Tag Archives: sense
#433634 This Robotic Skin Makes Inanimate ...
In Goethe’s poem “The Sorcerer’s Apprentice,” made world-famous by its adaptation in Disney’s Fantasia, a lazy apprentice, left to fetch water, uses magic to bewitch a broom into performing his chores for him. Now, new research from Yale has opened up the possibility of being able to animate—and automate—household objects by fitting them with a robotic skin.
Yale’s Soft Robotics lab, the Faboratory, is led by Professor Rebecca Kramer-Bottiglio, and has long investigated the possibilities associated with new kinds of manufacturing. While the typical image of a robot is hard, cold steel and rigid movements, soft robotics aims to create something more flexible and versatile. After all, the human body is made up of soft, flexible surfaces, and the world is designed for us. Soft, deformable robots could change shape to adapt to different tasks.
When designing a robot, key components are the robot’s sensors, which allow it to perceive its environment, and its actuators, the electrical or pneumatic motors that allow the robot to move and interact with its environment.
Consider your hand, which has temperature and pressure sensors, but also muscles as actuators. The omni-skins, as the Science Robotics paper dubs them, combine sensors and actuators, embedding them into an elastic sheet. The robotic skins are moved by pneumatic actuators or memory alloy that can bounce back into shape. If this is then wrapped around a soft, deformable object, moving the skin with the actuators can allow the object to crawl along a surface.
The key to the design here is flexibility: rather than adding chips, sensors, and motors into every household object to turn them into individual automatons, the same skin can be used for many purposes. “We can take the skins and wrap them around one object to perform a task—locomotion, for example—and then take them off and put them on a different object to perform a different task, such as grasping and moving an object,” said Kramer-Bottiglio. “We can then take those same skins off that object and put them on a shirt to make an active wearable device.”
The task is then to dream up applications for the omni-skins. Initially, you might imagine demanding a stuffed toy to fetch the remote control for you, or animating a sponge to wipe down kitchen surfaces—but this is just the beginning. The scientists attached the skins to a soft tube and camera, creating a worm-like robot that could compress itself and crawl into small spaces for rescue missions. The same skins could then be worn by a person to sense their posture. One could easily imagine this being adapted into a soft exoskeleton for medical or industrial purposes: for example, helping with rehabilitation after an accident or injury.
The initial motivating factor for creating the robots was in an environment where space and weight are at a premium, and humans are forced to improvise with whatever’s at hand: outer space. Kramer-Bottoglio originally began the work after NASA called out for soft robotics systems for use by astronauts. Instead of wasting valuable rocket payload by sending up a heavy metal droid like ATLAS to fetch items or perform repairs, soft robotic skins with modular sensors could be adapted for a range of different uses spontaneously.
By reassembling components in the soft robotic skin, a crumpled ball of paper could provide the chassis for a robot that performs repairs on the spaceship, or explores the lunar surface. The dynamic compression provided by the robotic skin could be used for g-suits to protect astronauts when they rapidly accelerate or decelerate.
“One of the main things I considered was the importance of multi-functionality, especially for deep space exploration where the environment is unpredictable. The question is: How do you prepare for the unknown unknowns? … Given the design-on-the-fly nature of this approach, it’s unlikely that a robot created using robotic skins will perform any one task optimally,” Kramer-Bottiglio said. “However, the goal is not optimization, but rather diversity of applications.”
There are still problems to resolve. Many of the videos of the skins indicate that they can rely on an external power supply. Creating new, smaller batteries that can power wearable devices has been a focus of cutting-edge materials science research for some time. Much of the lab’s expertise is in creating flexible, stretchable electronics that can be deformed by the actuators without breaking the circuitry. In the future, the team hopes to work on streamlining the production process; if the components could be 3D printed, then the skins could be created when needed.
In addition, robotic hardware that’s capable of performing an impressive range of precise motions is quite an advanced technology. The software to control those robots, and enable them to perform a variety of tasks, is quite another challenge. With soft robots, it can become even more complex to design that control software, because the body itself can change shape and deform as the robot moves. The same set of programmed motions, then, can produce different results depending on the environment.
“Let’s say I have a soft robot with four legs that crawls along the ground, and I make it walk up a hard slope,” Dr. David Howard, who works on robotics at CSIRO in Australia, explained to ABC.
“If I make that slope out of gravel and I give it the same control commands, the actual body is going to deform in a different way, and I’m not necessarily going to know what that is.”
Despite these and other challenges, research like that at the Faboratory still hopes to redefine how we think of robots and robotics. Instead of a robot that imitates a human and manipulates objects, the objects themselves will become programmable matter, capable of moving autonomously and carrying out a range of tasks. Futurists speculate about a world where most objects are automated to some degree and can assemble and repair themselves, or are even built entirely of tiny robots.
The tale of the Sorcerer’s Apprentice was first written in 1797, at the dawn of the industrial revolution, over a century before the word “robot” was even coined. Yet more and more roboticists aim to prove Arthur C Clarke’s maxim: any sufficiently advanced technology is indistinguishable from magic.
Image Credit: Joran Booth, The Faboratory Continue reading
#433620 Instilling the Best of Human Values in ...
Now that the era of artificial intelligence is unquestionably upon us, it behooves us to think and work harder to ensure that the AIs we create embody positive human values.
Science fiction is full of AIs that manifest the dark side of humanity, or are indifferent to humans altogether. Such possibilities cannot be ruled out, but nor is there any logical or empirical reason to consider them highly likely. I am among a large group of AI experts who see a strong potential for profoundly positive outcomes in the AI revolution currently underway.
We are facing a future with great uncertainty and tremendous promise, and the best we can do is to confront it with a combination of heart and mind, of common sense and rigorous science. In the realm of AI, what this means is, we need to do our best to guide the AI minds we are creating to embody the values we cherish: love, compassion, creativity, and respect.
The quest for beneficial AI has many dimensions, including its potential to reduce material scarcity and to help unlock the human capacity for love and compassion.
Reducing Scarcity
A large percentage of difficult issues in human society, many of which spill over into the AI domain, would be palliated significantly if material scarcity became less of a problem. Fortunately, AI has great potential to help here. AI is already increasing efficiency in nearly every industry.
In the next few decades, as nanotech and 3D printing continue to advance, AI-driven design will become a larger factor in the economy. Radical new tools like artificial enzymes built using Christian Schafmeister’s spiroligomer molecules, and designed using quantum physics-savvy AIs, will enable the creation of new materials and medicines.
For amazing advances like the intersection of AI and nanotech to lead toward broadly positive outcomes, however, the economic and political aspects of the AI industry may have to shift from the current status quo.
Currently, most AI development occurs under the aegis of military organizations or large corporations oriented heavily toward advertising and marketing. Put crudely, an awful lot of AI today is about “spying, brainwashing, or killing.” This is not really the ideal situation if we want our first true artificial general intelligences to be open-minded, warm-hearted, and beneficial.
Also, as the bulk of AI development now occurs in large for-profit organizations bound by law to pursue the maximization of shareholder value, we face a situation where AI tends to exacerbate global wealth inequality and class divisions. This has the potential to lead to various civilization-scale failure modes involving the intersection of geopolitics, AI, cyberterrorism, and so forth. Part of my motivation for founding the decentralized AI project SingularityNET was to create an alternative mode of dissemination and utilization of both narrow AI and AGI—one that operates in a self-organizing way, outside of the direct grip of conventional corporate and governmental structures.
In the end, though, I worry that radical material abundance and novel political and economic structures may fail to create a positive future, unless they are coupled with advances in consciousness and compassion. AGIs have the potential to be massively more ethical and compassionate than humans. But still, the odds of getting deeply beneficial AGIs seem higher if the humans creating them are fuller of compassion and positive consciousness—and can effectively pass these values on.
Transmitting Human Values
Brain-computer interfacing is another critical aspect of the quest for creating more positive AIs and more positive humans. As Elon Musk has put it, “If you can’t beat ’em, join’ em.” Joining is more fun than beating anyway. What better way to infuse AIs with human values than to connect them directly to human brains, and let them learn directly from the source (while providing humans with valuable enhancements)?
Millions of people recently heard Elon Musk discuss AI and BCI on the Joe Rogan podcast. Musk’s embrace of brain-computer interfacing is laudable, but he tends to dodge some of the tough issues—for instance, he does not emphasize the trade-off cyborgs will face between retaining human-ness and maximizing intelligence, joy, and creativity. To make this trade-off effectively, the AI portion of the cyborg will need to have a deep sense of human values.
Musk calls humanity the “biological boot loader” for AGI, but to me this colorful metaphor misses a key point—that we can seed the AGI we create with our values as an initial condition. This is one reason why it’s important that the first really powerful AGIs are created by decentralized networks, and not conventional corporate or military organizations. The decentralized software/hardware ecosystem, for all its quirks and flaws, has more potential to lead to human-computer cybernetic collective minds that are reasonable and benevolent.
Algorithmic Love
BCI is still in its infancy, but a more immediate way of connecting people with AIs to infuse both with greater love and compassion is to leverage humanoid robotics technology. Toward this end, I conceived a project called Loving AI, focused on using highly expressive humanoid robots like the Hanson robot Sophia to lead people through meditations and other exercises oriented toward unlocking the human potential for love and compassion. My goals here were to explore the potential of AI and robots to have a positive impact on human consciousness, and to use this application to study and improve the OpenCog and SingularityNET tools used to control Sophia in these interactions.
The Loving AI project has now run two small sets of human trials, both with exciting and positive results. These have been small—dozens rather than hundreds of people—but have definitively proven the point. Put a person in a quiet room with a humanoid robot that can look them in the eye, mirror their facial expressions, recognize some of their emotions, and lead them through simple meditation, listening, and consciousness-oriented exercises…and quite a lot of the time, the result is a more relaxed person who has entered into a shifted state of consciousness, at least for a period of time.
In a certain percentage of cases, the interaction with the robot consciousness guide triggered a dramatic change of consciousness in the human subject—a deep meditative trance state, for instance. In most cases, the result was not so extreme, but statistically the positive effect was quite significant across all cases. Furthermore, a similar effect was found using an avatar simulation of the robot’s face on a tablet screen (together with a webcam for facial expression mirroring and recognition), but not with a purely auditory interaction.
The Loving AI experiments are not only about AI; they are about human-robot and human-avatar interaction, with AI as one significant aspect. The facial interaction with the robot or avatar is pushing “biological buttons” that trigger emotional reactions and prime the mind for changes of consciousness. However, this sort of body-mind interaction is arguably critical to human values and what it means to be human; it’s an important thing for robots and AIs to “get.”
Halting or pausing the advance of AI is not a viable possibility at this stage. Despite the risks, the potential economic and political benefits involved are clear and massive. The convergence of narrow AI toward AGI is also a near inevitability, because there are so many important applications where greater generality of intelligence will lead to greater practical functionality. The challenge is to make the outcome of this great civilization-level adventure as positive as possible.
Image Credit: Anton Gvozdikov / Shutterstock.com Continue reading
#433594 Technology and Compassion: A ...
From how we get around to how we spend our time to how we manage our health, technology is changing our lives—not to mention economies, governments, and cities around the world. Tech has brought good to individuals and societies by, for example, democratizing access to information and lowering the cost of many products and services. But it’s also brought less-desirable effects we can’t ignore, like a rise in mental health problems and greater wealth inequality.
To keep pushing tech in a direction that will benefit humanity as a whole—rather than benefiting a select few—we must encourage open dialogues about these topics among leading figures in business, government, and spirituality.
To that end, SingularityU The Netherlands recently hosted a dialogue about compassion and technology with His Holiness the Dalai Lama. The event was attended by students and tech innovators, ambassadors, members of the Dutch royal family, and other political and business leaders.
The first half of the conversation focused on robotics, telepresence, and artificial intelligence. His Holiness spoke with Tilly Lockey, a British student helping tech companies create bionic limbs, Karen Dolva, CEO of telepresence company No Isolation, and Maarten Steinbuch, faculty chair of robotics at SingularityU the Netherlands and a professor of systems and control at TU Eindhoven.
When asked what big tech companies could be doing to help spread good around the world, His Holiness pointed out that while technology has changed many aspects of life in developed countries, there is still immense suffering in less-developed nations, and tech companies should pay more attention to the poorer communities around the world.
In the second half of the event, focus switched to sickness, aging, and death. Speakers included Liz Parrish, CEO of BioViva Sciences, Kris Verburgh, faculty chair of health and medicine at SingularityU the Netherlands, Jeantine Lunshof, a bio-ethicist at MIT Media Lab, and Selma Boulmalf, a religious studies student at University of Amsterdam. Among other topics, they talked with His Holiness about longevity research and the drawbacks of trying to extend our lifespans or achieve immortality.
Both sessions were moderated by Christa Meindersma, founder and chair of the Himalaya Initiative for Culture and Society. The event served as the ceremonial opening of an exhibition called The Life of the Buddha, Path to the Present, on display in Amsterdam’s 15-century De Nieuwe Kerk church through February 2019.
In the 21st century, His Holiness said, “There is real possibility to create a happier world, peaceful world. So now we need vision. A peaceful world on the basis of a sense of oneness of humanity.”
Technology’s role in that world is being developed and refined every day, and we must maintain an ongoing awareness of its positive and negative repercussions—on everyone.
Image Credit: vipflash / Shutterstock.com Continue reading
#433386 What We Have to Gain From Making ...
The borders between the real world and the digital world keep crumbling, and the latter’s importance in both our personal and professional lives keeps growing. Some describe the melding of virtual and real worlds as part of the fourth industrial revolution. Said revolution’s full impact on us as individuals, our companies, communities, and societies is still unknown.
Greg Cross, chief business officer of New Zealand-based AI company Soul Machines, thinks one inescapable consequence of these crumbling borders is people spending more and more time interacting with technology. In a presentation at Singularity University’s Global Summit in San Francisco last month, Cross unveiled Soul Machines’ latest work and shared his views on the current state of human-like AI and where the technology may go in the near future.
Humanizing Technology Interaction
Cross started by introducing Rachel, one of Soul Machines’ “emotionally responsive digital humans.” The company has built 15 different digital humans of various sexes, groups, and ethnicities. Rachel, along with her “sisters” and “brothers,” has a virtual nervous system based on neural networks and biological models of different paths in the human brain. The system is controlled by virtual neurotransmitters and hormones akin to dopamine, serotonin, and oxytocin, which influence learning and behavior.
As a result, each digital human can have its own unique set of “feelings” and responses to interactions. People interact with them via visual and audio sensors, and the machines respond in real time.
“Over the last 20 or 30 years, the way we think about machines and the way we interact with machines has changed,” Cross said. “We’ve always had this view that they should actually be more human-like.”
The realism of the digital humans’ graphic representations comes thanks to the work of Soul Machines’ other co-founder, Dr. Mark Sager, who has won two Academy Awards for his work on some computer-generated movies, including James Cameron’s Avatar.
Cross pointed out, for example, that rather than being unrealistically flawless and clear, Rachel’s skin has blemishes and sun spots, just like real human skin would.
The Next Human-Machine Frontier
When people interact with each other face to face, emotional and intellectual engagement both heavily influence the interaction. What would it look like for machines to bring those same emotional and intellectual capacities to our interactions with them, and how would this type of interaction affect the way we use, relate to, and feel about AI?
Cross and his colleagues believe that humanizing artificial intelligence will make the technology more useful to humanity, and prompt people to use AI in more beneficial ways.
“What we think is a very important view as we move forward is that these machines can be more helpful to us. They can be more useful to us. They can be more interesting to us if they’re actually more like us,” Cross said.
It is an approach that seems to resonate with companies and organizations. For example, in the UK, where NatWest Bank is testing out Cora as a digital employee to help answer customer queries. In Germany, Daimler Financial Group plans to employ Sarah as something “similar to a personal concierge” for its customers. According to Cross, Daimler is looking at other ways it could deploy digital humans across the organization, from building digital service people, digital sales people, and maybe in the future, digital chauffeurs.
Soul Machines’ latest creation is Will, a digital teacher that can interact with children through a desktop, tablet, or mobile device and help them learn about renewable energy. Cross sees other social uses for digital humans, including potentially serving as doctors to rural communities.
Our Digital Friends—and Twins
Soul Machines is not alone in its quest to humanize technology. It is a direction many technology companies, including the likes of Amazon, also seem to be pursuing. Amazon is working on building a home robot that, according to Bloomberg, “could be a sort of mobile Alexa.”
Finding a more human form for technology seems like a particularly pervasive pursuit in Japan. Not just when it comes to its many, many robots, but also virtual assistants like Gatebox.
The Japanese approach was perhaps best summed up by famous android researcher Dr. Hiroshi Ishiguro, who I interviewed last year: “The human brain is set up to recognize and interact with humans. So, it makes sense to focus on developing the body for the AI mind, as well as the AI. I believe that the final goal for both Japanese and other companies and scientists is to create human-like interaction.”
During Cross’s presentation, Rob Nail, CEO and associate founder of Singularity University, joined him on the stage, extending an invitation to Rachel to be SU’s first fully digital faculty member. Rachel accepted, and though she’s the only digital faculty right now, she predicted this won’t be the case for long.
“In 10 years, all of you will have digital versions of yourself, just like me, to take on specific tasks and make your life a whole lot easier,” she said. “This is great news for me. I’ll have millions of digital friends.”
Image Credit: Soul Machines Continue reading