Tag Archives: sensors

#436149 Blue Frog Robotics Answers (Some of) Our ...

In September of 2015, Buddy the social home robot closed its Indiegogo crowdfunding campaign more than 600 percent over its funding goal. A thousand people pledged for a robot originally scheduled to be delivered in December of 2016. But nearly three years later, the future of Buddy is still unclear. Last May, Blue Frog Robotics asked for forgiveness from its backers and announced the launch of an “equity crowdfunding campaign” to try to raise the additional funding necessary to deliver the robot in April of 2020.

By the time the crowdfunding campaign launched in August, the delivery date had slipped again, to September 2020, even as Blue Frog attempted to draw investors by estimating that sales of Buddy would “increase from 2000 robots in 2020 to 20,000 in 2023.” Blue Frog’s most recent communication with backers, in September, mentions a new CTO and a North American office, but does little to reassure backers of Buddy that they’ll ever be receiving their robot.

Backers of the robot are understandably concerned about the future of Buddy, so we sent a series of questions to the founder and CEO of Blue Frog Robotics, Rodolphe Hasselvander.

We’ve edited this interview slightly for clarity, but we should also note that Hasselvander was unable to provide answers to every question. In particular, we asked for some basic information about Blue Frog’s near-term financial plans, on which the entire future of Buddy seems to depend. We’ve left those questions in the interview anyway, along with Hasselvander’s response.

1. At this point, how much additional funding is necessary to deliver Buddy to backers?
2. Assuming funding is successful, when can backers expect to receive Buddy?
3. What happens if the fundraising goal is not met?
4. You estimate that sales of Buddy will increase 10x over three years. What is this estimate based on?

Rodolphe Hasselvander: Regarding the questions 1-4, unfortunately, as we are fundraising in a Regulation D, we do not comment on prospect, customer data, sales forecasts, or figures. Please refer to our press release here to have information about the fundraising.

5. Do you feel that you are currently being transparent enough about this process to satisfy backers?
6. Buddy’s launch date has moved from April 2020 to September 2020 over the last four months. Why should backers remain confident about Buddy’s schedule?

Since the last newsletter, we haven’t changed our communication, the backers will be the first to receive their Buddy, and we plan an official launch in September 2020.

7. What is the goal of My Buddy World?

At Blue Frog, we think that matching a great product with a big market can only happen through continual experimentation, iteration and incorporation of customer feedback. That’s why we created the forum My Buddy World. It has been designed for our Buddy Community to join us, discuss the world’s first emotional robot, and create with us. The objective is to deepen our conversation with Buddy’s fans and users, stay agile in testing our hypothesis and validate our product-market fit. We trust the value of collaboration. Behind Buddy, there is a team of roboticists, engineers, and programmers that are eager to know more about our consumers’ needs and are excited to work with them to create the perfect human/robot experience.

8. How is the current version of Buddy different from the 2015 version that backers pledged for during the successful crowdfunding campaign, in both hardware and software?

We have completely revised some parts of Buddy as well as replaced and/or added more accurate and reliable components to ensure we fully satisfy our customers’ requirements for a mature and high-quality robot from day one. We sourced more innovative components to make sure that Buddy has the most up-to-date technologies such as adding four microphones, a high def thermal matrix, a 3D camera, an 8-megapixel RGB camera, time-of-flight sensors, and touch sensors.
If you want more info, we just posted an article about what is Buddy here.

9. Will the version of Buddy that ships to backers in 2020 do everything that that was shown in the original crowdfunding video?

Concerning the capabilities of Buddy regarding the video published on YouTube, I confirm that Buddy will be able to do everything you can see, like patrol autonomously and secure your home, telepresence, mathematics applications, interactive stories for children, IoT/smart home management, face recognition, alarm clock, reminder, message/photo sharing, music, hands free call, people following, games like hide and seek (and more). In addition, everyone will be able to create their own apps thanks to the “BuddyLab” application.

10. What makes you confident that Buddy will be successful when Jibo, Kuri, and other social robots have not?

Consumer robotics is a new market. Some people think it is a tough one. But we, at Blue Frog Robotics, believe it is a path of learning, understanding, and finding new ways to serve consumers. Here are the five key factors that will make Buddy successful.

1) A market-fit robot

Blue Frog Robotics is a consumer-centric company. We know that a successful business model and a compelling fit to market Buddy must come up from solving consumers’ frustrations and problems in a way that’s new and exciting. We started from there.

By leveraged existing research and syndicated consumer data sets to understand our customers’ needs and aspirations, we get that creating a robot is not about the best tech innovation and features, but always about how well technology becomes a service to one’s basic human needs and assets: convenience, connection, security, fun, self-improvement, and time. To answer to these consumers’ needs and wants, we designed an all-in-one robot with four vital capabilities: intelligence, emotionality, mobility, and customization.

With his multi-purpose brain, he addresses a broad range of needs in modern-day life, from securing homes to carrying out his owners’ daily activities, from helping people with disabilities to educating children, from entertaining to just becoming a robot friend.

Buddy is a disruptive innovative robot that is about to transform the way we live, learn, utilize information, play, and even care about our health.
2) Endless possibilities

One of the major advantages of Buddy is his adaptability. Beyond to be adorable, playful, talkative, and to accompany anyone in their daily life at home whether you are comfortable with technology or not, he offers via his platform applications to engage his owners in a wide range of activities. From fitness to cooking, from health monitoring to education, from games to meditation, the combination of intelligence, sensors, mobility, multi-touch panel opens endless possibilities for consumers and organizations to adapt their Buddy to their own needs.
3) An affordable price

Buddy will be the first robot combining smart, social, and mobile capabilities and a developed platform with a personality to enter the U.S. market at affordable price.

Our competitors are social or assistant robots but rarely both. Competitors differentiate themselves by features: mobile, non-mobile; by shapes: humanoid or not; by skills: social versus smart; targeting a specific domain like entertainment, retail assistant, eldercare, or education for children; and by price. Regarding our six competitors: Moorebot, Elli-Q, and Olly are not mobile; Lynx and Nao are in toy category; Pepper is above $10k targeting B2B market; and finally, Temi can’t be considered an emotional robot.
Buddy remains highly differentiated as an all-in-one, best of his class experience, covering the needs for social interactions and assistance of his owners at each stage of their life at an affordable price.

The price range of Buddy will be between US $1700 and $2000.

4) A winning business model

Buddy’s great business model combines hardware, software, and services, and provides game-changing convenience for consumers, organizations, and developers.

Buddy offers a multi-sided value proposition focused on three vertical markets: direct consumers, corporations (healthcare, education, hospitality), and developers. The model creates engagement and sustained usage and produces stable and diverse cash flow.
5) A Passion for people and technology

From day one, we have always believed in the power of our dream: To bring the services and the fun of an emotional robot in every house, every hospital, in every care house. Each day, we refuse to think that we are stuck or limited; we work hard to make Buddy a reality that will help people all over the world and make them smile.

While we certainly appreciate Hasselvander’s consistent optimism and obvious enthusiasm, we’re obligated to point out that some of our most important questions were not directly answered. We haven’t learned anything that makes us all that much more confident that Blue Frog will be able to successfully deliver Buddy this time. Hasselvander also didn’t address our specific question about whether he feels like Blue Frog’s communication strategy with backers has been adequate, which is particularly relevant considering that over the four months between the last two newsletters, Buddy’s launch date slipped by six months.

At this point, all we can do is hope that the strategy Blue Frog has chosen will be successful. We’ll let you know if as soon as we learn more.

[ Buddy ] Continue reading

Posted in Human Robots

#436146 Video Friday: Kuka’s Robutt Is a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Kuka’s “robutt” can, according to the company, simulate “thousands of butts in the pursuit of durability and comfort.” Two of the robots are used at a Ford development center in Germany to evaluate new car seats. The tests are quite exhaustive, consisting of around 25,000 simulated sitting motions for each new seat design.” Or as Kuka puts it, “Pleasing all the butts on the planet is serious business.”

[ Kuka ]

Here’s a clever idea: 3D printing manipulators, and then using the 3D printer head to move those manipulators around and do stuff with them:

[ Paper ]

Two former soldiers performed a series of tests to see if the ONYX Exoskeleton gave them extra strength and endurance in difficult environments.

So when can I rent one of these to help me move furniture?

[ Lockheed ]

One of the defining characteristics of legged robots in general (and humanoid robots in particular) is the ability of walking on various types of terrain. In this video, we show our humanoid robot TORO walking dynamically over uneven (on grass outside the lab), rough (large gravel), and compliant terrain (a soft gym mattress). The robot can maintain its balance, even when the ground shifts rapidly under foot, such as when walking over gravel. This behaviour showcases the torque-control capability of quickly adapting the contact forces compared to position control methods.

An in-depth discussion of the current implementation is presented in the paper “Dynamic Walking on Compliant and Uneven Terrain using DCM and Passivity-based Whole-body Control”.

[ DLR RMC ]

Tsuki is a ROS-enabled quadruped designed and built by Lingkang Zhang. It’s completely position controlled, with no contact sensors on the feet, or even an IMU.

It can even do flips!

[ Tsuki ]

Thanks Lingkang!

TRI CEO Dr. Gill Pratt presents TRI’s contributions to Toyota’s New “LQ” Concept Vehicle, which includes onboard artificial intelligence agent “Yui” and LQ’s automated driving technology.

[ TRI ]

Hooman Hedayati wrote in to share some work (presented at HRI this year) on using augmented reality to make drone teleoperation more intuitive. Get a virtual drone to do what you want first, and then the real drone will follow.

[ Paper ]

Thanks Hooman!

You can now order a Sphero RVR for $250. It’s very much not spherical, but it does other stuff, so we’ll give it a pass.

[ Sphero ]

The AI Gamer Q56 robot is an expert at whatever this game is, using AI plus actual physical control manipulation. Watch until the end!

[ Bandai Namco ]

We present a swarm of autonomous flying robots for the exploration of unknown environments. The tiny robots do not make maps of their environment, but deal with obstacles on the fly. In robotics, the algorithms for navigating like this are called “bug algorithms”. The navigation of the robots involves them first flying away from the base station and later finding their way back with the help of a wireless beacon.

[ MAVLab ]

Okay Soft Robotics you successfully and disgustingly convinced us that vacuum grippers should never be used for food handling. Yuck!

[ Soft Robotics ]

Beyond the asteroid belt are “fossils of planet formation” known as the Trojan asteroids. These primitive bodies share Jupiter’s orbit in two vast swarms, and may hold clues to the formation and evolution of our solar system. Now, NASA is preparing to explore the Trojan asteroids for the first time. A mission called Lucy will launch in 2021 and visit seven asteroids over the course of twelve years – one in the main belt and six in Jupiter’s Trojan swarms.

[ NASA ]

I’m not all that impressed by this concept car from Lexus except that it includes some kind of super-thin autonomous luggage-carrying drone.

The LF-30 Electrified also carries the ‘Lexus Airporter’ drone-technology support vehicle. Using autonomous control, the Lexus Airporter is capable of such tasks as independently transporting baggage from a household doorstep to the vehicle’s luggage area.

[ Lexus ]

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

Tech United Eindhoven is looking good for RoboCup@Home 2020.

[ Tech United ]

Penn engineers participated in the Subterranean (SubT) Challenge hosted by DARPA, the Defense Advanced Research Projects Agency. The goal of this Challenge is for teams to develop automated systems that can work in underground environments so they could be deployed after natural disasters or on dangerous search-and-rescue missions.

[ Team PLUTO ]

It’s BeetleCam vs White Rhinos in Kenya, and the White Rhinos don’t seem to mind at all.

[ Will Burrard-Lucas ] Continue reading

Posted in Human Robots

#436119 How 3D Printing, Vertical Farming, and ...

Food. What we eat, and how we grow it, will be fundamentally transformed in the next decade.

Already, indoor farming is projected to be a US$40.25 billion industry by 2022, with a compound annual growth rate of 9.65 percent. Meanwhile, the food 3D printing industry is expected to grow at an even higher rate, averaging 50 percent annual growth.

And converging exponential technologies—from materials science to AI-driven digital agriculture—are not slowing down. Today’s breakthroughs will soon allow our planet to boost its food production by nearly 70 percent, using a fraction of the real estate and resources, to feed 9 billion by mid-century.

What you consume, how it was grown, and how it will end up in your stomach will all ride the wave of converging exponentials, revolutionizing the most basic of human needs.

Printing Food
3D printing has already had a profound impact on the manufacturing sector. We are now able to print in hundreds of different materials, making anything from toys to houses to organs. However, we are finally seeing the emergence of 3D printers that can print food itself.

Redefine Meat, an Israeli startup, wants to tackle industrial meat production using 3D printers that can generate meat, no animals required. The printer takes in fat, water, and three different plant protein sources, using these ingredients to print a meat fiber matrix with trapped fat and water, thus mimicking the texture and flavor of real meat.

Slated for release in 2020 at a cost of $100,000, their machines are rapidly demonetizing and will begin by targeting clients in industrial-scale meat production.

Anrich3D aims to take this process a step further, 3D printing meals that are customized to your medical records, heath data from your smart wearables, and patterns detected by your sleep trackers. The company plans to use multiple extruders for multi-material printing, allowing them to dispense each ingredient precisely for nutritionally optimized meals. Currently in an R&D phase at the Nanyang Technological University in Singapore, the company hopes to have its first taste tests in 2020.

These are only a few of the many 3D food printing startups springing into existence. The benefits from such innovations are boundless.

Not only will food 3D printing grant consumers control over the ingredients and mixtures they consume, but it is already beginning to enable new innovations in flavor itself, democratizing far healthier meal options in newly customizable cuisine categories.

Vertical Farming
Vertical farming, whereby food is grown in vertical stacks (in skyscrapers and buildings rather than outside in fields), marks a classic case of converging exponential technologies. Over just the past decade, the technology has surged from a handful of early-stage pilots to a full-grown industry.

Today, the average American meal travels 1,500-2,500 miles to get to your plate. As summed up by Worldwatch Institute researcher Brian Halweil, “We are spending far more energy to get food to the table than the energy we get from eating the food.” Additionally, the longer foods are out of the soil, the less nutritious they become, losing on average 45 percent of their nutrition before being consumed.

Yet beyond cutting down on time and transportation losses, vertical farming eliminates a whole host of issues in food production. Relying on hydroponics and aeroponics, vertical farms allows us to grow crops with 90 percent less water than traditional agriculture—which is critical for our increasingly thirsty planet.

Currently, the largest player around is Bay Area-based Plenty Inc. With over $200 million in funding from Softbank, Plenty is taking a smart tech approach to indoor agriculture. Plants grow on 20-foot-high towers, monitored by tens of thousands of cameras and sensors, optimized by big data and machine learning.

This allows the company to pack 40 plants in the space previously occupied by 1. The process also produces yields 350 times greater than outdoor farmland, using less than 1 percent as much water.

And rather than bespoke veggies for the wealthy few, Plenty’s processes allow them to knock 20-35 percent off the costs of traditional grocery stores. To date, Plenty has their home base in South San Francisco, a 100,000 square-foot farm in Kent, Washington, an indoor farm in the United Arab Emirates, and recently started construction on over 300 farms in China.

Another major player is New Jersey-based Aerofarms, which can now grow two million pounds of leafy greens without sunlight or soil.

To do this, Aerofarms leverages AI-controlled LEDs to provide optimized wavelengths of light for each plant. Using aeroponics, the company delivers nutrients by misting them directly onto the plants’ roots—no soil required. Rather, plants are suspended in a growth mesh fabric made from recycled water bottles. And here too, sensors, cameras, and machine learning govern the entire process.

While 50-80 percent of the cost of vertical farming is human labor, autonomous robotics promises to solve that problem. Enter contenders like Iron Ox, a firm that has developed the Angus robot, capable of moving around plant-growing containers.

The writing is on the wall, and traditional agriculture is fast being turned on its head.

Materials Science
In an era where materials science, nanotechnology, and biotechnology are rapidly becoming the same field of study, key advances are enabling us to create healthier, more nutritious, more efficient, and longer-lasting food.

For starters, we are now able to boost the photosynthetic abilities of plants. Using novel techniques to improve a micro-step in the photosynthesis process chain, researchers at UCLA were able to boost tobacco crop yield by 14-20 percent. Meanwhile, the RIPE Project, backed by Bill Gates and run out of the University of Illinois, has matched and improved those numbers.

And to top things off, The University of Essex was even able to improve tobacco yield by 27-47 percent by increasing the levels of protein involved in photo-respiration.

In yet another win for food-related materials science, Santa Barbara-based Apeel Sciences is further tackling the vexing challenge of food waste. Now approaching commercialization, Apeel uses lipids and glycerolipids found in the peels, seeds, and pulps of all fruits and vegetables to create “cutin”—the fatty substance that composes the skin of fruits and prevents them from rapidly spoiling by trapping moisture.

By then spraying fruits with this generated substance, Apeel can preserve foods 60 percent longer using an odorless, tasteless, colorless organic substance.

And stores across the US are already using this method. By leveraging our advancing knowledge of plants and chemistry, materials science is allowing us to produce more food with far longer-lasting freshness and more nutritious value than ever before.

Convergence
With advances in 3D printing, vertical farming, and materials sciences, we can now make food smarter, more productive, and far more resilient.

By the end of the next decade, you should be able to 3D print a fusion cuisine dish from the comfort of your home, using ingredients harvested from vertical farms, with nutritional value optimized by AI and materials science. However, even this picture doesn’t account for all the rapid changes underway in the food industry.

Join me next week for Part 2 of the Future of Food for a discussion on how food production will be transformed, quite literally, from the bottom up.

Join Me
Abundance-Digital Online Community: Stay ahead of technological advancements and turn your passion into action. Abundance Digital is now part of Singularity University. Learn more.

Image Credit: Vanessa Bates Ramirez Continue reading

Posted in Human Robots

#436114 Video Friday: Transferring Human Motion ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

We are very sad to say that MIT professor emeritus Woodie Flowers has passed away. Flowers will be remembered for (among many other things, like co-founding FIRST) the MIT 2.007 course that he began teaching in the mid-1970s, famous for its student competitions.

These competitions got a bunch of well-deserved publicity over the years; here’s one from 1985:

And the 2.007 competitions are still going strong—this year’s theme was Moonshot, and you can watch a replay of the event here.

[ MIT ]

Looks like Aibo is getting wireless integration with Hitachi appliances, which turns out to be pretty cute:

What is this magical box where you push a button and 60 seconds later fluffy pancakes come out?!

[ Aibo ]

LiftTiles are a “modular and reconfigurable room-scale shape display” that can turn your floor and walls into on-demand structures.

[ LiftTiles ]

Ben Katz, a grad student in MIT’s Biomimetics Robotics Lab, has been working on these beautiful desktop-sized Furuta pendulums:

That’s a crowdfunding project I’d pay way too much for.

[ Ben Katz ]

A clever bit of cable manipulation from MIT, using GelSight tactile sensors.

[ Paper ]

A useful display of industrial autonomy on ANYmal from the Oxford Robotics Group.

This video is of a demonstration for the ORCA Robotics Hub showing the ANYbotics ANYmal robot carrying out industrial inspection using autonomy software from Oxford Robotics Institute.

[ ORCA Hub ] via [ DRS ]

Thanks Maurice!

Meet Katie Hamilton, a software engineer at NASA’s Ames Research Center, who got into robotics because she wanted to help people with daily life. Katie writes code for robots, like Astrobee, who are assisting astronauts with routine tasks on the International Space Station.

[ NASA Astrobee ]

Transferring human motion to a mobile robotic manipulator and ensuring safe physical human-robot interaction are crucial steps towards automating complex manipulation tasks in human-shared environments. In this work we present a robot whole-body teleoperation framework for human motion transfer. We validate our approach through several experiments using the TIAGo robot, showing this could be an easy way for a non-expert to teach a rough manipulation skill to an assistive robot.

[ Paper ]

This is pretty cool looking for an autonomous boat, but we’ll see if they can build a real one by 2020 since at the moment it’s just an average rendering.

[ ProMare ]

I had no idea that asparagus grows like this. But, sure does make it easy for a robot to harvest.

[ Inaho ]

Skip to 2:30 in this Pepper unboxing video to hear the noise it makes when tickled.

[ HIT Lab NZ ]

In this interview, Jean Paul Laumond discusses his movement from mathematics to robotics and his career contributions to the field, especially in regards to motion planning and anthropomorphic motion. Describing his involvement at CNRS and in other robotics projects, such as HILARE, he comments on the distinction in perception between the robotics approach and a mathematics one.

[ IEEE RAS History ]

Here’s a couple of videos from the CMU Robotics Institute archives, showing some of the work that took place over the last few decades.

[ CMU RI ]

In this episode of the Artificial Intelligence Podcast, Lex Fridman speaks with David Ferrucci from IBM about Watson and (you guessed it) artificial intelligence.

David Ferrucci led the team that built Watson, the IBM question-answering system that beat the top humans in the world at the game of Jeopardy. He is also the Founder, CEO, and Chief Scientist of Elemental Cognition, a company working engineer AI systems that understand the world the way people do. This conversation is part of the Artificial Intelligence podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is by Pieter Abbeel from UC Berkeley, on “Deep Learning for Robotics.”

Programming robots remains notoriously difficult. Equipping robots with the ability to learn would by-pass the need for what otherwise often ends up being time-consuming task specific programming. This talk will describe recent progress in deep reinforcement learning (robots learning through their own trial and error), in apprenticeship learning (robots learning from observing people), and in meta-learning for action (robots learning to learn). This work has led to new robotic capabilities in manipulation, locomotion, and flight, with the same approach underlying advances in each of these domains.

[ CMU RI ] Continue reading

Posted in Human Robots

#436079 Video Friday: This Humanoid Robot Will ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

Northeast Robotics Colloquium – October 12, 2019 – Philadelphia, Pa., USA
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

What’s better than a robotics paper with “dynamic” in the title? A robotics paper with “highly dynamic” in the title. From Sangbae Kim’s lab at MIT, the latest exploits of Mini Cheetah:

Yes I’d very much like one please. Full paper at the link below.

[ Paper ] via [ MIT ]

A humanoid robot serving you ice cream—on his own ice cream bike: What a delicious vision!

[ Roboy ]

The Roomba “i” series and “s” series vacuums have just gotten an update that lets you set “keep out” zones, which is super useful. Tell your robot where not to go!

I feel bad, that Roomba was probably just hungry 🙁

[ iRobot ]

We wrote about Voliro’s tilt-rotor hexcopter a couple years ago, and now it’s off doing practical things, like spray painting a building pretty much the same color that it was before.

[ Voliro ]

Thanks Mina!

Here’s a clever approach for bin-picking problematic objects, like shiny things: Just grab a whole bunch, and then sort out what you need on a nice robot-friendly table.

It might take a little bit longer, but what do you care, you’re probably off sipping a cocktail with a little umbrella in it on a beach somewhere.

[ Harada Lab ]

A unique combination of the IRB 1200 and YuMi industrial robots that use vision, AI and deep learning to recognize and categorize trash for recycling.

[ ABB ]

Measuring glacial movements in-situ is a challenging, but necessary task to model glaciers and predict their future evolution. However, installing GPS stations on ice can be dangerous and expensive when not impossible in the presence of large crevasses. In this project, the ASL develops UAVs for dropping and recovering lightweight GPS stations over inaccessible glaciers to record the ice flow motion. This video shows the results of first tests performed at Gorner glacier, Switzerland, in July 2019.

[ EPFL ]

Turns out Tertills actually do a pretty great job fighting weeds.

Plus, they leave all those cute lil’ Tertill tracks.

[ Franklin Robotics ]

The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.

The resulting map is so precise that it looks like we are doing real-time SLAM (simultaneous localization and mapping). In fact, the map is based on dead-reckoning via the InvEKF.

[ GTSAM ] via [ University of Michigan ]

UBTECH has announced an upgraded version of its Meebot, which is 30 percent bigger and comes with more sensors and programmable eyes.

[ UBTECH ]

ABB’s research team will be working with medical staff, scientist and engineers to develop non-surgical medical robotics systems, including logistics and next-generation automated laboratory technologies. The team will develop robotics solutions that will help eliminate bottlenecks in laboratory work and address the global shortage of skilled medical staff.

[ ABB ]

In this video, Ian and Chris go through Misty’s SDK, discussing the languages we’ve included, the tools that make it easy for you to get started quickly, a quick rundown of how to run the skills you build, plus what’s ahead on the Misty SDK roadmap.

[ Misty Robotics ]

My guess is that this was not one of iRobot’s testing environments for the Roomba.

You know, that’s actually super impressive. And maybe if they threw one of the self-emptying Roombas in there, it would be a viable solution to the entire problem.

[ How Farms Work ]

Part of WeRobotics’ Flying Labs network, Panama Flying Labs is a local knowledge hub catalyzing social good and empowering local experts. Through training and workshops, demonstrations and missions, the Panama Flying Labs team leverages the power of drones, data, and AI to promote entrepreneurship, build local capacity, and confront the pressing social challenges faced by communities in Panama and across Central America.

[ Panama Flying Labs ]

Go on a virtual flythrough of the NIOSH Experimental Mine, one of two courses used in the recent DARPA Subterranean Challenge Tunnel Circuit Event held 15-22 August, 2019. The data used for this partial flythrough tour were collected using 3D LIDAR sensors similar to the sensors commonly used on autonomous mobile robots.

[ SubT ]

Special thanks to PBS, Mark Knobil, Joe Seamans and Stan Brandorff and many others who produced this program in 1991.

It features Reid Simmons (and his 1 year old son), David Wettergreen, Red Whittaker, Mac Macdonald, Omead Amidi, and other Field Robotics Center alumni building the planetary walker prototype called Ambler. The team gets ready for an important demo for NASA.

[ CMU RI ]

As art and technology merge, roboticist Madeline Gannon explores the frontiers of human-robot interaction across the arts, sciences and society, and explores what this could mean for the future.

[ Sonar+D ] Continue reading

Posted in Human Robots