Tag Archives: platform

#436234 Robot Gift Guide 2019

Welcome to the eighth edition of IEEE Spectrum’s Robot Gift Guide!

This year we’re featuring 15 robotic products that we think will make fantastic holiday gifts. As always, we tried to include a broad range of robot types and prices, focusing mostly on items released this year. (A reminder: While we provide links to places where you can buy these items, we’re not endorsing any in particular, and a little bit of research may result in better deals.)

If you need even more robot gift ideas, take a look at our past guides: 2018, 2017, 2016, 2015, 2014, 2013, and 2012. Some of those robots are still great choices and might be way cheaper now than when we first posted about them. And if you have suggestions that you’d like to share, post a comment below to help the rest of us find the perfect robot gift.

Skydio 2

Image: Skydio

What makes robots so compelling is their autonomy, and the Skydio 2 is one of the most autonomous robots we’ve ever seen. It uses an array of cameras to map its environment and avoid obstacles in real-time, making flight safe and effortless and enabling the kinds of shots that would be impossible otherwise. Seriously, this thing is magical, and it’s amazing that you can actually buy one.
$1,000
Skydio
UBTECH Jimu MeeBot 2

Image: UBTECH

The Jimu MeeBot 2.0 from UBTECH is a STEM education robot designed to be easy to build and program. It includes six servo motors, a color sensor, and LED lights. An app for iPhone or iPad provides step-by-step 3D instructions, and helps you code different behaviors for the robot. It’s available exclusively from Apple.
$130
Apple
iRobot Roomba s9+

Image: iRobot

We know that $1,400 is a crazy amount of money to spend on a robot vacuum, but the Roomba s9+ is a crazy robot vacuum. As if all of its sensors and mapping intelligence wasn’t enough, it empties itself, which means that you can have your floors vacuumed every single day for a month and you don’t have to even think about it. This is what home robots are supposed to be.
$1,400
iRobot
PFF Gita

Photo: Piaggio Fast Forward

Nobody likes carrying things, which is why Gita is perfect for everyone with an extra $3,000 lying around. Developed by Piaggio Fast Forward, this autonomous robot will follow you around with a cargo hold full of your most important stuff, and do it in a way guaranteed to attract as much attention as possible.
$3,250
Gita
DJI Mavic Mini

Photo: DJI

It’s tiny, it’s cheap, and it takes good pictures—what more could you ask for from a drone? And for $400, this is an excellent drone to get if you’re on a budget and comfortable with manual flight. Keep in mind that while the Mavic Mini is small enough that you don’t need to register it with the FAA, you do still need to follow all the same rules and regulations.
$400
DJI
LEGO Star Wars Droid Commander

Image: LEGO

Designed for kids ages 8+, this LEGO set includes more than 1,000 pieces, enough to build three different droids: R2-D2, Gonk Droid, and Mouse Droid. Using a Bluetooth-controlled robotic brick called Move Hub, which connects to the LEGO BOOST Star Wars app, kids can change how the robots behave and solve challenges, learning basic robotics and coding skills.
$200
LEGO
Sony Aibo

Photo: Sony

Robot pets don’t get much more sophisticated (or expensive) than Sony’s Aibo. Strictly speaking, it’s one of the most complex consumer robots you can buy, and Sony continues to add to Aibo’s software. Recent new features include user programmability, and the ability to “feed” it.
$2,900 (free aibone and paw pads until 12/29/2019)
Sony
Neato Botvac D4 Connected

Photo: Neato

The Neato Botvac D4 may not have all of the features of its fancier and more expensive siblings, but it does have the features that you probably care the most about: The ability to make maps of its environment for intelligent cleaning (using lasers!), along with user-defined no-go lines that keep it where you want it. And it cleans quite well, too.
$530 $350 (sale)
Neato Robotics
Cubelets Curiosity Set

Photo: Modular Robotics

Cubelets are magnetic blocks that you can snap together to make an endless variety of robots with no programming and no wires. The newest set, called Curiosity, is designed for kids ages 4+ and comes with 10 robotic cubes. These include light and distance sensors, motors, and a Bluetooth module, which connects the robot constructions to the Cubelets app.
$250
Modular Robotics
Tertill

Photo: Franklin Robotics

Tertill does one simple job: It weeds your garden. It’s waterproof, dirt proof, solar powered, and fully autonomous, meaning that you can leave it out in your garden all summer and just enjoy eating your plants rather than taking care of them.
$350
Tertill
iRobot Root

Photo: iRobot

Root was originally developed by Harvard University as a tool to help kids progressively learn to code. iRobot has taken over Root and is now supporting the curriculum, which starts for kids before they even know how to read and should keep them busy for years afterwards.
$200
iRobot
LOVOT

Image: Lovot

Let’s be honest: Nobody is really quite sure what LOVOT is. We can all agree that it’s kinda cute, though. And kinda weird. But cute. Created by Japanese robotics startup Groove X, LOVOT does have a whole bunch of tech packed into its bizarre little body and it will do its best to get you to love it.
$2,750 (¥300,000)
LOVOT
Sphero RVR

Photo: Sphero

RVR is a rugged, versatile, easy to program mobile robot. It’s a development platform designed to be a bridge between educational robots like Sphero and more sophisticated and expensive systems like Misty. It’s mostly affordable, very expandable, and comes from a company with a lot of experience making robots.
$250
Sphero
“How to Train Your Robot”

Image: Lawrence Hall of Science

Aimed at 4th and 5th graders, “How to Train Your Robot,” written by Blooma Goldberg, Ken Goldberg, and Ashley Chase, and illustrated by Dave Clegg, is a perfect introduction to robotics for kids who want to get started with designing and building robots. But the book isn’t just for beginners: It’s also a fun, inspiring read for kids who are already into robotics and want to go further—it even introduces concepts like computer simulations and deep learning. You can download a free digital copy or request hardcopies here.
Free
UC Berkeley
MIT Mini Cheetah

Photo: MIT

Yes, Boston Dynamics’ Spot, now available for lease, is probably the world’s most famous quadruped, but MIT is starting to pump out Mini Cheetahs en masse for researchers, and while we’re not exactly sure how you’d manage to get one of these things short of stealing one directly for MIT, a Mini Cheetah is our fantasy robotics gift this year. Mini Cheetah looks like a ton of fun—it’s portable, highly dynamic, super rugged, and easy to control. We want one!
Price N/A
MIT Biomimetic Robotics Lab

For more tech gift ideas, see also IEEE Spectrum’s annual Gift Guide. Continue reading

Posted in Human Robots

#436215 Help Rescuers Find Missing Persons With ...

There’s a definite sense that robots are destined to become a critical part of search and rescue missions and disaster relief efforts, working alongside humans to help first responders move faster and more efficiently. And we’ve seen all kinds of studies that include the claim “this robot could potentially help with disaster relief,” to varying degrees of plausibility.

But it takes a long time, and a lot of extra effort, for academic research to actually become anything useful—especially for first responders, where there isn’t a lot of financial incentive for further development.

It turns out that if you actually ask first responders what they most need for disaster relief, they’re not necessarily interested in the latest and greatest robotic platform or other futuristic technology. They’re using commercial off-the-shelf drones, often consumer-grade ones, because they’re simple and cheap and great at surveying large areas. The challenge is doing something useful with all of the imagery that these drones collect. Computer vision algorithms could help with that, as long as those algorithms are readily accessible and nearly effortless to use.

The IEEE Robotics and Automation Society and the Center for Robotic-Assisted Search and Rescue (CRASAR) at Texas A&M University have launched a contest to bridge this gap between the kinds of tools that roboticists and computer vision researchers might call “basic” and a system that’s useful to first responders in the field. It’s a simple and straightforward idea, and somewhat surprising that no one had thought of it before now. And if you can develop such a system, it’s worth some cash.

CRASAR does already have a Computer Vision Emergency Response Toolkit (created right after Hurricane Harvey), which includes a few pixel filters and some edge and corner detectors. Through this contest, you can get paid your share of a $3,000 prize pool for adding some other excessively basic tools, including:

Image enhancement through histogram equalization, which can be applied to electro-optical (visible light cameras) and thermal imagery

Color segmentation for a range

Grayscale segmentation for a range in a thermal image

If it seems like this contest is really not that hard, that’s because it isn’t. “The first thing to understand about this contest is that strictly speaking, it’s really not that hard,” says Robin Murphy, director of CRASAR. “This contest isn’t necessarily about coming up with algorithms that are brand new, or even state-of-the-art, but rather algorithms that are functional and reliable and implemented in a way that’s immediately [usable] by inexperienced users in the field.”

Murphy readily admits that some of what needs to be done is not particularly challenging at all, but that’s not the point—the point is to make these functionalities accessible to folks who have better things to do than solve these problems themselves, as Murphy explains.

“A lot of my research is driven by problems that I’ve seen in the field that you’d think somebody would have solved, but apparently not. More than half of this is available in OpenCV, but who’s going to find it, download it, learn Python, that kind of thing? We need to get these tools into an open framework. We’re happy if you take libraries that already exist (just don’t steal code)—not everything needs to be rewritten from scratch. Just use what’s already there. Some of it may seem too simple, because it IS that simple. It already exists and you just need to move some code around.”

If you want to get very slightly more complicated, there’s a second category that involves a little bit of math:

Coders must provide a system that does the following for each nadir image in a set:

Reads the geotag embedded in the .jpg
Overlays a USNG grid for a user-specified interval (e.g., every 50, 100, or 200 meters)
Gives the GPS coordinates of each pixel if a cursor is rolled over the image
Given a set of images with the GPS or USNG coordinate and a bounding box, finds all images in the set that have a pixel intersecting that location

The final category awards prizes to anyone who comes up with anything else that turns out to be useful. Or, more specifically, “entrants can submit any algorithm they believe will be of value.” Whether or not it’s actually of value will be up to a panel of judges that includes both first responders and computer vision experts. More detailed rules can be found here, along with sample datasets that you can use for testing.

The contest deadline is 16 December, so you’ve got about a month to submit an entry. Winners will be announced at the beginning of January. Continue reading

Posted in Human Robots

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436165 Video Friday: DJI’s Mavic Mini Is ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

DJI’s new Mavic Mini looks like a pretty great drone for US $400 ($500 for a combo with more accessories): It’s tiny, flies for 30 minutes, and will do what you need as far as pictures and video (although not a whole lot more).

DJI seems to have put a bunch of effort into making the drone 249 grams, 1 gram under what’s required for FAA registration. That means you save $5 and a few minutes of your time, but that does not mean you don’t have to follow the FAA’s rules and regulations governing drone use.

[ DJI ]

Don’t panic, but Clearpath and HEBI Robotics have armed the Jackal:

After locking eyes across a crowded room at ICRA 2019, Clearpath Robotics and HEBI Robotics basked in that warm and fuzzy feeling that comes with starting a new and exciting relationship. Over a conference hall coffee, they learned that the two companies have many overlapping interests. The most compelling was the realization that customers across a variety of industries are hunting for an elusive true love of their own – a robust but compact robotic platform combined with a long reach manipulator for remote inspection tasks.

After ICRA concluded, Arron Griffiths, Application Engineer at Clearpath, and Matthew Tesch, Software Engineer at HEBI, kept in touch and decided there had been enough magic in the air to warrant further exploration. A couple of months later, Matthew arrived at Clearpath to formally introduce the HEBI’s X-Series Arm to Clearpath’s Jackal UGV. It was love.

[ Clearpath ]

Thanks Dave!

I’m really not a fan of the people-carrying drones, but heavy lift cargo drones seem like a more okay idea.

Volocopter, the pioneer in Urban Air Mobility, presented the demonstrator of its VoloDrone. This marks Volocopters expansion into the logistics, agriculture, infrastructure and public services industry. The VoloDrone is an unmanned, fully electric, heavy-lift utility drone capable of carrying a payload of 200 kg (440 lbs) up to 40 km (25 miles). With a standardized payload attachment, VoloDrone can serve a great variety of purposes from transporting boxes, to liquids, to equipment and beyond. It can be remotely piloted or flown in automated mode on pre-set routes.

[ Volocopter ]

JAY is a mobile service robot that projects a display on the floor and plays sound with its speaker. By playing sounds and videos, it provides visual and audio entertainment in various places such as exhibition halls, airports, hotels, department stores and more.

[ Rainbow Robotics ]

The DARPA Subterranean Challenge Virtual Tunnel Circuit concluded this week—it was the same idea as the physical challenge that took place in August, just with a lot less IRL dirt.

The awards ceremony and team presentations are in this next video, and we’ll have more on this once we get back from IROS.

[ DARPA SubT ]

NASA is sending a mobile robot to the south pole of the Moon to get a close-up view of the location and concentration of water ice in the region and for the first time ever, actually sample the water ice at the same pole where the first woman and next man will land in 2024 under the Artemis program.

About the size of a golf cart, the Volatiles Investigating Polar Exploration Rover, or VIPER, will roam several miles, using its four science instruments — including a 1-meter drill — to sample various soil environments. Planned for delivery in December 2022, VIPER will collect about 100 days of data that will be used to inform development of the first global water resource maps of the Moon.

[ NASA ]

Happy Halloween from HEBI Robotics!

[ HEBI ]

Happy Halloween from Soft Robotics!

[ Soft Robotics ]

Halloween must be really, really confusing for autonomous cars.

[ Waymo ]

Once a year at Halloween, hardworking JPL engineers put their skills to the test in a highly competitive pumpkin carving contest. The result: A pumpkin gently landed on the Moon, its retrorockets smoldering, while across the room a Nemo-inspired pumpkin explored the sub-surface ocean of Jupiter moon Europa. Suffice to say that when the scientists and engineers at NASA’s Jet Propulsion Laboratory compete in a pumpkin-carving contest, the solar system’s the limit. Take a look at some of the masterpieces from 2019.

Now in its ninth year, the contest gives teams only one hour to carve and decorate their pumpkin though they can prepare non-pumpkin materials – like backgrounds, sound effects and motorized parts – ahead of time.

[ JPL ]

The online autonomous navigation and semantic mapping experiment presented [below] is conducted with the Cassie Blue bipedal robot at the University of Michigan. The sensors attached to the robot include an IMU, a 32-beam LiDAR and an RGB-D camera. The whole online process runs in real-time on a Jetson Xavier and a laptop with an i7 processor.

[ BPL ]

Misty II is now available to anyone who wants one, and she’s on sale for a mere $2900.

[ Misty ]

We leveraged LIDAR-based slam, in conjunction with our specialized relative localization sensor UVDAR to perform a de-centralized, communication-free swarm flight without the units knowing their absolute locations. The swarming and obstacle avoidance control is based on a modified Boids-like algorithm, while the whole swarm is controlled by directing a selected leader unit.

[ MRS ]

The MallARD robot is an autonomous surface vehicle (ASV), designed for the monitoring and inspection of wet storage facilities for example spent fuel pools or wet silos. The MallARD is holonomic, uses a LiDAR for localisation and features a robust trajectory tracking controller.

The University of Manchester’s researcher Dr Keir Groves designed and built the autonomous surface vehicle (ASV) for the challenge which came in the top three of the second round in Nov 2017. The MallARD went on to compete in a final 3rd round where it was deployed in a spent fuel pond at a nuclear power plant in Finland by the IAEA, along with two other entries. The MallARD came second overall, in November 2018.

[ RNE ]

Thanks Jennifer!

I sometimes get the sense that in the robotic grasping and manipulation world, suction cups are kinda seen as cheating at times. But, their nature allows you to do some pretty interesting things.

More clever octopus footage please.

[ CMU ]

A Personal, At-Home Teacher For Playful Learning: From academic topics to child-friendly news bulletins, fun facts and more, Miko 2 is packed with relevant and freshly updated content specially designed by educationists and child-specialists. Your little one won’t even realize they’re learning.

As we point out pretty much every time we post a video like this, keep in mind that you’re seeing a heavily edited version of a hypothetical best case scenario for how this robot can function. And things like “creating a relationship that they can then learn how to form with their peers” is almost certainly overselling things. But at $300 (shipping included), this may be a decent robot as long as your expectations are appropriately calibrated.

[ Miko ]

ICRA 2018 plenary talk by Rodney Brooks: “Robots and People: the Research Challenge.”

[ IEEE RAS ]

ICRA-X 2018 talk by Ron Arkin: “Lethal Autonomous Robots and the Plight of the Noncombatant.”

[ IEEE RAS ]

On the most recent episode of the AI Podcast, Lex Fridman interviews Garry Kasparov.

[ AI Podcast ] Continue reading

Posted in Human Robots

#436149 Blue Frog Robotics Answers (Some of) Our ...

In September of 2015, Buddy the social home robot closed its Indiegogo crowdfunding campaign more than 600 percent over its funding goal. A thousand people pledged for a robot originally scheduled to be delivered in December of 2016. But nearly three years later, the future of Buddy is still unclear. Last May, Blue Frog Robotics asked for forgiveness from its backers and announced the launch of an “equity crowdfunding campaign” to try to raise the additional funding necessary to deliver the robot in April of 2020.

By the time the crowdfunding campaign launched in August, the delivery date had slipped again, to September 2020, even as Blue Frog attempted to draw investors by estimating that sales of Buddy would “increase from 2000 robots in 2020 to 20,000 in 2023.” Blue Frog’s most recent communication with backers, in September, mentions a new CTO and a North American office, but does little to reassure backers of Buddy that they’ll ever be receiving their robot.

Backers of the robot are understandably concerned about the future of Buddy, so we sent a series of questions to the founder and CEO of Blue Frog Robotics, Rodolphe Hasselvander.

We’ve edited this interview slightly for clarity, but we should also note that Hasselvander was unable to provide answers to every question. In particular, we asked for some basic information about Blue Frog’s near-term financial plans, on which the entire future of Buddy seems to depend. We’ve left those questions in the interview anyway, along with Hasselvander’s response.

1. At this point, how much additional funding is necessary to deliver Buddy to backers?
2. Assuming funding is successful, when can backers expect to receive Buddy?
3. What happens if the fundraising goal is not met?
4. You estimate that sales of Buddy will increase 10x over three years. What is this estimate based on?

Rodolphe Hasselvander: Regarding the questions 1-4, unfortunately, as we are fundraising in a Regulation D, we do not comment on prospect, customer data, sales forecasts, or figures. Please refer to our press release here to have information about the fundraising.

5. Do you feel that you are currently being transparent enough about this process to satisfy backers?
6. Buddy’s launch date has moved from April 2020 to September 2020 over the last four months. Why should backers remain confident about Buddy’s schedule?

Since the last newsletter, we haven’t changed our communication, the backers will be the first to receive their Buddy, and we plan an official launch in September 2020.

7. What is the goal of My Buddy World?

At Blue Frog, we think that matching a great product with a big market can only happen through continual experimentation, iteration and incorporation of customer feedback. That’s why we created the forum My Buddy World. It has been designed for our Buddy Community to join us, discuss the world’s first emotional robot, and create with us. The objective is to deepen our conversation with Buddy’s fans and users, stay agile in testing our hypothesis and validate our product-market fit. We trust the value of collaboration. Behind Buddy, there is a team of roboticists, engineers, and programmers that are eager to know more about our consumers’ needs and are excited to work with them to create the perfect human/robot experience.

8. How is the current version of Buddy different from the 2015 version that backers pledged for during the successful crowdfunding campaign, in both hardware and software?

We have completely revised some parts of Buddy as well as replaced and/or added more accurate and reliable components to ensure we fully satisfy our customers’ requirements for a mature and high-quality robot from day one. We sourced more innovative components to make sure that Buddy has the most up-to-date technologies such as adding four microphones, a high def thermal matrix, a 3D camera, an 8-megapixel RGB camera, time-of-flight sensors, and touch sensors.
If you want more info, we just posted an article about what is Buddy here.

9. Will the version of Buddy that ships to backers in 2020 do everything that that was shown in the original crowdfunding video?

Concerning the capabilities of Buddy regarding the video published on YouTube, I confirm that Buddy will be able to do everything you can see, like patrol autonomously and secure your home, telepresence, mathematics applications, interactive stories for children, IoT/smart home management, face recognition, alarm clock, reminder, message/photo sharing, music, hands free call, people following, games like hide and seek (and more). In addition, everyone will be able to create their own apps thanks to the “BuddyLab” application.

10. What makes you confident that Buddy will be successful when Jibo, Kuri, and other social robots have not?

Consumer robotics is a new market. Some people think it is a tough one. But we, at Blue Frog Robotics, believe it is a path of learning, understanding, and finding new ways to serve consumers. Here are the five key factors that will make Buddy successful.

1) A market-fit robot

Blue Frog Robotics is a consumer-centric company. We know that a successful business model and a compelling fit to market Buddy must come up from solving consumers’ frustrations and problems in a way that’s new and exciting. We started from there.

By leveraged existing research and syndicated consumer data sets to understand our customers’ needs and aspirations, we get that creating a robot is not about the best tech innovation and features, but always about how well technology becomes a service to one’s basic human needs and assets: convenience, connection, security, fun, self-improvement, and time. To answer to these consumers’ needs and wants, we designed an all-in-one robot with four vital capabilities: intelligence, emotionality, mobility, and customization.

With his multi-purpose brain, he addresses a broad range of needs in modern-day life, from securing homes to carrying out his owners’ daily activities, from helping people with disabilities to educating children, from entertaining to just becoming a robot friend.

Buddy is a disruptive innovative robot that is about to transform the way we live, learn, utilize information, play, and even care about our health.
2) Endless possibilities

One of the major advantages of Buddy is his adaptability. Beyond to be adorable, playful, talkative, and to accompany anyone in their daily life at home whether you are comfortable with technology or not, he offers via his platform applications to engage his owners in a wide range of activities. From fitness to cooking, from health monitoring to education, from games to meditation, the combination of intelligence, sensors, mobility, multi-touch panel opens endless possibilities for consumers and organizations to adapt their Buddy to their own needs.
3) An affordable price

Buddy will be the first robot combining smart, social, and mobile capabilities and a developed platform with a personality to enter the U.S. market at affordable price.

Our competitors are social or assistant robots but rarely both. Competitors differentiate themselves by features: mobile, non-mobile; by shapes: humanoid or not; by skills: social versus smart; targeting a specific domain like entertainment, retail assistant, eldercare, or education for children; and by price. Regarding our six competitors: Moorebot, Elli-Q, and Olly are not mobile; Lynx and Nao are in toy category; Pepper is above $10k targeting B2B market; and finally, Temi can’t be considered an emotional robot.
Buddy remains highly differentiated as an all-in-one, best of his class experience, covering the needs for social interactions and assistance of his owners at each stage of their life at an affordable price.

The price range of Buddy will be between US $1700 and $2000.

4) A winning business model

Buddy’s great business model combines hardware, software, and services, and provides game-changing convenience for consumers, organizations, and developers.

Buddy offers a multi-sided value proposition focused on three vertical markets: direct consumers, corporations (healthcare, education, hospitality), and developers. The model creates engagement and sustained usage and produces stable and diverse cash flow.
5) A Passion for people and technology

From day one, we have always believed in the power of our dream: To bring the services and the fun of an emotional robot in every house, every hospital, in every care house. Each day, we refuse to think that we are stuck or limited; we work hard to make Buddy a reality that will help people all over the world and make them smile.

While we certainly appreciate Hasselvander’s consistent optimism and obvious enthusiasm, we’re obligated to point out that some of our most important questions were not directly answered. We haven’t learned anything that makes us all that much more confident that Blue Frog will be able to successfully deliver Buddy this time. Hasselvander also didn’t address our specific question about whether he feels like Blue Frog’s communication strategy with backers has been adequate, which is particularly relevant considering that over the four months between the last two newsletters, Buddy’s launch date slipped by six months.

At this point, all we can do is hope that the strategy Blue Frog has chosen will be successful. We’ll let you know if as soon as we learn more.

[ Buddy ] Continue reading

Posted in Human Robots