Tag Archives: Science Robotics

#433634 This Robotic Skin Makes Inanimate ...

In Goethe’s poem “The Sorcerer’s Apprentice,” made world-famous by its adaptation in Disney’s Fantasia, a lazy apprentice, left to fetch water, uses magic to bewitch a broom into performing his chores for him. Now, new research from Yale has opened up the possibility of being able to animate—and automate—household objects by fitting them with a robotic skin.

Yale’s Soft Robotics lab, the Faboratory, is led by Professor Rebecca Kramer-Bottiglio, and has long investigated the possibilities associated with new kinds of manufacturing. While the typical image of a robot is hard, cold steel and rigid movements, soft robotics aims to create something more flexible and versatile. After all, the human body is made up of soft, flexible surfaces, and the world is designed for us. Soft, deformable robots could change shape to adapt to different tasks.

When designing a robot, key components are the robot’s sensors, which allow it to perceive its environment, and its actuators, the electrical or pneumatic motors that allow the robot to move and interact with its environment.

Consider your hand, which has temperature and pressure sensors, but also muscles as actuators. The omni-skins, as the Science Robotics paper dubs them, combine sensors and actuators, embedding them into an elastic sheet. The robotic skins are moved by pneumatic actuators or memory alloy that can bounce back into shape. If this is then wrapped around a soft, deformable object, moving the skin with the actuators can allow the object to crawl along a surface.

The key to the design here is flexibility: rather than adding chips, sensors, and motors into every household object to turn them into individual automatons, the same skin can be used for many purposes. “We can take the skins and wrap them around one object to perform a task—locomotion, for example—and then take them off and put them on a different object to perform a different task, such as grasping and moving an object,” said Kramer-Bottiglio. “We can then take those same skins off that object and put them on a shirt to make an active wearable device.”

The task is then to dream up applications for the omni-skins. Initially, you might imagine demanding a stuffed toy to fetch the remote control for you, or animating a sponge to wipe down kitchen surfaces—but this is just the beginning. The scientists attached the skins to a soft tube and camera, creating a worm-like robot that could compress itself and crawl into small spaces for rescue missions. The same skins could then be worn by a person to sense their posture. One could easily imagine this being adapted into a soft exoskeleton for medical or industrial purposes: for example, helping with rehabilitation after an accident or injury.

The initial motivating factor for creating the robots was in an environment where space and weight are at a premium, and humans are forced to improvise with whatever’s at hand: outer space. Kramer-Bottoglio originally began the work after NASA called out for soft robotics systems for use by astronauts. Instead of wasting valuable rocket payload by sending up a heavy metal droid like ATLAS to fetch items or perform repairs, soft robotic skins with modular sensors could be adapted for a range of different uses spontaneously.

By reassembling components in the soft robotic skin, a crumpled ball of paper could provide the chassis for a robot that performs repairs on the spaceship, or explores the lunar surface. The dynamic compression provided by the robotic skin could be used for g-suits to protect astronauts when they rapidly accelerate or decelerate.

“One of the main things I considered was the importance of multi-functionality, especially for deep space exploration where the environment is unpredictable. The question is: How do you prepare for the unknown unknowns? … Given the design-on-the-fly nature of this approach, it’s unlikely that a robot created using robotic skins will perform any one task optimally,” Kramer-Bottiglio said. “However, the goal is not optimization, but rather diversity of applications.”

There are still problems to resolve. Many of the videos of the skins indicate that they can rely on an external power supply. Creating new, smaller batteries that can power wearable devices has been a focus of cutting-edge materials science research for some time. Much of the lab’s expertise is in creating flexible, stretchable electronics that can be deformed by the actuators without breaking the circuitry. In the future, the team hopes to work on streamlining the production process; if the components could be 3D printed, then the skins could be created when needed.

In addition, robotic hardware that’s capable of performing an impressive range of precise motions is quite an advanced technology. The software to control those robots, and enable them to perform a variety of tasks, is quite another challenge. With soft robots, it can become even more complex to design that control software, because the body itself can change shape and deform as the robot moves. The same set of programmed motions, then, can produce different results depending on the environment.

“Let’s say I have a soft robot with four legs that crawls along the ground, and I make it walk up a hard slope,” Dr. David Howard, who works on robotics at CSIRO in Australia, explained to ABC.

“If I make that slope out of gravel and I give it the same control commands, the actual body is going to deform in a different way, and I’m not necessarily going to know what that is.”

Despite these and other challenges, research like that at the Faboratory still hopes to redefine how we think of robots and robotics. Instead of a robot that imitates a human and manipulates objects, the objects themselves will become programmable matter, capable of moving autonomously and carrying out a range of tasks. Futurists speculate about a world where most objects are automated to some degree and can assemble and repair themselves, or are even built entirely of tiny robots.

The tale of the Sorcerer’s Apprentice was first written in 1797, at the dawn of the industrial revolution, over a century before the word “robot” was even coined. Yet more and more roboticists aim to prove Arthur C Clarke’s maxim: any sufficiently advanced technology is indistinguishable from magic.

Image Credit: Joran Booth, The Faboratory Continue reading

Posted in Human Robots

#433270 Robots as tools and partners in ...

In future decades, the need for effective strategies for medical rehabilitation will increase significantly, because patients' rate of survival after diseases with severe functional deficits, such as a stroke, will increase. Socially assistive robots (SARs) are already being used in rehabilitation for this reason. In the journal Science Robotics, a research team led by neuroscientist Dr. Philipp Kellmeyer of the Freiburg University Medical Center and Prof. Dr. Oliver Müller from the Department of Philosophy of the University of Freiburg, analyzes the improvements necessary to make SARs valuable and trustworthy assistants for medical therapies. Continue reading

Posted in Human Robots

#432572 Robots Can Swim, Fetch, Lift, and Dance. ...

Robotics has come a long way in the past few years. Robots can now fetch items from specific spots in massive warehouses, swim through the ocean to study marine life, and lift 200 times their own weight. They can even perform synchronized dance routines.

But the really big question is—can robots put together an Ikea chair?

A team of engineers from Nanyang Technological University in Singapore decided to find out, detailing their work in a paper published last week in the journal Science Robotics. The team took industrial robot arms and equipped them with parallel grippers, force-detecting sensors, and 3D cameras, and wrote software enabling the souped-up bots to tackle chair assembly. The robots’ starting point was a set of chair parts randomly scattered within reach.

As impressive as the above-mentioned robotic capabilities are, it’s worth noting that they’re mostly limited to a single skill. Putting together furniture, on the other hand, requires using and precisely coordinating multiple skills, including force control, visual localization, hand-eye coordination, and the patience to read each step of the manual without rushing through it and messing everything up.

Indeed, Ikea furniture, while meant to be simple and user-friendly, has left even the best of us scratching our heads and holding a spare oddly-shaped piece of wood as we stare at the desk or bed frame we just put together—or, for the less even-tempered among us, throwing said piece of wood across the room.

It’s a good thing robots don’t have tempers, because it took a few tries for the bots to get the chair assembly right.

Practice makes perfect, though (or in this case, rewriting code makes perfect), and these bots didn’t give up so easily. They had to hone three different skills: identifying which part was which among the scattered, differently-shaped pieces of wood, coordinating their movements to put those pieces in the right place, and knowing how much force to use in various steps of the process (i.e., more force is needed to connect two pieces than to pick up one piece).

A few tries later, the bots were able to assemble the chair from start to finish in about nine minutes.

On the whole, nicely done. But before we applaud the robots’ success too loudly, it’s important to note that they didn’t autonomously assemble the chair. Rather, each step of the process was planned and coded by engineers, down to the millimeter.

However, the team believes this closely-guided chair assembly was just a first step, and they see a not-so-distant future where combining artificial intelligence with advanced robotic capabilities could produce smart bots that would learn to assemble furniture and do other complex tasks on their own.

Future applications mentioned in the paper include electronics and aircraft manufacturing, logistics, and other high-mix, low-volume sectors.

Image Credit: Francisco Suárez-Ruiz and Quang-Cuong Pham/Nanyang Technological University Continue reading

Posted in Human Robots

#431851 Bend it like Kengoro and Kenshiro

These Japanese humanoids can replicate flexible human-like movement during physical workouts like push-ups, crunches, stretches and other whole-body exercises, to help researchers better understand how humans move during athletic sports, aid in the development of artificial limbs and whole bodies, … Continue reading

Posted in Human Robots

#431995 The 10 Grand Challenges Facing Robotics ...

Robotics research has been making great strides in recent years, but there are still many hurdles to the machines becoming a ubiquitous presence in our lives. The journal Science Robotics has now identified 10 grand challenges the field will have to grapple with to make that a reality.

Editors conducted an online survey on unsolved challenges in robotics and assembled an expert panel of roboticists to shortlist the 30 most important topics, which were then grouped into 10 grand challenges that could have major impact in the next 5 to 10 years. Here’s what they came up with.

1. New Materials and Fabrication Schemes
Roboticists are beginning to move beyond motors, gears, and sensors by experimenting with things like artificial muscles, soft robotics, and new fabrication methods that combine multiple functions in one material. But most of these advances have been “one-off” demonstrations, which are not easy to combine.

Multi-functional materials merging things like sensing, movement, energy harvesting, or energy storage could allow more efficient robot designs. But combining these various properties in a single machine will require new approaches that blend micro-scale and large-scale fabrication techniques. Another promising direction is materials that can change over time to adapt or heal, but this requires much more research.

2. Bioinspired and Bio-Hybrid Robots
Nature has already solved many of the problems roboticists are trying to tackle, so many are turning to biology for inspiration or even incorporating living systems into their robots. But there are still major bottlenecks in reproducing the mechanical performance of muscle and the ability of biological systems to power themselves.

There has been great progress in artificial muscles, but their robustness, efficiency, and energy and power density need to be improved. Embedding living cells into robots can overcome challenges of powering small robots, as well as exploit biological features like self-healing and embedded sensing, though how to integrate these components is still a major challenge. And while a growing “robo-zoo” is helping tease out nature’s secrets, more work needs to be done on how animals transition between capabilities like flying and swimming to build multimodal platforms.

3. Power and Energy
Energy storage is a major bottleneck for mobile robotics. Rising demand from drones, electric vehicles, and renewable energy is driving progress in battery technology, but the fundamental challenges have remained largely unchanged for years.

That means that in parallel to battery development, there need to be efforts to minimize robots’ power utilization and give them access to new sources of energy. Enabling them to harvest energy from their environment and transmitting power to them wirelessly are two promising approaches worthy of investigation.

4. Robot Swarms
Swarms of simple robots that assemble into different configurations to tackle various tasks can be a cheaper, more flexible alternative to large, task-specific robots. Smaller, cheaper, more powerful hardware that lets simple robots sense their environment and communicate is combining with AI that can model the kind of behavior seen in nature’s flocks.

But there needs to be more work on the most efficient forms of control at different scales—small swarms can be controlled centrally, but larger ones need to be more decentralized. They also need to be made robust and adaptable to the changing conditions of the real world and resilient to deliberate or accidental damage. There also needs to be more work on swarms of non-homogeneous robots with complementary capabilities.

5. Navigation and Exploration
A key use case for robots is exploring places where humans cannot go, such as the deep sea, space, or disaster zones. That means they need to become adept at exploring and navigating unmapped, often highly disordered and hostile environments.

The major challenges include creating systems that can adapt, learn, and recover from navigation failures and are able to make and recognize new discoveries. This will require high levels of autonomy that allow the robots to monitor and reconfigure themselves while being able to build a picture of the world from multiple data sources of varying reliability and accuracy.

6. AI for Robotics
Deep learning has revolutionized machines’ ability to recognize patterns, but that needs to be combined with model-based reasoning to create adaptable robots that can learn on the fly.

Key to this will be creating AI that’s aware of its own limitations and can learn how to learn new things. It will also be important to create systems that are able to learn quickly from limited data rather than the millions of examples used in deep learning. Further advances in our understanding of human intelligence will be essential to solving these problems.

7. Brain-Computer Interfaces
BCIs will enable seamless control of advanced robotic prosthetics but could also prove a faster, more natural way to communicate instructions to robots or simply help them understand human mental states.

Most current approaches to measuring brain activity are expensive and cumbersome, though, so work on compact, low-power, and wireless devices will be important. They also tend to involve extended training, calibration, and adaptation due to the imprecise nature of reading brain activity. And it remains to be seen if they will outperform simpler techniques like eye tracking or reading muscle signals.

8. Social Interaction
If robots are to enter human environments, they will need to learn to deal with humans. But this will be difficult, as we have very few concrete models of human behavior and we are prone to underestimate the complexity of what comes naturally to us.

Social robots will need to be able to perceive minute social cues like facial expression or intonation, understand the cultural and social context they are operating in, and model the mental states of people they interact with to tailor their dealings with them, both in the short term and as they develop long-standing relationships with them.

9. Medical Robotics
Medicine is one of the areas where robots could have significant impact in the near future. Devices that augment a surgeon’s capabilities are already in regular use, but the challenge will be to increase the autonomy of these systems in such a high-stakes environment.

Autonomous robot assistants will need to be able to recognize human anatomy in a variety of contexts and be able to use situational awareness and spoken commands to understand what’s required of them. In surgery, autonomous robots could perform the routine steps of a procedure, giving way to the surgeon for more complicated patient-specific bits.

Micro-robots that operate inside the human body also hold promise, but there are still many roadblocks to their adoption, including effective delivery systems, tracking and control methods, and crucially, finding therapies where they improve on current approaches.

10. Robot Ethics and Security
As the preceding challenges are overcome and robots are increasingly integrated into our lives, this progress will create new ethical conundrums. Most importantly, we may become over-reliant on robots.

That could lead to humans losing certain skills and capabilities, making us unable to take the reins in the case of failures. We may end up delegating tasks that should, for ethical reasons, have some human supervision, and allow people to pass the buck to autonomous systems in the case of failure. It could also reduce self-determination, as human behaviors change to accommodate the routines and restrictions required for robots and AI to work effectively.

Image Credit: Zenzen / Shutterstock.com Continue reading

Posted in Human Robots