Tag Archives: shows

#437721 Video Friday: Child Robot Learning to ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

We first met Ibuki, Hiroshi Ishiguro’s latest humanoid robot, a couple of years ago. A recent video shows how Ishiguro and his team are teaching the robot to express its emotional state through gait and body posture while moving.

This paper presents a subjective evaluation of the emotions of a wheeled mobile humanoid robot expressing emotions during movement by replicating human gait-induced upper body motion. For this purpose, we proposed the robot equipped with a vertical oscillation mechanism that generates such motion by focusing on human center-of-mass trajectory. In the experiment, participants watched videos of the robot’s different emotional gait-induced upper body motions, and assess the type of emotion shown, and their confidence level in their answer.

[ Hiroshi Ishiguro Lab ] via [ RobotStart ]

ICYMI: This is a zinc-air battery made partly of Kevlar that can be used to support weight, not just add to it.

Like biological fat reserves store energy in animals, a new rechargeable zinc battery integrates into the structure of a robot to provide much more energy, a team led by the University of Michigan has shown.

The new battery works by passing hydroxide ions between a zinc electrode and the air side through an electrolyte membrane. That membrane is partly a network of aramid nanofibers—the carbon-based fibers found in Kevlar vests—and a new water-based polymer gel. The gel helps shuttle the hydroxide ions between the electrodes. Made with cheap, abundant and largely nontoxic materials, the battery is more environmentally friendly than those currently in use. The gel and aramid nanofibers will not catch fire if the battery is damaged, unlike the flammable electrolyte in lithium ion batteries. The aramid nanofibers could be upcycled from retired body armor.

[ University of Michigan ]

In what they say is the first large-scale study of the interactions between sound and robotic action, researchers at CMU’s Robotics Institute found that sounds could help a robot differentiate between objects, such as a metal screwdriver and a metal wrench. Hearing also could help robots determine what type of action caused a sound and help them use sounds to predict the physical properties of new objects.

[ CMU ]

Captured on Aug. 11 during the second rehearsal of the OSIRIS-REx mission’s sample collection event, this series of images shows the SamCam imager’s field of view as the NASA spacecraft approaches asteroid Bennu’s surface. The rehearsal brought the spacecraft through the first three maneuvers of the sampling sequence to a point approximately 131 feet (40 meters) above the surface, after which the spacecraft performed a back-away burn.

These images were captured over a 13.5-minute period. The imaging sequence begins at approximately 420 feet (128 meters) above the surface – before the spacecraft executes the “Checkpoint” maneuver – and runs through to the “Matchpoint” maneuver, with the last image taken approximately 144 feet (44 meters) above the surface of Bennu.

[ NASA ]

The DARPA AlphaDogfight Trials Final Event took place yesterday; the livestream is like 5 hours long, but you can skip ahead to 4:39 ish to see the AI winner take on a human F-16 pilot in simulation.

Some things to keep in mind about the result: The AI had perfect situational knowledge while the human pilot had to use eyeballs, and in particular, the AI did very well at lining up its (virtual) gun with the human during fast passing maneuvers, which is the sort of thing that autonomous systems excel at but is not necessarily reflective of better strategy.

[ DARPA ]

Coming soon from Clearpath Robotics!

[ Clearpath ]

This video introduces Preferred Networks’ Hand type A, a tendon-driven robot gripper with passively switchable underactuated surface.

[ Preferred Networks ]

CYBATHLON 2020 will take place on 13 – 14 November 2020 – at the teams’ home bases. They will set up their infrastructure for the competition and film their races. Instead of starting directly next to each other, the pilots will start individually and under the supervision of CYBATHLON officials. From Zurich, the competitions will be broadcast through a new platform in a unique live programme.

[ Cybathlon ]

In this project, we consider the task of autonomous car racing in the top-selling car racing game Gran Turismo Sport. Gran Turismo Sport is known for its detailed physics simulation of various cars and tracks. Our approach makes use of maximum-entropy deep reinforcement learning and a new reward design to train a sensorimotor policy to complete a given race track as fast as possible. We evaluate our approach in three different time trial settings with different cars and tracks. Our results show that the obtained controllers not only beat the built-in non-player character of Gran Turismo Sport, but also outperform the fastest known times in a dataset of personal best lap times of over 50,000 human drivers.

[ UZH ]

With the help of the software pitasc from Fraunhofer IPA, an assembly task is no longer programmed point by point, but workpiece-related. Thus, pitasc adapts the assembly process itself for new product variants with the help of updated parameters.

[ Fraunhofer ]

In this video, a multi-material robot simulator is used to design a shape-changing robot, which is then transferred to physical hardware. The simulated and real robots can use shape change to switch between rolling gaits and inchworm gaits, to locomote in multiple environments.

[ Yale ]

This work presents a novel loco-manipulation control framework for the execution of complex tasks with kinodynamic constraints using mobile manipulators. As a representative example, we consider the handling and re-positioning of pallet jacks in unstructured environments. While these results reveal with a proof-of- concept the effectiveness of the proposed framework, they also demonstrate the high potential of mobile manipulators for relieving human workers from such repetitive and labor intensive tasks. We believe that this extended functionality can contribute to increasing the usability of mobile manipulators in different application scenarios.

[ Paper ] via [ IIT ]

I don’t know why this dinosaur ice cream serving robot needs to blow smoke out of its nose, but I like it.

[ Connected Robotics ] via [ RobotStart ]

Guardian S remote visual inspection and surveillance robots make laying cable runs in confined or hard to reach spaces easy. With advanced maneuverability and the ability to climb vertical, ferrous surfaces, the robot reaches areas that are not always easily accessible.

[ Sarcos ]

Looks like the company that bought Anki is working on an add-on to let cars charge while they drive.

[ Digital Dream Labs ]

Chris Atkeson gives a brief talk for the CMU Robotics Institute orientation.

[ CMU RI ]

A UofT Robotics Seminar, featuring Russ Tedrake from MIT and TRI on “Feedback Control for Manipulation.”

Control theory has an answer for just about everything, but seems to fall short when it comes to closing a feedback loop using a camera, dealing with the dynamics of contact, and reasoning about robustness over the distribution of tasks one might find in the kitchen. Recent examples from RL and imitation learning demonstrate great promise, but don’t leverage the rigorous tools from systems theory. I’d like to discuss why, and describe some recent results of closing feedback loops from pixels for “category-level” robot manipulation.

[ UofT ] Continue reading

Posted in Human Robots

#437695 Video Friday: Even Robots Know That You ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

CLAWAR 2020 – August 24-26, 2020 – [Online Conference]
Other Than Human – September 3-10, 2020 – Stockholm, Sweden
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online Conference]
IROS 2020 – October 25-29, 2020 – Las Vegas, Nev., USA
CYBATHLON 2020 – November 13-14, 2020 – [Online Event]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today's videos.

From the Robotics and Perception Group at UZH comes Flightmare, a simulation environment for drones that combines a slick rendering engine with a robust physics engine that can run as fast as your system can handle.

Flightmare is composed of two main components: a configurable rendering engine built on Unity and a flexible physics engine for dynamics simulation. Those two components are totally decoupled and can run independently from each other. Flightmare comes with several desirable features: (i) a large multi-modal sensor suite, including an interface to extract the 3D point-cloud of the scene; (ii) an API for reinforcement learning which can simulate hundreds of quadrotors in parallel; and (iii) an integration with a virtual-reality headset for interaction with the simulated environment. Flightmare can be used for various applications, including path-planning, reinforcement learning, visual-inertial odometry, deep learning, human-robot interaction, etc.

[ Flightmare ]

Quadruped robots yelling at people to maintain social distancing is really starting to become a thing, for better or worse.

We introduce a fully autonomous surveillance robot based on a quadruped platform that can promote social distancing in complex urban environments. Specifically, to achieve autonomy, we mount multiple cameras and a 3D LiDAR on the legged robot. The robot then uses an onboard real-time social distancing detection system to track nearby pedestrian groups. Next, the robot uses a crowd-aware navigation algorithm to move freely in highly dynamic scenarios. The robot finally uses a crowd aware routing algorithm to effectively promote social distancing by using human-friendly verbal cues to send suggestions to overcrowded pedestrians.

[ Project ]

Thanks Fan!

The Personal Robotics Group at Oregon State University is looking at UV germicidal irradiation for surface disinfection with a Fetch Manipulator Robot.

Fetch Robot disinfecting dance party woo!

[ Oregon State ]

How could you not take a mask from this robot?

[ Reachy ]

This work presents the design, development and autonomous navigation of the alpha-version of our Resilient Micro Flyer, a new type of collision-tolerant small aerial robot tailored to traversing and searching within highly confined environments including manhole-sized tubes. The robot is particularly lightweight and agile, while it implements a rigid collision-tolerant design which renders it resilient during forcible interaction with the environment. Furthermore, the design of the system is enhanced through passive flaps ensuring smoother and more compliant collision which was identified to be especially useful in very confined settings.

[ ARL ]

Pepper can make maps and autonomously navigate, which is interesting, but not as interesting as its posture when it's wandering around.

Dat backing into the charging dock tho.

[ Pepper ]

RatChair a strategy for displacing big objects by attaching relatively small vibration sources. After learning how several random bursts of vibration affect its pose, an optimization algorithm discovers the optimal sequence of vibration patterns required to (slowly but surely) move the object to a specified position.

This is from 2015, why isn't all of my furniture autonomous yet?!

[ KAIST ]

The new SeaDrone Pro is designed to be the underwater equivalent of a quadrotor. This video is a rendering, but we've been assured that it does actually exist.

[ SeaDrone ]

Thanks Eduardo!

Porous Loops is a lightweight composite facade panel that shows the potential of 3D printing of mineral foams for building scale applications.

[ ETH ]

Thanks Fan!

Here's an interesting idea for a robotic gripper- it's what appears to be a snap bracelet coupled to a pneumatic actuator that allows the snap bracelet to be reset.

[ Georgia Tech ]

Graze is developing a commercial robotic lawnmower. They're also doing a sort of crowdfunded investment thing, which probably explains the painfully overproduced nature of the following video:

A couple things about this: the hard part, which the video skips over almost entirely, is the mapping, localization, and understanding where to mow and where not to mow. The pitch deck seems to suggest that this is mostly done through computer vision, a thing that's perhaps easy to do under controlled ideal conditions, but difficult to apply to a world full lawns that are all different. The commercial aspect is interesting because golf courses are likely as standardized as you can get, but the emphasis here on how much money they can make without really addressing any of the technical stuff makes me raise an eyebrow or two.

[ Graze ]

The record & playback X-series arm demo allows the user to record the arm's movements while motors are torqued off. Then, the user may torque the motor's on and watch the movements they just made playback!

[ Interbotix ]

Shadow Robot has a new teleop system for its hand. I'm guessing that it's even trickier to use than it looks.

[ Shadow Robot ]

Quanser Interactive Labs is a collection of virtual hardware-based laboratory activities that supplement traditional or online courses. Same as working with physical systems in the lab, students work with virtual twins of Quanser's most popular plants, develop their mathematical models, implement and simulate the dynamic behavior of these systems, design controllers, and validate them on a high-fidelity 3D real-time virtual models. The virtual systems not only look like the real ones, they also behave, can be manipulated, measured, and controlled like real devices. And finally, when students go to the lab, they can deploy their virtually-validated designs on actual physical equipment.

[ Quanser ]

This video shows robot-assisted heart surgery. It's amazing to watch if you haven't seen this sort of thing before, but be aware that there is a lot of blood.

This video demonstrates a fascinating case of robotic left atrial myxoma excision, narrated by Joel Dunning, Middlesbrough, UK. The Robotic platform provides superior visualisation and enhanced dexterity, through keyhole incisions. Robotic surgery is an integral part of our Minimally Invasive Cardiothoracic Surgery Program.

[ Tristan D. Yan ]

Thanks Fan!

In this talk, we present our work on learning control policies directly in simulation that are deployed onto real drones without any fine tuning. The presentation covers autonomous drone racing, drone acrobatics, and uncertainty estimation in deep networks.

[ RPG ] Continue reading

Posted in Human Robots

#437639 Boston Dynamics’ Spot Is Helping ...

In terms of places where you absolutely want a robot to go instead of you, what remains of the utterly destroyed Chernobyl Reactor 4 should be very near the top of your list. The reactor, which suffered a catastrophic meltdown in 1986, has been covered up in almost every way possible in an effort to keep its nuclear core contained. But eventually, that nuclear material is going to have to be dealt with somehow, and in order to do that, it’s important to understand which bits of it are just really bad, and which bits are the actual worst. And this is where Spot is stepping in to help.

The big open space that Spot is walking through is right next to what’s left of Reactor 4. Within six months of the disaster, Reactor 4 was covered in a sarcophagus made of concrete and steel to try and keep all the nasty nuclear fuel from leaking out more than it already had, and it still contains “30 tons of highly contaminated dust, 16 tons of uranium and plutonium, and 200 tons of radioactive lava.” Oof. Over the next 10 years, the sarcophagus slowly deteriorated, and despite the addition of that gigantic network of steel support beams that you can see in the video, in the late 1990s it was decided to erect an enormous building over the entire mess to try and stabilize it for as long as possible.

Reactor 4 is now snugly inside the massive New Safe Confinement (NSC) structure, and the idea is that eventually, the structure will allow for the safe disassembly of what’s left of the reactor, although nobody is quite sure how to do that. This is all just to say that the area inside of the containment structure offers a lot of good opportunities for robots to take over from humans.

This particular Spot is owned by the U.K. Atomic Energy Authority, and was packed off to Russia with the assistance of the Robotics and Artificial Intelligence in Nuclear (RAIN) initiative and the National Centre for Nuclear Robotics. Dr. Dave Megson-Smith, who is a researcher at the University of Bristol, in the U.K., and part of the Hot Robotics Facility at the National Nuclear User Facility, was one of the scientists lucky enough to accompany Spot on its adventure. Megson-Smith specializes in sensor development, and he equipped Spot with a collimated radiation sensor in addition to its mapping payload. “We actually built a map of the radiation coming out of the front wall of Chernobyl power plant as we were in there with it,” Megson-Smith told us, and was able to share this picture, which shows a map of gamma photon count rate:

Image: University of Bristol

Researchers equipped Spot with a collimated radiation sensor and use one of the data readings (gamma photon count rate) to create a map of the radiation coming out of the front wall of the Chernobyl power plant.

So what’s the reason you’d want to use a very expensive legged robot to wander around what looks like a very flat and robot friendly floor? As it turns out, the floor is very dusty in there, and a priority inside the NSC is to keep dust down as much as possible, since the dust is radioactive and gets on everything and is consequently the easiest way for radioactivity to escape the NSC. “You want to minimize picking up material, so we consider the total contact surface area,” says Megson-Smith. “If you use a legged system rather than a wheeled or tracked system, you have a much smaller footprint and you disturb the environment a lot less.” While it’s nice that Spot is nimble and can climb stairs and stuff, tracked vehicles can do that as well, so in this case, the primary driving factor of choosing a robot to work inside Chernobyl is minimizing those contact points.

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker”

Right now, routine weekly measurements in contaminated spaces at Chernobyl are done by humans, which puts those humans at risk. Spot, or a robot like it, could potentially take over from those humans, as a sort of “automated safety checker” able to work in medium level contaminated environments.” As far as more dangerous areas go, there’s a lot of uncertainty about what Spot is actually capable of, according to Megson-Smith. “What you think the problems are, and what the industry thinks the problems are, are subtly different things.

We were thinking that we’d have to make robots incredibly radiation proof to go into these contaminated environments, but they said, “can you just give us a system that we can send into places where humans already can go, but where we just don’t want to send humans.” Making robots incredibly radiation proof is challenging, and without extensive testing and ruggedizing, failures can be frequent, as many robots discovered at Fukushima. Indeed, Megson-Smith that in Fukushima there’s a particular section that’s known as a “robot graveyard” where robots just go to die, and they’ve had to up their standards again and again to keep the robots from failing. “So the thing they’re worried about with Spot is, what is its tolerance? What components will fail, and what can we do to harden it?” he says. “We’re approaching Boston Dynamics at the moment to see if they’ll work with us to address some of those questions.

There’s been a small amount of testing of how robots fair under harsh radiation, Megson-Smith told us, including (relatively recently) a KUKA LBR800 arm, which “stopped operating after a large radiation dose of 164.55(±1.09) Gy to its end effector, and the component causing the failure was an optical encoder.” And in case you’re wondering how much radiation that is, a 1 to 2 Gy dose to the entire body gets you acute radiation sickness and possibly death, while 8 Gy is usually just straight-up death. The goal here is not to kill robots (I mean, it sort of is), but as Megson-Smith says, “if we can work out what the weak points are in a robotic system, can we address those, can we redesign those, or at least understand when they might start to fail?” Now all he has to do is convince Boston Dynamics to send them a Spot that they can zap until it keels over.

The goal for Spot in the short term is fully autonomous radiation mapping, which seems very possible. It’ll also get tested with a wider range of sensor packages, and (happily for the robot) this will all take place safely back at home in the U.K. As far as Chernobyl is concerned, robots will likely have a substantial role to play in the near future. “Ultimately, Chernobyl has to be taken apart and decommissioned. That’s the long-term plan for the facility. To do that, you first need to understand everything, which is where we come in with our sensor systems and robotic platforms,” Megson-Smith tells us. “Since there are entire swathes of the Chernobyl nuclear plant where people can’t go in, we’d need robots like Spot to do those environmental characterizations.” Continue reading

Posted in Human Robots

#437635 Toyota Research Demonstrates ...

Over the last several years, Toyota has been putting more muscle into forward-looking robotics research than just about anyone. In addition to the Toyota Research Institute (TRI), there’s that massive 175-acre robot-powered city of the future that Toyota still plans to build next to Mount Fuji. Even Toyota itself acknowledges that it might be crazy, but that’s just how they roll—as TRI CEO Gill Pratt told me a while back, when Toyota decides to do something, they really do go all-in on it.

TRI has been focusing heavily on home robots, which is reflective of the long-term nature of what TRI is trying to do, because home robots are both the place where we’ll need robots the most at the same time as they’re the place where it’s going to be hardest to deploy them. The unpredictable nature of homes, and the fact that homes tend to have squishy fragile people in them, are robot-unfriendly characteristics, but as the population continues to age (an increasingly acute problem in Japan), homes offer an enormous amount of potential for helping us maintain our independence.

Today, Toyota is showing off some of the research that it’s been working on recently, in the form of a virtual reality presentation in lieu of an in-person press event. For journalists, TRI pre-loaded the recording onto a VR headset, which was FedEx’ed to my house. You can watch the entire 40-minute presentation in 360 video on YouTube (or in VR if you have a headset of your own), but if you don’t watch the whole thing, you should at least check out the full-on GLaDOS (with arms) that TRI thinks belongs in your home.

The presentation features an introduction from Gill Pratt, who looks entirely too comfortable embedded inside of one of TRI’s telepresence robots. The event also covers a lot of territory, but the highlight is almost certainly the new hardware that TRI demonstrates.

Soft bubble gripper

Photo: TRI

This is a “soft bubble gripper,” under development at TRI’s Cambridge, Mass., branch. These passively-compliant, air-filled grippers make it easier to grasp many different kinds of objects safely, but the nifty thing is that they’ve got cameras inside of them watching a pattern of dots on the interior of the soft membrane.

When the outside of the bubble makes contact with an object, the bubble deforms, and the deformation of the dot pattern on the inside can be tracked by the camera to determine both directions and magnitudes of forces. This is a concept that we’ve seen elsewhere before, but TRI’s implementation is a clever way of making an inherently safe end effector that can still perform all the sensing you need it to do for relatively complex manipulation tasks.

The bubble gripper was presented at ICRA this year, and you can read the technical paper here.

Ceiling-mounted home robot

Photo: TRI

I don’t know whether robots dangling from the ceiling was somehow sinister pre-Portal, but it sure as heck is for me having played through that game a couple of times, and it’s since been reinforced by AUTO from WALL-E.

The reason that we generally see robots mounted on the floor or on tables or on mobile bases is that we’re bipeds, not bats, and giving a robot access to a human-like workspace is easiest to do if you also give that robot a human-like position and orientation. And if you want to be able to reach stuff high up, you do what TRI did with their previous generation of kitchen manipulator, and just give it the ability to make itself super tall. But TRI is convinced it’s a good place to put our future home robots:

One innovative concept is a “gantry robot” that would descend from an overhead framework to perform tasks such as loading the dishwasher, wiping surfaces, and clearing clutter. By traveling on the ceiling, the robot avoids the problems of navigating household floor clutter and navigating cramped spaces. When not in use, the robot would tuck itself up out of the way. To further investigate this idea, the team has built a laboratory prototype robot that can do all the same tasks as a floor-based mobile robot but with the innovative overhead mobility system.

Another obvious problem with the gantry robot is that you have to install all kinds of stuff in your ceiling for this to work, which makes it very impractical (if not totally impossible) to introduce a system like this into a home that wasn’t built specifically for it. If, however, you do build a home with a robot like this in mind, the animation below from TRI shows how it could be extra useful. Suddenly, stairs are a non-issue. Payload is presumably also a non-issue, since loads can be transferred to the ceiling. Batteries become unnecessary, so the whole robot can be much lighter weight, which in turn makes it safer. Sensors get a fantastic view, and obstacle avoidance becomes trivial.

Robots as “time machines”

Photo: TRI

TRI’s presentation covered more than what we’ve highlighted here—our focus has been on the hardware prototypes, but TRI had more to talk about, including learning through demonstration, scaling learning through simulation, and how TRI has been working with users to figure out what research directions should be explored. It’s all available right now on YouTube, and it’s well worth 40 minutes of your time.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings”
—Gill Pratt, TRI

It’s only been five years since Toyota announced the $1 billion investment that established TRI, and it feels like the progress that’s been made since then has been substantial. It’s not often that vision, resources, and long-term commitment come together like this, and TRI’s emphasis on making life better for people is one of the things that helps to keep us optimistic about the future of robotics.

“What we’re really focused on is this principle idea of amplifying, rather than replacing, human beings,” Gill Pratt told us. “And what it means to amplify a person, particularly as they’re aging—what we’re really trying to do is build a time machine. This may sound fanciful, and of course we can’t build a real time machine, but maybe we can build robotic assistants to make our lives as we age seem as if we are actually using a time machine.” He explains that it doesn’t mean building robots for convenience or to do our jobs for us. “It means building technology that enables us to continue to live and to work and to relate to each other as if we were younger,” he says. “And that’s really what our main goal is.” Continue reading

Posted in Human Robots

#437628 Video Friday: An In-Depth Look at Mesmer ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

AUVSI EXPONENTIAL 2020 – October 5-8, 2020 – [Online]
IROS 2020 – October 25-29, 2020 – [Online]
ROS World 2020 – November 12, 2020 – [Online]
CYBATHLON 2020 – November 13-14, 2020 – [Online]
ICSR 2020 – November 14-16, 2020 – Golden, Colo., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

Bear Robotics, a robotics and artificial intelligence company, and SoftBank Robotics Group, a leading robotics manufacturer and solutions provider, have collaborated to bring a new robot named Servi to the food service and hospitality field.

[ Bear Robotics ]

A literal in-depth look at Engineered Arts’ Mesmer android.

[ Engineered Arts ]

Is your robot running ROS? Is it connected to the Internet? Are you actually in control of it right now? Are you sure?

I appreciate how the researchers admitted to finding two of their own robots as part of the scan, a Baxter and a drone.

[ Brown ]

Smile Robotics describes this as “(possibly) world’s first full-autonomous clear-up-the-table robot.”

We’re not qualified to make a judgement on the world firstness, but personally I hate clearing tables, so this robot has my vote.

Smile Robotics founder and CEO Takashi Ogura, along with chief engineer Mitsutaka Kabasawa and engineer Kazuya Kobayashi, are former Google roboticists. Ogura also worked at SCHAFT. Smile says its robot uses ROS and is controlled by a framework written mainly in Rust, adding: “We are hiring Rustacean Roboticists!”

[ Smile Robotics ]

We’re not entirely sure why, but Panasonic has released plans for an Internet of Things system for hamsters.

We devised a recipe for a “small animal healthcare device” that can measure the weight and activity of small animals, the temperature and humidity of the breeding environment, and manage their health. This healthcare device visualizes the health status and breeding environment of small animals and manages their health to promote early detection of diseases. While imagining the scene where a healthcare device is actually used for an important small animal that we treat with affection, we hope to help overcome the current difficult situation through manufacturing.

[ Panasonic ] via [ RobotStart ]

Researchers at Yale have developed a robotic fabric, a breakthrough that could lead to such innovations as adaptive clothing, self-deploying shelters, or lightweight shape-changing machinery.

The researchers focused on processing functional materials into fiber-form so they could be integrated into fabrics while retaining its advantageous properties. For example, they made variable stiffness fibers out of an epoxy embedded with particles of Field’s metal, an alloy that liquifies at relatively low temperatures. When cool, the particles are solid metal and make the material stiffer; when warm, the particles melt into liquid and make the material softer.

[ Yale ]

In collaboration with Armasuisse and SBB, RSL demonstrated the use of a teleoperated Menzi Muck M545 to clean up a rock slide in Central Switzerland. The machine can be operated from a teloperation platform with visual and motion feedback. The walking excavator features an active chassis that can adapt to uneven terrain.

[ ETHZ RSL ]

An international team of JKU researchers is continuing to develop their vision for robots made out of soft materials. A new article in the journal “Communications Materials” demonstrates just how these kinds of soft machines react using weak magnetic fields to move very quickly. A triangle-shaped robot can roll itself in air at high speed and walk forward when exposed to an alternating in-plane square wave magnetic field (3.5 mT, 1.5 Hz). The diameter of the robot is 18 mm with a thickness of 80 µm. A six-arm robot can grab, transport, and release non-magnetic objects such as a polyurethane foam cube controlled by a permanent magnet.

Okay but tell me more about that cute sheep.

[ JKU ]

Interbotix has this “research level robotic crawler,” which both looks mean and runs ROS, a dangerous combination.

And here’s how it all came together:

[ Interbotix ]

I guess if you call them “loitering missile systems” rather than “drones that blow things up” people are less likely to get upset?

[ AeroVironment ]

In this video, we show a planner for a master dual-arm robot to manipulate tethered tools with an assistant dual-arm robot’s help. The assistant robot provides assistance to the master robot by manipulating the tool cable and avoiding collisions. The provided assistance allows the master robot to perform tool placements on the robot workspace table to regrasp the tool, which would typically fail since the tool cable tension may change the tool positions. It also allows the master robot to perform tool handovers, which would normally cause entanglements or collisions with the cable and the environment without the assistance.

[ Harada Lab ]

This video shows a flexible and robust robotic system for autonomous drawing on 3D surfaces. The system takes 2D drawing strokes and a 3D target surface (mesh or point clouds) as input. It maps the 2D strokes onto the 3D surface and generates a robot motion to draw the mapped strokes using visual recognition, grasp pose reasoning, and motion planning.

[ Harada Lab ]

Weekly mobility test. This time the Warthog takes on a fallen tree. Will it cross it? The answer is in the video!

And the answer is: kinda?

[ NORLAB ]

One of the advantages of walking machines is their ability to apply forces in all directions and of various magnitudes to the environment. Many of the multi-legged robots are equipped with point contact feet as these simplify the design and control of the robot. The iStruct project focuses on the development of a foot that allows extensive contact with the environment.

[ DFKI ]

An urgent medical transport was simulated in NASA’s second Systems Integration and Operationalization (SIO) demonstration Sept. 28 with partner Bell Textron Inc. Bell used the remotely-piloted APT 70 to conduct a flight representing an urgent medical transport mission. It is envisioned in the future that an operational APT 70 could provide rapid medical transport for blood, organs, and perishable medical supplies (payload up to 70 pounds). The APT 70 is estimated to move three times as fast as ground transportation.

Always a little suspicious when the video just shows the drone flying, and sitting on the ground, but not that tricky transition between those two states.

[ NASA ]

A Lockheed Martin Robotics Seminar on “Socially Assistive Mobile Robots,” by Yi Guo from Stevens Institute of Technology.

The use of autonomous mobile robots in human environments is on the rise. Assistive robots have been seen in real-world environments, such as robot guides in airports, robot polices in public parks, and patrolling robots in supermarkets. In this talk, I will first present current research activities conducted in the Robotics and Automation Laboratory at Stevens. I’ll then focus on robot-assisted pedestrian regulation, where pedestrian flows are regulated and optimized through passive human-robot interaction.

[ UMD ]

This week’s CMU RI Seminar is by CMU’s Zachary Manchester, on “The World’s Tiniest Space Program.”

The aerospace industry has experienced a dramatic shift over the last decade: Flying a spacecraft has gone from something only national governments and large defense contractors could afford to something a small startup can accomplish on a shoestring budget. A virtuous cycle has developed where lower costs have led to more launches and the growth of new markets for space-based data. However, many barriers remain. This talk will focus on driving these trends to their ultimate limit by harnessing advances in electronics, planning, and control to build spacecraft that cost less than a new smartphone and can be deployed in large numbers.

[ CMU RI ] Continue reading

Posted in Human Robots