Tag Archives: shows
#437695 Video Friday: Even Robots Know That You ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.
From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.
Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.
[ Flightmare ]
Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.
We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.
[ Project ]
Thanks Fan!
The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.
Fetch Robot disinfecting dance party woo!
[ Oregon State ]
How could you not take a mask from this robot?
[ Reachy ]
This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.
[ ARL ]
Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.
Dat backing into the charging dock tho.
[ Pepper ]
RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.
This is from 2015, why isn't all of my furniture autonomous yet?!
[ KAIST ]
The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.
[ SeaDrone ]
Thanks Eduardo!
Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.
[ ETH ]
Thanks Fan!
Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.
[ Georgia Tech ]
Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:
A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.
[ Graze ]
The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!
[ Interbotix ]
Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.
[ Shadow Robot ]
Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.
[ Quanser ]
This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.
This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.
[ Tristan D. Yan ]
Thanks Fan!
In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.
[ RPG ] Continue reading