Tag Archives: setting

#437592 Coordinated Robotics Wins DARPA SubT ...

DARPA held the Virtual Cave Circuit event of the Subterranean Challenge on Tuesday in the form of a several hour-long livestream. We got to watch (along with all of the competing teams) as virtual robots explored virtual caves fully autonomously, dodging rockfalls, spotting artifacts, scoring points, and sometimes running into stuff and falling over.

Expert commentary was provided by DARPA, and we were able to watch multiple teams running at once, skipping from highlight to highlight. It was really very well done (you can watch an archive of the entire stream here), but they made us wait until the very end to learn who won: First place went to Coordinated Robotics, with BARCS taking second, and third place going to newcomer Team Dynamo.

Huge congratulations to Coordinated Robotics! It’s worth pointing out that the top three teams were separated by an incredibly small handful of points, and on a slightly different day, with slightly different artifact positions, any of them could have come out on top. This doesn’t diminish Coordinated Robotics’ victory in the least—it means that the competition was fierce, and that the problem of autonomous cave exploration with robots has been solved (virtually, at least) in several different but effective ways.

We know Coordinated Robotics pretty well at this point, but here’s an introduction video:

You heard that right—Coordinated Robotics is just Kevin Knoedler, all by himself. This would be astonishing, if we weren’t already familiar with Kevin’s abilities: He won NASA’s virtual Space Robotics Challenge by himself in 2017, and Coordinated Robotics placed first in the DARPA SubT Virtual Tunnel Circuit and second in the Virtual Urban Circuit. We asked Kevin how he managed to do so spectacularly well (again), and here’s what he told us:

IEEE Spectrum: Can you describe what it was like to watch your team of robots on the live stream, and to see them score the most points?

Kevin Knoedler: It was exciting and stressful watching the live stream. It was exciting as the top few scores were quite close for the cave circuit. It was stressful because I started out behind and worked my way up, but did not do well on the final world. Luckily, not doing well on the first and last worlds was offset by better scores on many of the runs in between. DARPA did a very nice job with their live stream of the cave circuit results.

How did you decide on the makeup of your team, and on what sensors to use?

To decide on the makeup of the team I experimented with quite a few different vehicles. I had a lot of trouble with the X2 and other small ground vehicles flipping over. Based on that I looked at the larger ground vehicles that also had a sensor capable of identifying drop-offs. The vehicles that met those criteria for me were the Marble HD2, Marble Husky, Ozbot ATR, and the Absolem. Of those ground vehicles I went with the Marble HD2. It had a downward looking depth camera that I could use to detect drop-offs and was much more stable on the varied terrain than the X2. I had used the X3 aerial vehicle before and so that was my first choice for an aerial platform.

What were some things that you learned in Tunnel and Urban that you were able to incorporate into your strategy for Cave?

In the Tunnel circuit I had learned a strategy to use ground vehicles and in the Urban circuit I had learned a strategy to use aerial vehicles. At a high level that was the biggest thing I learned from the previous circuits that I was able to apply to the Cave circuit. At a lower level I was able to apply many of the development and testing strategies from the previous circuits to the Cave circuit.

What aspect of the cave environment was most challenging for your robots?

I would say it wasn't just one aspect of the cave environment that was challenging for the robots. There were quite a few challenging aspects of the cave environment. For the ground vehicles there were frequently paths that looked good as the robot started on the path, but turned into drop-offs or difficult boulder crawls. While it was fun to see the robot plan well enough to slowly execute paths over the boulders, I was wishing that the robot was smart enough to try a different path rather than wasting so much time crawling over the large boulders. For the aerial vehicles the combination of tight paths along with large vertical spaces was the biggest challenge in the environment. The large open vertical areas were particularly challenging for my aerial robots. They could easily lose track of their position without enough nearby features to track and it was challenging to find the correct path in and out of such large vertical areas.

How will you be preparing for the SubT Final?

To prepare for the SubT Final the vehicles will be getting a lot smarter. The ground vehicles will be better at navigation and communicating with one another. The aerial vehicles will be better able to handle large vertical areas both from a positioning and a planning point of view. Finally, all of the vehicles will do a better job coordinating what areas have been explored and what areas have good leads for further exploration.

Image: DARPA

The final score for the DARPA SubT Cave Circuit virtual competition.

We also had a chance to ask SubT program manager Tim Chung a few questions at yesterday’s post-event press conference, about the course itself and what he thinks teams should have learned from the competition:

IEEE Spectrum: Having looked through some real caves, can you give some examples of some of the most significant differences between this simulation and real caves? And with the enormous variety of caves out there, how generalizable are the solutions that teams came up with?

Tim Chung: Many of the caves that I’ve had to crawl through and gotten bumps and scrapes from had a couple of different features that I’ll highlight. The first is the variations in moisture— a lot of these caves were naturally formed with streams and such, so many of the caves we went to had significant mud, flowing water, and such. And so one of the things we're not capturing in the SubT simulator is explicitly anything that would submerge the robots, or otherwise short any of their systems. So from that perspective, that's one difference that's certainly notable.

And then the other difference I think is the granularity of the terrain, whether it's rubble, sand, or just raw dirt, friction coefficients are all across the board, and I think that's one of the things that any terrestrial simulator will both struggle with and potentially benefit from— that is, terramechanics simulation abilities. Given the emphasis on mobility in the SubT simulation, we’re capturing just a sliver of the complexity of terramechanics, but I think that's probably another take away that you'll certainly see— where there’s that distinction between physical and virtual technologies.

To answer your second question about generalizability— that’s the multi-million dollar question! It’s definitely at the crux of why we have eight diverse worlds, both in size verticality, dimensions, constraint passageways, etc. But this is eight out of countless variations, and the goal of course is to be able to investigate what those key dependencies are. What I'll say is that the out of the seventy three different virtual cave tiles, which are the building blocks that make up these virtual worlds, quite a number of them were not only inspired by real world caves, but were specifically designed so that we can essentially use these tiles as unit tests going forward. So, if I want to simulate vertical inclines, here are the tiles that are the vertical vertical unit tests for robots, and that’s how we’re trying to to think through how to tease out that generalizability factor.

What are some observations from this event that you think systems track teams should pay attention to as they prepare for the final event?

One of the key things about the virtual competition is that you submit your software, and that's it. So you have to design everything from state management to failure mode triage, really thinking about what could go wrong and then building out your autonomous capabilities either to react to some of those conditions, or to anticipate them. And to be honest I think that the humans in the loop that we have in the systems competition really are key enablers of their capability, but also could someday (if not already) be a crutch that we might not be able to develop.

Thinking through some of the failure modes in a fully autonomous software deployed setting are going to be incredibly valuable for the systems competitors, so that for example the human supervisor doesn't have to worry about those failure modes as much, or can respond in a more supervisory way rather than trying to joystick the robot around. I think that's going to be one of the greatest impacts, thinking through what it means to send these robots off to autonomously get you the information you need and complete the mission

This isn’t to say that the humans aren't going to be useful and continue to play a role of course, but I think this shifting of the role of the human supervisor from being a state manager to being more of a tactical commander will dramatically highlight the impact of the virtual side on the systems side.

What, if anything, should we take away from one person teams being able to do so consistently well in the virtual circuit?

It’s a really interesting question. I think part of it has to do with systems integration versus software integration. There's something to be said for the richness of the technologies that can be developed, and how many people it requires to be able to develop some of those technologies. With the systems competitors, having one person try to build, manage, deploy, service, and operate all of those robots is still functionally quite challenging, whereas in the virtual competition, it really is a software deployment more than anything else. And so I think the commonality of single person teams may just be a virtue of the virtual competition not having some of those person-intensive requirements.

In terms of their strong performance, I give credit to all of these really talented folks who are taking upon themselves to jump into the competitor pool and see how well they do, and I think that just goes to show you that whether you're one person or ten people people or a hundred people on a team, a good idea translated and executed well really goes a long way.

Looking ahead, teams have a year to prepare for the final event, which is still scheduled to be held sometime in fall 2021. And even though there was no cave event for systems track teams, the fact that the final event will be a combination of tunnel, urban, and cave circuits means that systems track teams have been figuring out how to get their robots to work in caves anyway, and we’ll be bringing you some of their stories over the next few weeks.

[ DARPA SubT ] Continue reading

Posted in Human Robots

#437585 Dart-Shooting Drone Attacks Trees for ...

We all know how robots are great at going to places where you can’t (or shouldn’t) send a human. We also know how robots are great at doing repetitive tasks. These characteristics have the potential to make robots ideal for setting up wireless sensor networks in hazardous environments—that is, they could deploy a whole bunch of self-contained sensor nodes that create a network that can monitor a very large area for a very long time.

When it comes to using drones to set up sensor networks, you’ve generally got two options: A drone that just drops sensors on the ground (easy but inaccurate and limited locations), or using a drone with some sort of manipulator on it to stick sensors in specific places (complicated and risky). A third option, under development by researchers at Imperial College London’s Aerial Robotics Lab, provides the accuracy of direct contact with the safety and ease of use of passive dropping by instead using the drone as a launching platform for laser-aimed, sensor-equipped darts.

These darts (which the researchers refer to as aerodynamically stabilized, spine-equipped sensor pods) can embed themselves in relatively soft targets from up to 4 meters away with an accuracy of about 10 centimeters after being fired from a spring-loaded launcher. They’re not quite as accurate as a drone with a manipulator, but it’s pretty good, and the drone can maintain a safe distance from the surface that it’s trying to add a sensor to. Obviously, the spine is only going to work on things like wood, but the researchers point out that there are plenty of attachment mechanisms that could be used, including magnets, adhesives, chemical bonding, or microspines.

Indoor tests using magnets showed the system to be quite reliable, but at close range (within a meter of the target) the darts sometimes bounced off rather than sticking. From between 1 and 4 meters away, the darts stuck between 90 and 100 percent of the time. Initial outdoor tests were also successful, although the system was under manual control. The researchers say that “regular and safe operations should be carried out autonomously,” which, yeah, you’d just have to deal with all of the extra sensing and hardware required to autonomously fly beneath the canopy of a forest. That’s happening next, as the researchers plan to add “vision state estimation and positioning, as well as a depth sensor” to avoid some trees and fire sensors into others.

And if all of that goes well, they’ll consider trying to get each drone to carry multiple darts. Look out, trees: You’re about to be pierced for science.

“Unmanned Aerial Sensor Placement for Cluttered Environments,” by André Farinha, Raphael Zufferey, Peter Zheng, Sophie F. Armanini, and Mirko Kovac from Imperial College London, was published in IEEE Robotics and Automation Letters.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437543 This Is How We’ll Engineer Artificial ...

Take a Jeopardy! guess: this body part was once referred to as the “consummation of all perfection as an instrument.”

Answer: “What is the human hand?”

Our hands are insanely complex feats of evolutionary engineering. Densely-packed sensors provide intricate and ultra-sensitive feelings of touch. Dozens of joints synergize to give us remarkable dexterity. A “sixth sense” awareness of where our hands are in space connects them to the mind, making it possible to open a door, pick up a mug, and pour coffee in total darkness based solely on what they feel.

So why can’t robots do the same?

In a new article in Science, Dr. Subramanian Sundaram at Boston and Harvard University argues that it’s high time to rethink robotic touch. Scientists have long dreamed of artificially engineering robotic hands with the same dexterity and feedback that we have. Now, after decades, we’re at the precipice of a breakthrough thanks to two major advances. One, we better understand how touch works in humans. Two, we have the mega computational powerhouse called machine learning to recapitulate biology in silicon.

Robotic hands with a sense of touch—and the AI brain to match it—could overhaul our idea of robots. Rather than charming, if somewhat clumsy, novelties, robots equipped with human-like hands are far more capable of routine tasks—making food, folding laundry—and specialized missions like surgery or rescue. But machines aren’t the only ones to gain. For humans, robotic prosthetic hands equipped with accurate, sensitive, and high-resolution artificial touch is the next giant breakthrough to seamlessly link a biological brain to a mechanical hand.

Here’s what Sundaram laid out to get us to that future.

How Does Touch Work, Anyway?
Let me start with some bad news: reverse engineering the human hand is really hard. It’s jam-packed with over 17,000 sensors tuned to mechanical forces alone, not to mention sensors for temperature and pain. These force “receptors” rely on physical distortions—bending, stretching, curling—to signal to the brain.

The good news? We now have a far clearer picture of how biological touch works. Imagine a coin pressed into your palm. The sensors embedded in the skin, called mechanoreceptors, capture that pressure, and “translate” it into electrical signals. These signals pulse through the nerves on your hand to the spine, and eventually make their way to the brain, where they gets interpreted as “touch.”

At least, that’s the simple version, but one too vague and not particularly useful for recapitulating touch. To get there, we need to zoom in.

The cells on your hand that collect touch signals, called tactile “first order” neurons (enter Star Wars joke) are like upside-down trees. Intricate branches extend from their bodies, buried deep in the skin, to a vast area of the hand. Each neuron has its own little domain called “receptor fields,” although some overlap. Like governors, these neurons manage a semi-dedicated region, so that any signal they transfer to the higher-ups—spinal cord and brain—is actually integrated from multiple sensors across a large distance.

It gets more intricate. The skin itself is a living entity that can regulate its own mechanical senses through hydration. Sweat, for example, softens the skin, which changes how it interacts with surrounding objects. Ever tried putting a glove onto a sweaty hand? It’s far more of a struggle than a dry one, and feels different.

In a way, the hand’s tactile neurons play a game of Morse Code. Through different frequencies of electrical beeps, they’re able to transfer information about an object’s size, texture, weight, and other properties, while also asking the brain for feedback to better control the object.

Biology to Machine
Reworking all of our hands’ greatest features into machines is absolutely daunting. But robots have a leg up—they’re not restricted to biological hardware. Earlier this year, for example, a team from Columbia engineered a “feeling” robotic finger using overlapping light emitters and sensors in a way loosely similar to receptor fields. Distortions in light were then analyzed with deep learning to translate into contact location and force.

Although a radical departure from our own electrical-based system, the Columbia team’s attempt was clearly based on human biology. They’re not alone. “Substantial progress is being made in the creation of soft, stretchable electronic skins,” said Sundaram, many of which can sense forces or pressure, although they’re currently still limited.

What’s promising, however, is the “exciting progress in using visual data,” said Sundaram. Computer vision has gained enormously from ubiquitous cameras and large datasets, making it possible to train powerful but data-hungry algorithms such as deep convolutional neural networks (CNNs).

By piggybacking on their success, we can essentially add “eyes” to robotic hands, a superpower us humans can’t imagine. Even better, CNNs and other classes of algorithms can be readily adopted for processing tactile data. Together, a robotic hand could use its eyes to scan an object, plan its movements for grasp, and use touch for feedback to adjust its grip. Maybe we’ll finally have a robot that easily rescues the phone sadly dropped into a composting toilet. Or something much grander to benefit humanity.

That said, relying too heavily on vision could also be a downfall. Take a robot that scans a wide area of rubble for signs of life during a disaster response. If touch relies on sight, then it would have to keep a continuous line-of-sight in a complex and dynamic setting—something computer vision doesn’t do well in, at least for now.

A Neuromorphic Way Forward
Too Debbie Downer? I got your back! It’s hard to overstate the challenges, but what’s clear is that emerging machine learning tools can tackle data processing challenges. For vision, it’s distilling complex images into “actionable control policies,” said Sundaram. For touch, it’s easy to imagine the same. Couple the two together, and that’s a robotic super-hand in the making.

Going forward, argues Sundaram, we need to closely adhere to how the hand and brain process touch. Hijacking our biological “touch machinery” has already proved useful. In 2019, one team used a nerve-machine interface for amputees to control a robotic arm—the DEKA LUKE arm—and sense what the limb and attached hand were feeling. Pressure on the LUKE arm and hand activated an implanted neural interface, which zapped remaining nerves in a way that the brain processes as touch. When the AI analyzed pressure data similar to biological tactile neurons, the person was able to better identify different objects with their eyes closed.

“Neuromorphic tactile hardware (and software) advances will strongly influence the future of bionic prostheses—a compelling application of robotic hands,” said Sundaram, adding that the next step is to increase the density of sensors.

Two additional themes made the list of progressing towards a cyborg future. One is longevity, in that sensors on a robot need to be able to reliably produce large quantities of high-quality data—something that’s seemingly mundane, but is a practical limitation.

The other is going all-in-one. Rather than just a pressure sensor, we need something that captures the myriad of touch sensations. From feather-light to a heavy punch, from vibrations to temperatures, a tree-like architecture similar to our hands would help organize, integrate, and otherwise process data collected from those sensors.

Just a decade ago, mind-controlled robotics were considered a blue sky, stretch-goal neurotechnological fantasy. We now have a chance to “close the loop,” from thought to movement to touch and back to thought, and make some badass robots along the way.

Image Credit: PublicDomainPictures from Pixabay Continue reading

Posted in Human Robots

#437357 Algorithms Workers Can’t See Are ...

“I’m sorry, Dave. I’m afraid I can’t do that.” HAL’s cold, if polite, refusal to open the pod bay doors in 2001: A Space Odyssey has become a defining warning about putting too much trust in artificial intelligence, particularly if you work in space.

In the movies, when a machine decides to be the boss (or humans let it) things go wrong. Yet despite myriad dystopian warnings, control by machines is fast becoming our reality.

Algorithms—sets of instructions to solve a problem or complete a task—now drive everything from browser search results to better medical care.

They are helping design buildings. They are speeding up trading on financial markets, making and losing fortunes in micro-seconds. They are calculating the most efficient routes for delivery drivers.

In the workplace, self-learning algorithmic computer systems are being introduced by companies to assist in areas such as hiring, setting tasks, measuring productivity, evaluating performance, and even terminating employment: “I’m sorry, Dave. I’m afraid you are being made redundant.”

Giving self‐learning algorithms the responsibility to make and execute decisions affecting workers is called “algorithmic management.” It carries a host of risks in depersonalizing management systems and entrenching pre-existing biases.

At an even deeper level, perhaps, algorithmic management entrenches a power imbalance between management and worker. Algorithms are closely guarded secrets. Their decision-making processes are hidden. It’s a black-box: perhaps you have some understanding of the data that went in, and you see the result that comes out, but you have no idea of what goes on in between.

Algorithms at Work
Here are a few examples of algorithms already at work.

At Amazon’s fulfillment center in south-east Melbourne, they set the pace for “pickers,” who have timers on their scanners showing how long they have to find the next item. As soon as they scan that item, the timer resets for the next. All at a “not quite walking, not quite running” speed.

Or how about AI determining your success in a job interview? More than 700 companies have trialed such technology. US developer HireVue says its software speeds up the hiring process by 90 percent by having applicants answer identical questions and then scoring them according to language, tone, and facial expressions.

Granted, human assessments during job interviews are notoriously flawed. Algorithms,however, can also be biased. The classic example is the COMPAS software used by US judges, probation, and parole officers to rate a person’s risk of re-offending. In 2016 a ProPublica investigation showed the algorithm was heavily discriminatory, incorrectly classifying black subjects as higher risk 45 percent of the time, compared with 23 percent for white subjects.

How Gig Workers Cope
Algorithms do what their code tells them to do. The problem is this code is rarely available. This makes them difficult to scrutinize, or even understand.

Nowhere is this more evident than in the gig economy. Uber, Lyft, Deliveroo, and other platforms could not exist without algorithms allocating, monitoring, evaluating, and rewarding work.

Over the past year Uber Eats’ bicycle couriers and drivers, for instance, have blamed unexplained changes to the algorithm for slashing their jobs, and incomes.

Rider’s can’t be 100 percent sure it was all down to the algorithm. But that’s part of the problem. The fact those who depend on the algorithm don’t know one way or the other has a powerful influence on them.

This is a key result from our interviews with 58 food-delivery couriers. Most knew their jobs were allocated by an algorithm (via an app). They knew the app collected data. What they didn’t know was how data was used to award them work.

In response, they developed a range of strategies (or guessed how) to “win” more jobs, such as accepting gigs as quickly as possible and waiting in “magic” locations. Ironically, these attempts to please the algorithm often meant losing the very flexibility that was one of the attractions of gig work.

The information asymmetry created by algorithmic management has two profound effects. First, it threatens to entrench systemic biases, the type of discrimination hidden within the COMPAS algorithm for years. Second, it compounds the power imbalance between management and worker.

Our data also confirmed others’ findings that it is almost impossible to complain about the decisions of the algorithm. Workers often do not know the exact basis of those decisions, and there’s no one to complain to anyway. When Uber Eats bicycle couriers asked for reasons about their plummeting income, for example, responses from the company advised them “we have no manual control over how many deliveries you receive.”

Broader Lessons
When algorithmic management operates as a “black box” one of the consequences is that it is can become an indirect control mechanism. Thus far under-appreciated by Australian regulators, this control mechanism has enabled platforms to mobilize a reliable and scalable workforce while avoiding employer responsibilities.

“The absence of concrete evidence about how the algorithms operate”, the Victorian government’s inquiry into the “on-demand” workforce notes in its report, “makes it hard for a driver or rider to complain if they feel disadvantaged by one.”

The report, published in June, also found it is “hard to confirm if concern over algorithm transparency is real.”

But it is precisely the fact it is hard to confirm that’s the problem. How can we start to even identify, let alone resolve, issues like algorithmic management?

Fair conduct standards to ensure transparency and accountability are a start. One example is the Fair Work initiative, led by the Oxford Internet Institute. The initiative is bringing together researchers with platforms, workers, unions, and regulators to develop global principles for work in the platform economy. This includes “fair management,” which focuses on how transparent the results and outcomes of algorithms are for workers.

Understandings about impact of algorithms on all forms of work is still in its infancy. It demands greater scrutiny and research. Without human oversight based on agreed principles we risk inviting HAL into our workplaces.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: PickPik Continue reading

Posted in Human Robots

#436944 Is Digital Learning Still Second Best?

As Covid-19 continues to spread, the world has gone digital on an unprecedented scale. Tens of thousands of employees are working from home, and huge conferences, like the Google I/O and Apple WWDC software extravaganzas, plan to experiment with digital events.

Universities too are sending students home. This might have meant an extended break from school not too long ago. But no more. As lecture halls go empty, an experiment into digital learning at scale is ramping up. In the US alone, over 100 universities, from Harvard to Duke, are offering online classes to students to keep the semester going.

While digital learning has been improving for some time, Covid-19 may not only tip us further into a more digitally connected reality, but also help us better appreciate its benefits. This is important because historically, digital learning has been viewed as inferior to traditional learning. But that may be changing.

The Inversion
We often think about digital technologies as ways to reach people without access to traditional services—online learning for children who don’t have schools nearby or telemedicine for patients with no access to doctors. And while these solutions have helped millions of people, they’re often viewed as “second best” and “better than nothing.” Even in more resource-rich environments, there’s an assumption one should pay more to attend an event in person—a concert, a football game, an exercise class—while digital equivalents are extremely cheap or free. Why is this? And is the situation about to change?

Take the case of Dr. Sanjeev Arora, a professor of medicine at the University of New Mexico. Arora started Project Echo because he was frustrated by how many late-stage cases of hepatitis C he encountered in rural New Mexico. He realized that if he had reached patients sooner, he could have prevented needless deaths. The solution? Digital learning for local health workers.

Project Echo connects rural healthcare practitioners to specialists at top health centers by video. The approach is collaborative: Specialists share best practices and work through cases with participants to apply them in the real world and learn from edge cases. Added to expert presentations, there are lots of opportunities to ask questions and interact with specialists.

The method forms a digital loop of learning, practice, assessment, and adjustment.

Since 2003, Project Echo has scaled to 800 locations in 39 countries and trained over 90,000 healthcare providers. Most notably, a study in The New England Journal of Medicine found that the outcomes of hepatitis C treatment given by Project Echo trained healthcare workers in rural and underserved areas were similar to outcomes at university medical centers. That is, digital learning in this context was equivalent to high quality in-person learning.

If that is possible today, with simple tools, will they surpass traditional medical centers and schools in the future? Can digital learning more generally follow suit and have the same success? Perhaps. Going digital brings its own special toolset to the table too.

The Benefits of Digital
If you’re training people online, you can record the session to better understand their engagement levels—or even add artificial intelligence to analyze it in real time. Ahura AI, for example, founded by Bryan Talebi, aims to upskill workers through online training. Early study of their method suggests they can significantly speed up learning by analyzing users’ real-time emotions—like frustration or distraction—and adjusting the lesson plan or difficulty on the fly.

Other benefits of digital learning include the near-instantaneous download of course materials—rather than printing and shipping books—and being able to more easily report grades and other results, a requirement for many schools and social services organizations. And of course, as other digitized industries show, digital learning can grow and scale further at much lower costs.

To that last point, 360ed, a digital learning startup founded in 2016 by Hla Hla Win, now serves millions of children in Myanmar with augmented reality lesson plans. And Global Startup Ecosystem, founded by Christine Souffrant Ntim and Einstein Kofi Ntim in 2015, is the world’s first and largest digital accelerator program. Their entirely online programs support over 1,000 companies in 90 countries. It’s astonishing how fast both of these organizations have grown.

Notably, both examples include offline experiences too. Many of the 360ed lesson plans come with paper flashcards children use with their smartphones because the online-offline interaction improves learning. The Global Startup Ecosystem also hosts about 10 additional in-person tech summits around the world on various topics through a related initiative.

Looking further ahead, probably the most important benefit of online learning will be its potential to integrate with other digital systems in the workplace.

Imagine a medical center that has perfect information about every patient and treatment in real time and that this information is (anonymously and privately) centralized, analyzed, and shared with medical centers, research labs, pharmaceutical companies, clinical trials, policy makers, and medical students around the world. Just as self-driving cars can learn to drive better by having access to the experiences of other self-driving cars, so too can any group working to solve complex, time-sensitive challenges learn from and build on each other’s experiences.

Why This Matters
While in the long term the world will likely end up combining the best aspects of traditional and digital learning, it’s important in the near term to be more aware of the assumptions we make about digital technologies. Some of the most pioneering work in education, healthcare, and other industries may not be highly visible right now because it is in a virtual setting. Most people are unaware, for example, that the busiest emergency room in rural America is already virtual.

Once they start converging with other digital technologies, these innovations will likely become the mainstream system for all of us. Which raises more questions: What is the best business model for these virtual services? If they start delivering better healthcare and educational outcomes than traditional institutions, should they charge more? Hopefully, we will see an even bigger shift occurring, in which technology allows us to provide high quality education, healthcare, and other services to everyone at more affordable prices than today.

These are some of the topics we can consider as Covid-19 forces us into uncharted territory.

Image Credit: Andras Vas / Unsplash Continue reading

Posted in Human Robots