Tag Archives: setting

#439051 ‘Neutrobots’ smuggle drugs ...

A team of researchers from the Harbin Institute of Technology along with partners at the First Affiliated Hospital of Harbin Medical University, both in China, has developed a tiny robot that can ferry cancer drugs through the blood-brain barrier (BBB) without setting off an immune reaction. In their paper published in the journal Science Robotics, the group describes their robot and tests with mice. Junsun Hwang and Hongsoo Choi, with the Daegu Gyeongbuk Institute of Science and Technology in Korea, have published a Focus piece in the same journal issue on the work done by the team in China. Continue reading

Posted in Human Robots

#439010 Video Friday: Nanotube-Powered Insect ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

[ MIT ]

National Robotics Week is April 3-11, 2021!

[ NRW ]

This is in a motion capture environment, but still, super impressive!

[ Paper ]

Thanks Fan!

Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?

[ ETHZ ]

This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.

Um, did they bring it back?

[ Nature ]

Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!

[ Lingkang Zhang ]

Thanks Lingkang!

Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.

[ Vswarm ]

A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.

[ Paper ]

Thanks Poramate!

In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.

[ RaiSim ]

Thanks Fan!

The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.

[ Trossen ]

MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.

Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.

[ Kate Darling ]

The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.

[ Team CoSTAR ]

In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.

[ MIT ]

In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.

[ GRASP Seminar ]

Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”

[ Swiss-Korean Science Club ]

Thanks Fan!

In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”

[ Designerly HRI ] Continue reading

Posted in Human Robots

#438769 Will Robots Make Good Friends? ...

In the 2012 film Robot and Frank, the protagonist, a retired cat burglar named Frank, is suffering the early symptoms of dementia. Concerned and guilty, his son buys him a “home robot” that can talk, do household chores like cooking and cleaning, and remind Frank to take his medicine. It’s a robot the likes of which we’re getting closer to building in the real world.

The film follows Frank, who is initially appalled by the idea of living with a robot, as he gradually begins to see the robot as both functionally useful and socially companionable. The film ends with a clear bond between man and machine, such that Frank is protective of the robot when the pair of them run into trouble.

This is, of course, a fictional story, but it challenges us to explore different kinds of human-to-robot bonds. My recent research on human-robot relationships examines this topic in detail, looking beyond sex robots and robot love affairs to examine that most profound and meaningful of relationships: friendship.

My colleague and I identified some potential risks, like the abandonment of human friends for robotic ones, but we also found several scenarios where robotic companionship can constructively augment people’s lives, leading to friendships that are directly comparable to human-to-human relationships.

Philosophy of Friendship
The robotics philosopher John Danaher sets a very high bar for what friendship means. His starting point is the “true” friendship first described by the Greek philosopher Aristotle, which saw an ideal friendship as premised on mutual good will, admiration, and shared values. In these terms, friendship is about a partnership of equals.

Building a robot that can satisfy Aristotle’s criteria is a substantial technical challenge and is some considerable way off, as Danaher himself admits. Robots that may seem to be getting close, such as Hanson Robotics’ Sophia, base their behavior on a library of pre-prepared responses: a humanoid chatbot, rather than a conversational equal. Anyone who’s had a testing back-and-forth with Alexa or Siri will know AI still has some way to go in this regard.

Aristotle also talked about other forms of “imperfect” friendship, such as “utilitarian” and “pleasure” friendships, which are considered inferior to true friendship because they don’t require symmetrical bonding and are often to one party’s unequal benefit. This form of friendship sets a relatively very low bar which some robots, like “sexbots” and robotic pets, clearly already meet.

Artificial Amigos
For some, relating to robots is just a natural extension of relating to other things in our world, like people, pets, and possessions. Psychologists have even observed how people respond naturally and socially towards media artefacts like computers and televisions. Humanoid robots, you’d have thought, are more personable than your home PC.

However, the field of “robot ethics” is far from unanimous on whether we can—or should— develop any form of friendship with robots. For an influential group of UK researchers who charted a set of “ethical principles of robotics,” human-robot “companionship” is an oxymoron, and to market robots as having social capabilities is dishonest and should be treated with caution, if not alarm. For these researchers, wasting emotional energy on entities that can only simulate emotions will always be less rewarding than forming human-to-human bonds.

But people are already developing bonds with basic robots, like vacuum-cleaning and lawn-trimming machines that can be bought for less than the price of a dishwasher. A surprisingly large number of people give these robots pet names—something they don’t do with their dishwashers. Some even take their cleaning robots on holiday.

Other evidence of emotional bonds with robots include the Shinto blessing ceremony for Sony Aibo robot dogs that were dismantled for spare parts, and the squad of US troops who fired a 21-gun salute, and awarded medals, to a bomb-disposal robot named “Boomer” after it was destroyed in action.

These stories, and the psychological evidence we have so far, make clear that we can extend emotional connections to things that are very different to us, even when we know they are manufactured and pre-programmed. But do those connections constitute a friendship comparable to that shared between humans?

True Friendship?
A colleague and I recently reviewed the extensive literature on human-to-human relationships to try to understand how, and if, the concepts we found could apply to bonds we might form with robots. We found evidence that many coveted human-to-human friendships do not in fact live up to Aristotle’s ideal.

We noted a wide range of human-to-human relationships, from relatives and lovers to parents, carers, service providers, and the intense (but unfortunately one-way) relationships we maintain with our celebrity heroes. Few of these relationships could be described as completely equal and, crucially, they are all destined to evolve over time.

All this means that expecting robots to form Aristotelian bonds with us is to set a standard even human relationships fail to live up to. We also observed forms of social connectedness that are rewarding and satisfying and yet are far from the ideal friendship outlined by the Greek philosopher.

We know that social interaction is rewarding in its own right, and something that, as social mammals, humans have a strong need for. It seems probable that relationships with robots could help to address the deep-seated urge we all feel for social connection—like providing physical comfort, emotional support, and enjoyable social exchanges—currently provided by other humans.

Our paper also discussed some potential risks. These arise particularly in settings where interaction with a robot could come to replace interaction with people, or where people are denied a choice as to whether they interact with a person or a robot—in a care setting, for instance.

These are important concerns, but they’re possibilities and not inevitabilities. In the literature we reviewed we actually found evidence of the opposite effect: robots acting to scaffold social interactions with others, acting as ice-breakers in groups, and helping people to improve their social skills or to boost their self-esteem.

It appears likely that, as time progresses, many of us will simply follow Frank’s path towards acceptance: scoffing at first, before settling into the idea that robots can make surprisingly good companions. Our research suggests that’s already happening—though perhaps not in a way of which Aristotle would have approved.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Andy Kelly on Unsplash Continue reading

Posted in Human Robots

#438012 Video Friday: These Robots Have Made 1 ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
Let us know if you have suggestions for next week, and enjoy today's videos.

We're proud to announce Starship Delivery Robots have now completed 1,000,000 autonomous deliveries around the world. We were unsure where the one millionth delivery was going to take place, as there are around 15-20 service areas open globally, all with robots doing deliveries every minute. In the end it took place at Bowling Green, Ohio, to a student called Annika Keeton who is a freshman studying pre-health Biology at BGSU. Annika is now part of Starship’s history!

[ Starship ]

I adore this little DIY walking robot- with modular feet and little dials to let you easily adjust the walking parameters, it's an affordable kit that's way more nuanced than most.

It's called Bakiwi, and it costs €95. A squee cover made from feathers or fur is an extra €17. Here's a more serious look at what it can do:

[ Bakiwi ]

Thanks Oswald!

Savva Morozov, an AeroAstro junior, works on autonomous navigation for the MIT mini cheetah robot and reflects on the value of a crowded Infinite Corridor.

[ MIT ]

The world's most advanced haptic feedback gloves just got a huge upgrade! HaptX Gloves DK2 achieves a level of realism that other haptic devices can't match. Whether you’re training your workforce, designing a new product, or controlling robots from a distance, HaptX Gloves make it feel real.

They're the only gloves with true-contact haptics, with patented technology that displace your skin the same way a real object would. With 133 points of tactile feedback per hand, for full palm and fingertip coverage. HaptX Gloves DK2 feature the industry's most powerful force feedback, ~2X the strength of other force feedback gloves. They're also the most accurate motion tracking gloves, with 30 tracked degrees of freedom, sub-millimeter precision, no perceivable latency, and no occlusion.

[ HaptX ]

Yardroid is an outdoor robot “guided by computer vision and artificial intelligence” that seems like it can do almost everything.

These are a lot of autonomous capabilities, but so far, we've only seen the video. So, best not to get too excited until we know more about how it works.

[ Yardroid ]

Thanks Dan!

Since as far as we know, Pepper can't spread COVID, it had a busy year.

I somehow missed seeing that chimpanzee magic show, but here it is:

[ Simon Pierro ] via [ SoftBank Robotics ]

In spite of the pandemic, Professor Hod Lipson’s Robotics Studio persevered and even thrived— learning to work on global teams, to develop protocols for sharing blueprints and code, and to test, evaluate, and refine their designs remotely. Equipped with a 3D printer and a kit of electronics prototyping equipment, our students engineered bipedal robots that were conceptualized, fabricated, programmed, and endlessly iterated around the globe in bedrooms, kitchens, backyards, and any other makeshift laboratory you can imagine.

[ Hod Lipson ]

Thanks Fan!

We all know how much quadrupeds love ice!

[ Ghost Robotics ]

We took the opportunity of the last storm to put the Warthog in the snow of Université Laval. Enjoy!

[ Norlab ]

They've got a long way to go, but autonomous indoor firefighting drones seem like a fantastic idea.

[ CTU ]

Individual manipulators are limited by their vertical total load capacity. This places a fundamental limit on the weight of loads that a single manipulator can move. Cooperative manipulation with two arms has the potential to increase the net weight capacity of the overall system. However, it is critical that proper load sharing takes place between the two arms. In this work, we outline a method that utilizes mechanical intelligence in the form of a whiffletree.

And your word of the day is whiffletree, which is “a mechanism to distribute force evenly through linkages.”

[ DART Lab ]

Thanks Raymond!

Some highlights of robotic projects at FZI in 2020, all using ROS.

[ FZI ]

Thanks Fan!

iRobot CEO Colin Angle threatens my job by sharing some cool robots.

[ iRobot ]

A fascinating new talk from Henry Evans on robotic caregivers.

[ HRL ]

The ANA Avatar XPRIZE semifinals selection submission for Team AVATRINA. The setting is a mock clinic, with the patient sitting on a wheelchair and nurse having completed an initial intake. Avatar enters the room controlled by operator (Doctor). A rolling tray table with medical supplies (stethoscope, pulse oximeter, digital thermometer, oxygen mask, oxygen tube) is by the patient’s side. Demonstrates head tracking, stereo vision, fine manipulation, bimanual manipulation, safe impedance control, and navigation.

[ Team AVATRINA ]

This five year old talk from Mikell Taylor, who wrote for us a while back and is now at Amazon Robotics, is entitled “Nobody Cares About Your Robot.” For better or worse, it really doesn't sound like it was written five years ago.

Robotics for the consumer market – Mikell Taylor from Scott Handsaker on Vimeo.

[ Mikell Taylor ]

Fall River Community Media presents this wonderful guy talking about his love of antique robot toys.

If you enjoy this kind of slow media, Fall River also has weekly Hot Dogs Cool Cats adoption profiles that are super relaxing to watch.

[ YouTube ] Continue reading

Posted in Human Robots

#438001 How an Israeli Startup Is Using AI to ...

The first baby conceived using in-vitro fertilization (IVF) was born in the UK in 1978. Over 40 years later, the technique has become commonplace, but its success rate is still fairly low at around 22 to 30 percent. A female-founded Israeli startup called Embryonics is setting out to change this by using artificial intelligence to screen embryos.

IVF consists of fertilizing a woman’s egg with her partner’s or a donor’s sperm outside of her body, creating an embryo that’s then implanted in the uterus. It’s not an easy process in any sense of the word—physically, emotionally, or financially. Insurance rarely covers IVF, and the costs run anywhere from $12,000 to $25,000 per cycle (a cycle takes about a month and includes stimulating a woman’s ovaries to produce eggs, extracting the eggs, inseminating them outside the body, and implanting an embryo).

Women have to give themselves daily hormone shots to stimulate egg production, and these can cause uncomfortable side effects. After so much stress and expense, it’s disheartening to think that the odds of a successful pregnancy are, at best, one in three.

A crucial factor in whether or not an IVF cycle works—that is, whether the embryo implants in the uterus and begins to develop into a healthy fetus—is the quality of the embryo. Doctors examine embryos through a microscope to determine how many cells they contain and whether they appear healthy, and choose the one that looks most viable.

But the human eye can only see so much, even with the help of a microscope; despite embryologists’ efforts to select the “best” embryo, success rates are still relatively low. “Many decisions are based on gut feeling or personal experience,” said Embryonics founder and CEO Yael Gold-Zamir. “Even if you go to the same IVF center, two experts can give you different opinions on the same embryo.”

This is where Embryonics’ technology comes in. They used 8,789 time-lapse videos of developing embryos to train an algorithm that predicts the likelihood of successful embryo implantation. A little less than half of the embryos from the dataset were graded by embryologists, and implantation data was integrated when it was available (as a binary “successful” or “failed” metric).

The algorithm uses geometric deep learning, a technique that takes a traditional convolutional neural network—which filters input data to create maps of its features, and is most commonly used for image recognition—and applies it to more complex data like 3D objects and graphs. Within days after fertilization, the embryo is still at the blastocyst stage, essentially a microscopic clump of just 200-300 cells; the algorithm uses this deep learning technique to spot and identify patterns in embryo development that human embryologists either wouldn’t see at all, or would require massive collation of data to validate.

On top of the embryo videos, Embryonics’ team incorporated patient data and environmental data from the lab into its algorithm, with encouraging results: the company reports that using its algorithm resulted in a 12 percent increase in positive predictive value (identifying embryos that would lead to implantation and healthy pregnancy) and a 29 percent increase in negative predictive value (identifying embyros that would not result in successful pregnancy) when compared to an external panel of embryologists.

TechCrunch reported last week that in a pilot of 11 women who used Embryonics’ algorithm to select their embryos, 6 are enjoying successful pregnancies, while 5 are still awaiting results.

Embryonics wasn’t the first group to think of using AI to screen embryos; a similar algorithm developed in 2019 by researchers at Weill Cornell Medicine was able to classify the quality of a set of embryo images with 97 percent accuracy. But Embryonics will be one of the first to bring this sort of technology to market. The company is waiting to receive approval from European regulatory bodies to be able to sell the software to fertility clinics in Europe.

Its timing is ripe: as more and more women delay having kids due to lifestyle and career-related factors, demand for IVF is growing, and will likely accelerate in coming years.

The company ultimately hopes to bring its product to the US, as well as to expand its work to include using data to improve hormonal stimulation.

Image Credit: Gerd Altmann from Pixabay Continue reading

Posted in Human Robots