Tag Archives: software
#437182 MIT’s Tiny New Brain Chip Aims for AI ...
The human brain operates on roughly 20 watts of power (a third of a 60-watt light bulb) in a space the size of, well, a human head. The biggest machine learning algorithms use closer to a nuclear power plant’s worth of electricity and racks of chips to learn.
That’s not to slander machine learning, but nature may have a tip or two to improve the situation. Luckily, there’s a branch of computer chip design heeding that call. By mimicking the brain, super-efficient neuromorphic chips aim to take AI off the cloud and put it in your pocket.
The latest such chip is smaller than a piece of confetti and has tens of thousands of artificial synapses made out of memristors—chip components that can mimic their natural counterparts in the brain.
In a recent paper in Nature Nanotechnology, a team of MIT scientists say their tiny new neuromorphic chip was used to store, retrieve, and manipulate images of Captain America’s Shield and MIT’s Killian Court. Whereas images stored with existing methods tended to lose fidelity over time, the new chip’s images remained crystal clear.
“So far, artificial synapse networks exist as software. We’re trying to build real neural network hardware for portable artificial intelligence systems,” Jeehwan Kim, associate professor of mechanical engineering at MIT said in a press release. “Imagine connecting a neuromorphic device to a camera on your car, and having it recognize lights and objects and make a decision immediately, without having to connect to the internet. We hope to use energy-efficient memristors to do those tasks on-site, in real-time.”
A Brain in Your Pocket
Whereas the computers in our phones and laptops use separate digital components for processing and memory—and therefore need to shuttle information between the two—the MIT chip uses analog components called memristors that process and store information in the same place. This is similar to the way the brain works and makes memristors far more efficient. To date, however, they’ve struggled with reliability and scalability.
To overcome these challenges, the MIT team designed a new kind of silicon-based, alloyed memristor. Ions flowing in memristors made from unalloyed materials tend to scatter as the components get smaller, meaning the signal loses fidelity and the resulting computations are less reliable. The team found an alloy of silver and copper helped stabilize the flow of silver ions between electrodes, allowing them to scale the number of memristors on the chip without sacrificing functionality.
While MIT’s new chip is promising, there’s likely a ways to go before memristor-based neuromorphic chips go mainstream. Between now and then, engineers like Kim have their work cut out for them to further scale and demonstrate their designs. But if successful, they could make for smarter smartphones and other even smaller devices.
“We would like to develop this technology further to have larger-scale arrays to do image recognition tasks,” Kim said. “And some day, you might be able to carry around artificial brains to do these kinds of tasks, without connecting to supercomputers, the internet, or the cloud.”
Special Chips for AI
The MIT work is part of a larger trend in computing and machine learning. As progress in classical chips has flagged in recent years, there’s been an increasing focus on more efficient software and specialized chips to continue pushing the pace.
Neuromorphic chips, for example, aren’t new. IBM and Intel are developing their own designs. So far, their chips have been based on groups of standard computing components, such as transistors (as opposed to memristors), arranged to imitate neurons in the brain. These chips are, however, still in the research phase.
Graphics processing units (GPUs)—chips originally developed for graphics-heavy work like video games—are the best practical example of specialized hardware for AI and were heavily used in this generation of machine learning early on. In the years since, Google, NVIDIA, and others have developed even more specialized chips that cater more specifically to machine learning.
The gains from such specialized chips are already being felt.
In a recent cost analysis of machine learning, research and investment firm ARK Invest said cost declines have far outpaced Moore’s Law. In a particular example, they found the cost to train an image recognition algorithm (ResNet-50) went from around $1,000 in 2017 to roughly $10 in 2019. The fall in cost to actually run such an algorithm was even more dramatic. It took $10,000 to classify a billion images in 2017 and just $0.03 in 2019.
Some of these declines can be traced to better software, but according to ARK, specialized chips have improved performance by nearly 16 times in the last three years.
As neuromorphic chips—and other tailored designs—advance further in the years to come, these trends in cost and performance may continue. Eventually, if all goes to plan, we might all carry a pocket brain that can do the work of today’s best AI.
Image credit: Peng Lin Continue reading
#437165 A smarter way of building with mobile ...
Researchers are working with a mobile robotic platform called Husky A200 that could be used for autonomous logistic tasks on construction sites. This mobile robot is one of many projects pursued by the Fraunhofer Italia Innovation Engineering Center to advance the cause of digitalization in construction and bridge the gap between robotics and the building industry. Researchers at this center based in Bolzano, Italy, are developing a software interface that will enable mobile robots to find their way around in construction sites. Continue reading
#437152 Researchers incorporate computer vision ...
Researchers have developed new software that can be integrated with existing hardware to enable people using robotic prosthetics or exoskeletons to walk in a safer, more natural manner on different types of terrain. The new framework incorporates computer vision into prosthetic leg control, and includes robust artificial intelligence (AI) algorithms that allow the software to better account for uncertainty. Continue reading
#437150 AI Is Getting More Creative. But Who ...
Creativity is a trait that makes humans unique from other species. We alone have the ability to make music and art that speak to our experiences or illuminate truths about our world. But suddenly, humans’ artistic abilities have some competition—and from a decidedly non-human source.
Over the last couple years there have been some remarkable examples of art produced by deep learning algorithms. They have challenged the notion of an elusive definition of creativity and put into perspective how professionals can use artificial intelligence to enhance their abilities and produce beyond the known boundaries.
But when creativity is the result of code written by a programmer, using a format given by a software engineer, featuring private and public datasets, how do we assign ownership of AI-generated content, and particularly that of artwork? McKinsey estimates AI will annually generate value of $3.5 to $5.8 trillion across various sectors.
In 2018, a portrait that was christened Edmond de Belamy was made in a French art collective called Obvious. It used a database with 15,000 portraits from the 1300s to the 1900s to train a deep learning algorithm to produce a unique portrait. The painting sold for $432,500 in a New York auction. Similarly, a program called Aiva, trained on thousands of classical compositions, has released albums whose pieces are being used by ad agencies and movies.
The datasets used by these algorithms were different, but behind both there was a programmer who changed the brush strokes or musical notes into lines of code and a data scientist or engineer who fitted and “curated” the datasets to use for the model. There could also have been user-based input, and the output may be biased towards certain styles or unintentionally infringe on similar pieces of art. This shows that there are many collaborators with distinct roles in producing AI-generated content, and it’s important to discuss how they can protect their proprietary interests.
A perspective article published in Nature Machine Intelligence by Jason K. Eshraghian in March looks into how AI artists and the collaborators involved should assess their ownership, laying out some guiding principles that are “only applicable for as long as AI does not have legal parenthood, the way humans and corporations are accorded.”
Before looking at how collaborators can protect their interests, it’s useful to understand the basic requirements of copyright law. The artwork in question must be an “original work of authorship fixed in a tangible medium.” Given this principle, the author asked whether it’s possible for AI to exercise creativity, skill, or any other indicator of originality. The answer is still straightforward—no—or at least not yet. Currently, AI’s range of creativity doesn’t exceed the standard used by the US Copyright Office, which states that copyright law protects the “fruits of intellectual labor founded in the creative powers of the mind.”
Due to the current limitations of narrow AI, it must have some form of initial input that helps develop its ability to create. At the moment AI is a tool that can be used to produce creative work in the same way that a video camera is a tool used to film creative content. Video producers don’t need to comprehend the inner workings of their cameras; as long as their content shows creativity and originality, they have a proprietary claim over their creations.
The same concept applies to programmers developing a neural network. As long as the dataset they use as input yields an original and creative result, it will be protected by copyright law; they don’t need to understand the high-level mathematics, which in this case are often black box algorithms whose output it’s impossible to analyze.
Will robots and algorithms eventually be treated as creative sources able to own copyrights? The author pointed to the recent patent case of Warner-Lambert Co Ltd versus Generics where Lord Briggs, Justice of the Supreme Court of the UK, determined that “the court is well versed in identifying the governing mind of a corporation and, when the need arises, will no doubt be able to do the same for robots.”
In the meantime, Dr. Eshraghian suggests four guiding principles to allow artists who collaborate with AI to protect themselves.
First, programmers need to document their process through online code repositories like GitHub or BitBucket.
Second, data engineers should also document and catalog their datasets and the process they used to curate their models, indicating selectivity in their criteria as much as possible to demonstrate their involvement and creativity.
Third, in cases where user data is utilized, the engineer should “catalog all runs of the program” to distinguish the data selection process. This could be interpreted as a way of determining whether user-based input has a right to claim the copyright too.
Finally, the output should avoid infringing on others’ content through methods like reverse image searches and version control, as mentioned above.
AI-generated artwork is still a very new concept, and the ambiguous copyright laws around it give a lot of flexibility to AI artists and programmers worldwide. The guiding principles Eshraghian lays out will hopefully shed some light on the legislation we’ll eventually need for this kind of art, and start an important conversation between all the stakeholders involved.
Image Credit: Wikimedia Commons Continue reading