Tag Archives: sensor
#436165 Video Friday: DJI’s Mavic Mini Is ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
DJI’s new Mavic Mini looks like a pretty great drone for US $400 ($500 for a combo with more accessories): It’s tiny, flies for 30 minutes, and will do what you need as far as pictures and video (although not a whole lot more).
DJI seems to have put a bunch of effort into making the drone 249 grams, 1 gram under what’s required for FAA registration. That means you save $5 and a few minutes of your time, but that does not mean you don’t have to follow the FAA’s rules and regulations governing drone use.
[ DJI ]
Don’t panic, but Clearpath and HEBI Robotics have armed the Jackal:
After locking eyes across a crowded room at ICRA 2019, Clearpath Robotics and HEBI Robotics basked in that warm and fuzzy feeling that comes with starting a new and exciting relationship. Over a conference hall coffee, they learned that the two companies have many overlapping interests. The most compelling was the realization that customers across a variety of industries are hunting for an elusive true love of their own – a robust but compact robotic platform combined with a long reach manipulator for remote inspection tasks.
After ICRA concluded, Arron Griffiths, Application Engineer at Clearpath, and Matthew Tesch, Software Engineer at HEBI, kept in touch and decided there had been enough magic in the air to warrant further exploration. A couple of months later, Matthew arrived at Clearpath to formally introduce the HEBI’s X-Series Arm to Clearpath’s Jackal UGV. It was love.
[ Clearpath ]
Thanks Dave!
I’m really not a fan of the people-carrying drones, but heavy lift cargo drones seem like a more okay idea.
Volocopter, the pioneer in Urban Air Mobility, presented the demonstrator of its VoloDrone. This marks Volocopters expansion into the logistics, agriculture, infrastructure and public services industry. The VoloDrone is an unmanned, fully electric, heavy-lift utility drone capable of carrying a payload of 200 kg (440 lbs) up to 40 km (25 miles). With a standardized payload attachment, VoloDrone can serve a great variety of purposes from transporting boxes, to liquids, to equipment and beyond. It can be remotely piloted or flown in automated mode on pre-set routes.
[ Volocopter ]
JAY is a mobile service robot that projects a display on the floor and plays sound with its speaker. By playing sounds and videos, it provides visual and audio entertainment in various places such as exhibition halls, airports, hotels, department stores and more.
[ Rainbow Robotics ]
The DARPA Subterranean Challenge Virtual Tunnel Circuit concluded this week—it was the same idea as the physical challenge that took place in August, just with a lot less IRL dirt.
The awards ceremony and team presentations are in this next video, and we’ll have more on this once we get back from IROS.
[ DARPA SubT ]
NASA is sending a mobile robot to the south pole of the Moon to get a close-up view of the location and concentration of water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.
About the size of a golf cart, the Volatiles Investigating Polar Exploration Rover, or VIPER, will roam several miles, using its four science instruments — including a 1-meter drill — to sample various soil environments. Planned for delivery in December 2022, VIPER will collect about 100 days of data that will be used to inform development of the first global water resource maps of the Moon.
[ NASA ]
Happy Halloween from HEBI Robotics!
[ HEBI ]
Happy Halloween from Soft Robotics!
[ Soft Robotics ]
Halloween must be really, really confusing for autonomous cars.
[ Waymo ]
Once a year at Halloween, hardworking JPL engineers put their skills to the test in a highly competitive pumpkin carving contest. The result: A pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room a Nemo-inspired pumpkin explored the sub-surface ocean of Jupiter moon Europa. Suffice to say that when the scientists and engineers at NASA’s Jet Propulsion Laboratory compete in a pumpkin-carving contest, the solar system’s the limit. Take a look at some of the masterpieces from 2019.
Now in its ninth year, the contest gives teams only one hour to carve and decorate their pumpkin though they can prepare non-pumpkin materials – like backgrounds, sound effects and motorized parts – ahead of time.
[ JPL ]
The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.
[ BPL ]
Misty II is now available to anyone who wants one, and she’s on sale for a mere $2900.
[ Misty ]
We leveraged LIDAR-based slam, in conjunction with our specialized relative localization sensor UVDAR to perform a de-centralized, communication-free swarm flight without the units knowing their absolute locations. The swarming and obstacle avoidance control is based on a modified Boids-like algorithm, while the whole swarm is controlled by directing a selected leader unit.
[ MRS ]
The MallARD robot is an autonomous surface vehicle (ASV), designed for the monitoring and inspection of wet storage facilities for example spent fuel pools or wet silos. The MallARD is holonomic, uses a LiDAR for localisation and features a robust trajectory tracking controller.
The University of Manchester’s researcher Dr Keir Groves designed and built the autonomous surface vehicle (ASV) for the challenge which came in the top three of the second round in Nov 2017. The MallARD went on to compete in a final 3rd round where it was deployed in a spent fuel pond at a nuclear power plant in Finland by the IAEA, along with two other entries. The MallARD came second overall, in November 2018.
[ RNE ]
Thanks Jennifer!
I sometimes get the sense that in the robotic grasping and manipulation world, suction cups are kinda seen as cheating at times. But, their nature allows you to do some pretty interesting things.
More clever octopus footage please.
[ CMU ]
A Personal, At-Home Teacher For Playful Learning: From academic topics to child-friendly news bulletins, fun facts and more, Miko 2 is packed with relevant and freshly updated content specially designed by educationists and child-specialists. Your little one won’t even realize they’re learning.
As we point out pretty much every time we post a video like this, keep in mind that you’re seeing a heavily edited version of a hypothetical best case scenario for how this robot can function. And things like “creating a relationship that they can then learn how to form with their peers” is almost certainly overselling things. But at $300 (shipping included), this may be a decent robot as long as your expectations are appropriately calibrated.
[ Miko ]
ICRA 2018 plenary talk by Rodney Brooks: “Robots and People: the Research Challenge.”
[ IEEE RAS ]
ICRA-X 2018 talk by Ron Arkin: “Lethal Autonomous Robots and the Plight of the Noncombatant.”
[ IEEE RAS ]
On the most recent episode of the AI Podcast, Lex Fridman interviews Garry Kasparov.
[ AI Podcast ] Continue reading
#436155 This MIT Robot Wants to Use Your ...
MIT researchers have demonstrated a new kind of teleoperation system that allows a two-legged robot to “borrow” a human operator’s physical skills to move with greater agility. The system works a bit like those haptic suits from the Spielberg movie “Ready Player One.” But while the suits in the film were used to connect humans to their VR avatars, the MIT suit connects the operator to a real robot.
The robot is called Little HERMES, and it’s currently just a pair of little legs, about a third the size of an average adult. It can step and jump in place or walk a short distance while supported by a gantry. While that in itself is not very impressive, the researchers say their approach could help bring capable disaster robots closer to reality. They explain that, despite recent advances, building fully autonomous robots with motor and decision-making skills comparable to those of humans remains a challenge. That’s where a more advanced teleoperation system could help.
The researchers, João Ramos, now an assistant professor at the University of Illinois at Urbana-Champaign, and Sangbae Kim, director of MIT’s Biomimetic Robotics Lab, describe the project in this week’s issue of Science Robotics. In the paper, they argue that existing teleoperation systems often can’t effectively match the operator’s motions to that of a robot. In addition, conventional systems provide no physical feedback to the human teleoperator about what the robot is doing. Their new approach addresses these two limitations, and to see how it would work in practice, they built Little HERMES.
Image: Science Robotics
The main components of MIT’s bipedal robot Little HERMES: (A) Custom actuators designed to withstand impact and capable of producing high torque. (B) Lightweight limbs with low inertia and fast leg swing. (C) Impact-robust and lightweight foot sensors with three-axis contact force sensor. (D) Ruggedized IMU to estimates the robot’s torso posture, angular rate, and linear acceleration. (E) Real-time computer sbRIO 9606 from National Instruments for robot control. (F) Two three-cell lithium-polymer batteries in series. (G) Rigid and lightweight frame to minimize the robot mass.
Early this year, the MIT researchers wrote an in-depth article for IEEE Spectrum about the project, which includes Little HERMES and also its big brother, HERMES (for Highly Efficient Robotic Mechanisms and Electromechanical System). In that article, they describe the two main components of the system:
[…] We are building a telerobotic system that has two parts: a humanoid capable of nimble, dynamic behaviors, and a new kind of two-way human-machine interface that sends your motions to the robot and the robot’s motions to you. So if the robot steps on debris and starts to lose its balance, the operator feels the same instability and instinctively reacts to avoid falling. We then capture that physical response and send it back to the robot, which helps it avoid falling, too. Through this human-robot link, the robot can harness the operator’s innate motor skills and split-second reflexes to keep its footing.
You could say we’re putting a human brain inside the machine.
Image: Science Robotics
The human-machine interface built by the MIT researchers for controlling Little HERMES is different from conventional ones in that it relies on the operator’s reflexes to improve the robot’s stability. The researchers call it the balance-feedback interface, or BFI. The main modules of the BFI include: (A) Custom interface attachments for torso and feet designed to capture human motion data at high speed (1 kHz). (B) Two underactuated modules to track the position and orientation of the torso and apply forces to the operator. (C) Each actuation module has three DoFs, one of which is a push/pull rod actuated by a DC brushless motor. (D) A series of linkages with passive joints connected to the operator’s feet and track their spatial translation. (E) Real-time controller cRIO 9082 from National Instruments to close the BFI control loop. (F) Force plate to estimated the operator’s center of pressure position and measure the shear and normal components of the operator’s net contact force.
Here’s more footage of the experiments, showing Little HERMES stepping and jumping in place, walking a few steps forward and backward, and balancing. Watch until the end to see a compilation of unsuccessful stepping experiments. Poor Little HERMES!
In the new Science Robotics paper, the MIT researchers explain how they solved one of the key challenges in making their teleoperation system effective:
The challenge of this strategy lies in properly mapping human body motion to the machine while simultaneously informing the operator how closely the robot is reproducing the movement. Therefore, we propose a solution for this bilateral feedback policy to control a bipedal robot to take steps, jump, and walk in synchrony with a human operator. Such dynamic synchronization was achieved by (i) scaling the core components of human locomotion data to robot proportions in real time and (ii) applying feedback forces to the operator that are proportional to the relative velocity between human and robot.
Little HERMES is now taking its first steps, quite literally, but the researchers say they hope to use robotic legs with similar design as part of a more advanced humanoid. One possibility they’ve envisioned is a fast-moving quadruped robot that could run through various kinds of terrain and then transform into a bipedal robot that would use its hands to perform dexterous manipulations. This could involve merging some of the robots the MIT researchers have built in their lab, possibly creating hybrids between Cheetah and HERMES, or Mini Cheetah and Little HERMES. We can’t wait to see what the resulting robots will look like.
[ Science Robotics ] Continue reading
#436123 A Path Towards Reasonable Autonomous ...
Editor’s Note: The debate on autonomous weapons systems has been escalating over the past several years as the underlying technologies evolve to the point where their deployment in a military context seems inevitable. IEEE Spectrum has published a variety of perspectives on this issue. In summary, while there is a compelling argument to be made that autonomous weapons are inherently unethical and should be banned, there is also a compelling argument to be made that autonomous weapons could potentially make conflicts less harmful, especially to non-combatants. Despite an increasing amount of international attention (including from the United Nations), progress towards consensus, much less regulatory action, has been slow. The following workshop paper on autonomous weapons systems policy is remarkable because it was authored by a group of experts with very different (and in some cases divergent) views on the issue. Even so, they were able to reach consensus on a roadmap that all agreed was worth considering. It’s collaborations like this that could be the best way to establish a reasonable path forward on such a contentious issue, and with the permission of the authors, we’re excited to be able to share this paper (originally posted on Georgia Tech’s Mobile Robot Lab website) with you in its entirety.
Autonomous Weapon Systems: A Roadmapping Exercise
Over the past several years, there has been growing awareness and discussion surrounding the possibility of future lethal autonomous weapon systems that could fundamentally alter humanity’s relationship with violence in war. Lethal autonomous weapons present a host of legal, ethical, moral, and strategic challenges. At the same time, artificial intelligence (AI) technology could be used in ways that improve compliance with the laws of war and reduce non-combatant harm. Since 2014, states have come together annually at the United Nations to discuss lethal autonomous weapons systems1. Additionally, a growing number of individuals and non-governmental organizations have become active in discussions surrounding autonomous weapons, contributing to a rapidly expanding intellectual field working to better understand these issues. While a wide range of regulatory options have been proposed for dealing with the challenge of lethal autonomous weapons, ranging from a preemptive, legally binding international treaty to reinforcing compliance with existing laws of war, there is as yet no international consensus on a way forward.
The lack of an international policy consensus, whether codified in a formal document or otherwise, poses real risks. States could fall victim to a security dilemma in which they deploy untested or unsafe weapons that pose risks to civilians or international stability. Widespread proliferation could enable illicit uses by terrorists, criminals, or rogue states. Alternatively, a lack of guidance on which uses of autonomy are acceptable could stifle valuable research that could reduce the risk of non-combatant harm.
International debate thus far has predominantly centered around whether or not states should adopt a preemptive, legally-binding treaty that would ban lethal autonomous weapons before they can be built. Some of the authors of this document have called for such a treaty and would heartily support it, if states were to adopt it. Other authors of this document have argued an overly expansive treaty would foreclose the possibility of using AI to mitigate civilian harm. Options for international action are not binary, however, and there are a range of policy options that states should consider between adopting a comprehensive treaty or doing nothing.
The purpose of this paper is to explore the possibility of a middle road. If a roadmap could garner sufficient stakeholder support to have significant beneficial impact, then what elements could it contain? The exercise whose results are presented below was not to identify recommendations that the authors each prefer individually (the authors hold a broad spectrum of views), but instead to identify those components of a roadmap that the authors are all willing to entertain2. We, the authors, invite policymakers to consider these components as they weigh possible actions to address concerns surrounding autonomous weapons3.
Summary of Issues Surrounding Autonomous Weapons
There are a variety of issues that autonomous weapons raise, which might lend themselves to different approaches. A non-exhaustive list of issues includes:
The potential for beneficial uses of AI and autonomy that could improve precision and reliability in the use of force and reduce non-combatant harm.
Uncertainty about the path of future technology and the likelihood of autonomous weapons being used in compliance with the laws of war, or international humanitarian law (IHL), in different settings and on various timelines.
A desire for some degree of human involvement in the use of force. This has been expressed repeatedly in UN discussions on lethal autonomous weapon systems in different ways.
Particular risks surrounding lethal autonomous weapons specifically targeting personnel as opposed to vehicles or materiel.
Risks regarding international stability.
Risk of proliferation to terrorists, criminals, or rogue states.
Risk that autonomous systems that have been verified to be acceptable can be made unacceptable through software changes.
The potential for autonomous weapons to be used as scalable weapons enabling a small number of individuals to inflict very large-scale casualties at low cost, either intentionally or accidentally.
Summary of Components
A time-limited moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems4. Such a moratorium could include exceptions for certain classes of weapons.
Define guiding principles for human involvement in the use of force.
Develop protocols and/or technological means to mitigate the risk of unintentional escalation due to autonomous systems.
Develop strategies for preventing proliferation to illicit uses, such as by criminals, terrorists, or rogue states.
Conduct research to improve technologies and human-machine systems to reduce non-combatant harm and ensure IHL compliance in the use of future weapons.
Component 1:
States should consider adopting a five-year, renewable moratorium on the development, deployment, transfer, and use of anti-personnel lethal autonomous weapon systems. Anti-personnel lethal autonomous weapon systems are defined as weapons systems that, once activated, can select and engage dismounted human targets without further intervention by a human operator, possibly excluding systems such as:
Fixed-point defensive systems with human supervisory control to defend human-occupied bases or installations
Limited, proportional, automated counter-fire systems that return fire in order to provide immediate, local defense of humans
Time-limited pursuit deterrent munitions or systems
Autonomous weapon systems with size above a specified explosive weight limit that select as targets hand-held weapons, such as rifles, machine guns, anti-tank weapons, or man-portable air defense systems, provided there is adequate protection for non-combatants and ensuring IHL compliance5
The moratorium would not apply to:
Anti-vehicle or anti-materiel weapons
Non-lethal anti-personnel weapons
Research on ways of improving autonomous weapon technology to reduce non-combatant harm in future anti-personnel lethal autonomous weapon systems
Weapons that find, track, and engage specific individuals whom a human has decided should be engaged within a limited predetermined period of time and geographic region
Motivation:
This moratorium would pause development and deployment of anti-personnel lethal autonomous weapons systems to allow states to better understand the systemic risks of their use and to perform research that improves their safety, understandability, and effectiveness. Particular objectives could be to:
ensure that, prior to deployment, anti-personnel lethal autonomous weapons can be used in ways that are equal to or outperform humans in their compliance with IHL (other conditions may also apply prior to deployment being acceptable);
lay the groundwork for a potentially legally binding diplomatic instrument; and
decrease the geopolitical pressure on countries to deploy anti-personnel lethal autonomous weapons before they are reliable and well-understood.
Compliance Verification:
As part of a moratorium, states could consider various approaches to compliance verification. Potential approaches include:
Developing an industry cooperation regime analogous to that mandated under the Chemical Weapons Convention, whereby manufacturers must know their customers and report suspicious purchases of significant quantities of items such as fixed-wing drones, quadcopters, and other weaponizable robots.
Encouraging states to declare inventories of autonomous weapons for the purposes of transparency and confidence-building.
Facilitating scientific exchanges and military-to-military contacts to increase trust, transparency, and mutual understanding on topics such as compliance verification and safe operation of autonomous systems.
Designing control systems to require operator identity authentication and unalterable records of operation; enabling post-hoc compliance checks in case of plausible evidence of non-compliant autonomous weapon attacks.
Relating the quantity of weapons to corresponding capacities for human-in-the-loop operation of those weapons.
Designing weapons with air-gapped firing authorization circuits that are connected to the remote human operator but not to the on-board automated control system.
More generally, avoiding weapon designs that enable conversion from compliant to non-compliant categories or missions solely by software updates.
Designing weapons with formal proofs of relevant properties—e.g., the property that the weapon is unable to initiate an attack without human authorization. Proofs can, in principle, be provided using cryptographic techniques that allow the proofs to be checked by a third party without revealing any details of the underlying software.
Facilitate access to (non-classified) AI resources (software, data, methods for ensuring safe operation) to all states that remain in compliance and participate in transparency activities.
Component 2:
Define and universalize guiding principles for human involvement in the use of force.
Humans, not machines, are legal and moral agents in military operations.
It is a human responsibility to ensure that any attack, including one involving autonomous weapons, complies with the laws of war.
Humans responsible for initiating an attack must have sufficient understanding of the weapons, the targets, the environment and the context for use to determine whether that particular attack is lawful.
The attack must be bounded in space, time, target class, and means of attack in order for the determination about the lawfulness of that attack to be meaningful.
Militaries must invest in training, education, doctrine, policies, system design, and human-machine interfaces to ensure that humans remain responsible for attacks.
Component 3:
Develop protocols and/or technological means to mitigate the risk of unintentional escalation due to autonomous systems.
Specific potential measures include:
Developing safe rules for autonomous system behavior when in proximity to adversarial forces to avoid unintentional escalation or signaling. Examples include:
No-first-fire policy, so that autonomous weapons do not initiate hostilities without explicit human authorization.
A human must always be responsible for providing the mission for an autonomous system.
Taking steps to clearly distinguish exercises, patrols, reconnaissance, or other peacetime military operations from attacks in order to limit the possibility of reactions from adversary autonomous systems, such as autonomous air or coastal defenses.
Developing resilient communications links to ensure recallability of autonomous systems. Additionally, militaries should refrain from jamming others’ ability to recall their autonomous systems in order to afford the possibility of human correction in the event of unauthorized behavior.
Component 4:
Develop strategies for preventing proliferation to illicit uses, such as by criminals, terrorists, or rogue states:
Targeted multilateral controls to prevent large-scale sale and transfer of weaponizable robots and related military-specific components for illicit use.
Employ measures to render weaponizable robots less harmful (e.g., geofencing; hard-wired kill switch; onboard control systems largely implemented in unalterable, non-reprogrammable hardware such as application-specific integrated circuits).
Component 5:
Conduct research to improve technologies and human-machine systems to reduce non-combatant harm and ensure IHL-compliance in the use of future weapons, including:
Strategies to promote human moral engagement in decisions about the use of force
Risk assessment for autonomous weapon systems, including the potential for large-scale effects, geopolitical destabilization, accidental escalation, increased instability due to uncertainty about the relative military balance of power, and lowering thresholds to initiating conflict and for violence within conflict
Methodologies for ensuring the reliability and security of autonomous weapon systems
New techniques for verification, validation, explainability, characterization of failure conditions, and behavioral specifications.
About the Authors (in alphabetical order)
Ronald Arkin directs the Mobile Robot Laboratory at Georgia Tech.
Leslie Kaelbling is co-director of the Learning and Intelligent Systems Group at MIT.
Stuart Russell is a professor of computer science and engineering at UC Berkeley.
Dorsa Sadigh is an assistant professor of computer science and of electrical engineering at Stanford.
Paul Scharre directs the Technology and National Security Program at the Center for a New American Security (CNAS).
Bart Selman is a professor of computer science at Cornell.
Toby Walsh is a professor of artificial intelligence at the University of New South Wales (UNSW) Sydney.
The authors would like to thank Max Tegmark for organizing the three-day meeting from which this document was produced.
1 Autonomous Weapons System (AWS): A weapon system that, once activated, can select and engage targets without further intervention by a human operator. BACK TO TEXT↑
2 There is no implication that some authors would not personally support stronger recommendations. BACK TO TEXT↑
3 For ease of use, this working paper will frequently shorten “autonomous weapon system” to “autonomous weapon.” The terms should be treated as synonymous, with the understanding that “weapon” refers to the entire system: sensor, decision-making element, and munition. BACK TO TEXT↑
4 Anti-personnel lethal autonomous weapon system: A weapon system that, once activated, can select and engage dismounted human targets with lethal force and without further intervention by a human operator. BACK TO TEXT↑
5 The authors are not unanimous about this item because of concerns about ease of repurposing for mass-casualty missions targeting unarmed humans. The purpose of the lower limit on explosive payload weight would be to minimize the risk of such repurposing. There is precedent for using explosive weight limit as a mechanism of delineating between anti-personnel and anti-materiel weapons, such as the 1868 St. Petersburg Declaration Renouncing the Use, in Time of War, of Explosive Projectiles Under 400 Grammes Weight. BACK TO TEXT↑ Continue reading
#435828 Video Friday: Boston Dynamics’ ...
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, Calif., USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.
You’ve almost certainly seen the new Spot and Atlas videos from Boston Dynamics, if for no other reason than we posted about Spot’s commercial availability earlier this week. But what, are we supposed to NOT include them in Video Friday anyway? Psh! Here you go:
[ Boston Dynamics ]
Eight deadly-looking robots. One Giant Nut trophy. Tonight is the BattleBots season finale, airing on Discovery, 8 p.m. ET, or check your local channels.
[ BattleBots ]
Thanks Trey!
Speaking of battling robots… Having giant robots fight each other is one of those things that sounds really great in theory, but doesn’t work out so well in reality. And sadly, MegaBots is having to deal with reality, which means putting their giant fighting robot up on eBay.
As of Friday afternoon, the current bid is just over $100,000 with a week to go.
[ MegaBots ]
Michigan Engineering has figured out the secret formula to getting 150,000 views on YouTube: drone plus nail gun.
[ Michigan Engineering ]
Michael Burke from the University of Edinburgh writes:
We’ve been learning to scoop grapefruit segments using a PR2, by “feeling” the difference between peel and pulp. We use joint torque measurements to predict the probability that the knife is in the peel or pulp, and use this to apply feedback control to a nominal cutting trajectory learned from human demonstration, so that we remain in a position of maximum uncertainty about which medium we’re cutting. This means we slice along the boundary between the two mediums. It works pretty well!
[ Paper ] via [ Robust Autonomy and Decisions Group ]
Thanks Michael!
Hey look, it’s Jan with eight EMYS robot heads. Hi, Jan! Hi, EMYSes!
[ EMYS ]
We’re putting the KRAKEN Arm through its paces, demonstrating that it can unfold from an Express Rack locker on the International Space Station and access neighboring lockers in NASA’s FabLab system to enable transfer of materials and parts between manufacturing, inspection, and storage stations. The KRAKEN arm will be able to change between multiple ’end effector’ tools such as grippers and inspection sensors – those are in development so they’re not shown in this video.
[ Tethers Unlimited ]
UBTECH’s Alpha Mini Robot with Smart Robot’s “Maatje” software is offering healthcare service to children at Praktijk Intraverte Multidisciplinary Institution in Netherlands.
This institution is using Alpha Mini in counseling children’s behavior. Alpha Mini can move and talk to children and offers games and activities to stimulate and interact with them. Alpha Mini talks, helps and motivates children thereby becoming more flexible in society.
[ UBTECH ]
Some impressive work here from Anusha Nagabandi, Kurt Konoglie, Sergey Levine, Vikash Kumar at Google Brain, training a dexterous multi-fingered hand to do that thing with two balls that I’m really bad at.
Dexterous multi-fingered hands can provide robots with the ability to flexibly perform a wide range of manipulation skills. However, many of the more complex behaviors are also notoriously difficult to control: Performing in-hand object manipulation, executing finger gaits to move objects, and exhibiting precise fine motor skills such as writing, all require finely balancing contact forces, breaking and reestablishing contacts repeatedly, and maintaining control of unactuated objects. In this work, we demonstrate that our method of online planning with deep dynamics models (PDDM) addresses both of these limitations; we show that improvements in learned dynamics models, together with improvements in online model-predictive control, can indeed enable efficient and effective learning of flexible contact-rich dexterous manipulation skills — and that too, on a 24-DoF anthropomorphic hand in the real world, using just 2-4 hours of purely real-world data to learn to simultaneously coordinate multiple free-floating objects.
[ PDDM ]
Thanks Vikash!
CMU’s Ballbot has a deceptively light touch that’s ideal for leading people around.
A paper on this has been submitted to IROS 2019.
[ CMU ]
The Autonomous Robots Lab at the University of Nevada is sharing some of the work they’ve done on path planning and exploration for aerial robots during the DARPA SubT Challenge.
[ Autonomous Robots Lab ]
More proof that anything can be a drone if you staple some motors to it. Even 32 feet of styrofoam insulation.
[ YouTube ]
Whatever you think of military drones, we can all agree that they look cool.
[ Boeing ]
I appreciate the fact that iCub has eyelids, I really do, but sometimes, it ends up looking kinda sleepy in research videos.
[ EPFL LASA ]
Video shows autonomous flight of a lightweight aerial vehicle outdoors and indoors on the campus of Carnegie Mellon University. The vehicle is equipped with limited onboard sensing from a front-facing camera and a proximity sensor. The aerial autonomy is enabled by utilizing a 3D prior map built in Step 1.
[ CMU ]
The Stanford Space Robotics Facility allows researchers to test innovative guidance and navigation algorithms on a realistic frictionless, underactuated system.
[ Stanford ASL ]
In this video, Ian and CP discuss Misty’s many capabilities including robust locomotion, obstacle avoidance, 3D mapping/SLAM, face detection and recognition, sound localization, hardware extensibility, photo and video capture, and programmable personality. They also talk about some of the skills he’s built using these capabilities (and others) and how those skills can be expanded upon by you.
[ Misty Robotics ]
This week’s CMU RI Seminar comes from Aaron Parness at Caltech and NASA JPL, on “Robotic Grippers for Planetary Applications.”
The previous generation of NASA missions to the outer solar system discovered salt water oceans on Europa and Enceladus, each with more liquid water than Earth – compelling targets to look for extraterrestrial life. Closer to home, JAXA and NASA have imaged sky-light entrances to lava tube caves on the Moon more than 100 m in diameter and ESA has characterized the incredibly varied and complex terrain of Comet 67P. While JPL has successfully landed and operated four rovers on the surface of Mars using a 6-wheeled rocker-bogie architecture, future missions will require new mobility architectures for these extreme environments. Unfortunately, the highest value science targets often lie in the terrain that is hardest to access. This talk will explore robotic grippers that enable missions to these extreme terrains through their ability to grip a wide variety of surfaces (shapes, sizes, and geotechnical properties). To prepare for use in space where repair or replacement is not possible, we field-test these grippers and robots in analog extreme terrain on Earth. Many of these systems are enabled by advances in autonomy. The talk will present a rapid overview of my work and a detailed case study of an underactuated rock gripper for deflecting asteroids.
[ CMU ]
Rod Brooks gives some of the best robotics talks ever. He gave this one earlier this week at UC Berkeley, on “Steps Toward Super Intelligence and the Search for a New Path.”
[ UC Berkeley ] Continue reading