now that the DARPA SubT Cave Circuit is all virtual, here’s a good reminder of how it’ll work.

[ SubT ]

Since July 20, anyone 11+ years of age must wear a mask in closed public places in France. This measure also is highly recommended in many European, African and Persian Gulf countries. To support businesses and public places, SoftBank Robotics Europe unveils a new feature with Pepper: AI Face Mask Detection.

[ Softbank ]

University of Michigan researchers are developing new origami inspired methods for designing, fabricating and actuating micro-robots using heat.These improvements will expand the mechanical capabilities of the tiny bots, allowing them to fold into more complex shapes.

[ University of Michigan ]

Suzumori Endo Lab, Tokyo Tech has created various types of IPMC robots. Those robots are fabricated by novel 3D fabrication methods.

[ Suzimori Endo Lab ]

The most explode-y of drones manages not to explode this time.

[ SpaceX ]

At Amazon, we’re constantly innovating to support our employees, customers, and communities as effectively as possible. As our fulfillment and delivery teams have been hard at work supplying customers with items during the pandemic, Amazon’s robotics team has been working behind the scenes to re-engineer bots and processes to increase safety in our fulfillment centers.

While some folks are able to do their jobs at home with just a laptop and internet connection, it’s not that simple for other employees at Amazon, including those who spend their days building and testing robots. Some engineers have turned their homes into R&D labs to continue building these new technologies to better serve our customers and employees. Their creativity and resourcefulness to keep our important programs going is inspiring.

[ Amazon ]

Australian Army soldiers from 2nd/14th Light Horse Regiment (Queensland Mounted Infantry) demonstrated the PD-100 Black Hornet Nano unmanned aircraft vehicle during a training exercise at Shoalwater Bay Training Area, Queensland, on 4 May 2018.

This robot has been around for a long time—maybe 10 years or more? It makes you wonder what the next generation will look like, and if they can manage to make it even smaller.

[ FLIR ]

Event-based cameras are bio-inspired vision sensors whose pixels work independently from each other and respond asynchronously to brightness changes, with microsecond resolution. Their advantages make it possible to tackle challenging scenarios in robotics, such as high-speed and high dynamic range scenes. We present a solution to the problem of visual odometry from the data acquired by a stereo event-based camera rig.

[ Paper ] via [ HKUST ]

Emys can help keep kindergarteners sitting still for a long time, which is not small feat!

[ Emys ]

Introducing the RoboMaster EP Core, an advanced educational robot that was built to take learning to the next level and provides an all-in-one solution for STEAM-based classrooms everywhere, offering AI and programming projects for students of all ages and experience levels.

[ DJI ]

This Dutch food company Heemskerk uses ABB robots to automate their order picking. Their new solution reduces the amount of time the fresh produce spends in the supply chain, extending its shelf life, minimizing wastage, and creating a more sustainable solution for the fresh food industry.

[ ABB ]

This week’s episode of Pass the Torque features NASA’s Satellite Servicing Projects Division (NExIS) Robotics Engineer, Zakiya Tomlinson.

[ NASA ]

Massachusetts has been challenging Silicon Valley as the robotics capital of the United States. They’re not winning, yet. But they’re catching up.

[ MassTech ]

San Francisco-based Formant is letting anyone remotely take its Spot robot for a walk. Watch The Robot Report editors, based in Boston, take Spot for a walk around Golden Gate Park.

You can apply for this experience through Formant at the link below.

[ Formant ] via [ TRR ]

Thanks Steve!

An Institute for Advanced Study Seminar on “Theoretical Machine Learning,” featuring Peter Stone from UT Austin.

For autonomous robots to operate in the open, dynamically changing world, they will need to be able to learn a robust set of skills from relatively little experience. This talk begins by introducing Grounded Simulation Learning as a way to bridge the so-called reality gap between simulators and the real world in order to enable transfer learning from simulation to a real robot. It then introduces two new algorithms for imitation learning from observation that enable a robot to mimic demonstrated skills from state-only trajectories, without any knowledge of the actions selected by the demonstrator. Connections to theoretical advances in off-policy reinforcement learning will be highlighted throughout.

[ IAS ] Continue reading

Posted in Human Robots

#437741 CaseCrawler Adds Tiny Robotic Legs to ...

Most of us have a fairly rational expectation that if we put our cellphone down somewhere, it will stay in that place until we pick it up again. Normally, this is exactly what you’d want, but there are exceptions, like when you put your phone down in not quite the right spot on a wireless charging pad without noticing, or when you’re lying on the couch and your phone is juuust out of reach no matter how much you stretch.

Roboticists from the Biorobotics Laboratory at Seoul National University in South Korea have solved both of these problems, and many more besides, by developing a cellphone case with little robotic legs, endowing your phone with the ability to skitter around autonomously. And unlike most of the phone-robot hybrids we’ve seen in the past, this one actually does look like a legit case for your phone.

CaseCrawler is much chunkier than a form-fitting case, but it’s not offensively bigger than one of those chunky battery cases. It’s only 24 millimeters thick (excluding the motor housing), and the total weight is just under 82 grams. Keep in mind that this case is in fact an entire robot, and also not at all optimized for being an actual phone case, so it’s easy to imagine how it could get a lot more svelte—for example, it currently includes a small battery that would be unnecessary if it instead tapped into the phone for power.

The technology inside is pretty amazing, since it involves legs that can retract all the way flat while also supporting a significant amount of weight. The legs work sort of like your legs do, in that there’s a knee joint that can only bend one way. To move the robot forward, a linkage (attached to a motor through a gearbox) pushes the leg back against the ground, as the knee joint keeps the leg straight. On the return stroke, the joint allows the leg to fold, making it compliant so that it doesn’t exert force on the ground. The transmission that sends power from the gearbox to the legs is just 1.5-millimeter thick, but this incredibly thin and lightweight mechanical structure is quite powerful. A non-phone case version of the robot, weighing about 23 g, is able to crawl at 21 centimeters per second while carrying a payload of just over 300 g. That’s more than 13 times its body weight.

The researchers plan on exploring how robots like these could make other objects movable that would otherwise not be. They’d also like to add some autonomy, which (at least for the phone case version) could be as straightforward as leveraging the existing sensors on the phone. And as to when you might be able to buy one of these—we’ll keep you updated, but the good news is that it seems to be fundamentally inexpensive enough that it may actually crawl out of the lab one day.

“CaseCrawler: A Lightweight and Low-Profile Crawling Phone Case Robot,” by Jongeun Lee, Gwang-Pil Jung, Sang-Min Baek, Soo-Hwan Chae, Sojung Yim, Woongbae Kim, and Kyu-Jin Cho from Seoul National University, appears in the October issue of IEEE Robotics and Automation Letters.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots