Tag Archives: Performance
#437285 THEaiTRE: A theatre play written ...
Researchers at Charles University, Švanda Theater and the Academy of Performing Arts in Prague are currently working on an intriguing research project that merges artificial intelligence and robotics with theater. Their project's main objective is to use artificial intelligence to create an innovative theatrical performance, which is expected to premiere in January 2021. Continue reading
#437239 Using a quantum-like model to enable ...
Over the past few years, researchers have been trying to apply quantum physics theory to a variety of fields, including robotics, biology and cognitive science. Computational techniques that draw inspiration from quantum systems, also known as quantum-like (QL) models, could potentially achieve better performance and more sophisticated capabilities than more conventional approaches. Continue reading
#437182 MIT’s Tiny New Brain Chip Aims for AI ...
The human brain operates on roughly 20 watts of power (a third of a 60-watt light bulb) in a space the size of, well, a human head. The biggest machine learning algorithms use closer to a nuclear power plant’s worth of electricity and racks of chips to learn.
That’s not to slander machine learning, but nature may have a tip or two to improve the situation. Luckily, there’s a branch of computer chip design heeding that call. By mimicking the brain, super-efficient neuromorphic chips aim to take AI off the cloud and put it in your pocket.
The latest such chip is smaller than a piece of confetti and has tens of thousands of artificial synapses made out of memristors—chip components that can mimic their natural counterparts in the brain.
In a recent paper in Nature Nanotechnology, a team of MIT scientists say their tiny new neuromorphic chip was used to store, retrieve, and manipulate images of Captain America’s Shield and MIT’s Killian Court. Whereas images stored with existing methods tended to lose fidelity over time, the new chip’s images remained crystal clear.
“So far, artificial synapse networks exist as software. We’re trying to build real neural network hardware for portable artificial intelligence systems,” Jeehwan Kim, associate professor of mechanical engineering at MIT said in a press release. “Imagine connecting a neuromorphic device to a camera on your car, and having it recognize lights and objects and make a decision immediately, without having to connect to the internet. We hope to use energy-efficient memristors to do those tasks on-site, in real-time.”
A Brain in Your Pocket
Whereas the computers in our phones and laptops use separate digital components for processing and memory—and therefore need to shuttle information between the two—the MIT chip uses analog components called memristors that process and store information in the same place. This is similar to the way the brain works and makes memristors far more efficient. To date, however, they’ve struggled with reliability and scalability.
To overcome these challenges, the MIT team designed a new kind of silicon-based, alloyed memristor. Ions flowing in memristors made from unalloyed materials tend to scatter as the components get smaller, meaning the signal loses fidelity and the resulting computations are less reliable. The team found an alloy of silver and copper helped stabilize the flow of silver ions between electrodes, allowing them to scale the number of memristors on the chip without sacrificing functionality.
While MIT’s new chip is promising, there’s likely a ways to go before memristor-based neuromorphic chips go mainstream. Between now and then, engineers like Kim have their work cut out for them to further scale and demonstrate their designs. But if successful, they could make for smarter smartphones and other even smaller devices.
“We would like to develop this technology further to have larger-scale arrays to do image recognition tasks,” Kim said. “And some day, you might be able to carry around artificial brains to do these kinds of tasks, without connecting to supercomputers, the internet, or the cloud.”
Special Chips for AI
The MIT work is part of a larger trend in computing and machine learning. As progress in classical chips has flagged in recent years, there’s been an increasing focus on more efficient software and specialized chips to continue pushing the pace.
Neuromorphic chips, for example, aren’t new. IBM and Intel are developing their own designs. So far, their chips have been based on groups of standard computing components, such as transistors (as opposed to memristors), arranged to imitate neurons in the brain. These chips are, however, still in the research phase.
Graphics processing units (GPUs)—chips originally developed for graphics-heavy work like video games—are the best practical example of specialized hardware for AI and were heavily used in this generation of machine learning early on. In the years since, Google, NVIDIA, and others have developed even more specialized chips that cater more specifically to machine learning.
The gains from such specialized chips are already being felt.
In a recent cost analysis of machine learning, research and investment firm ARK Invest said cost declines have far outpaced Moore’s Law. In a particular example, they found the cost to train an image recognition algorithm (ResNet-50) went from around $1,000 in 2017 to roughly $10 in 2019. The fall in cost to actually run such an algorithm was even more dramatic. It took $10,000 to classify a billion images in 2017 and just $0.03 in 2019.
Some of these declines can be traced to better software, but according to ARK, specialized chips have improved performance by nearly 16 times in the last three years.
As neuromorphic chips—and other tailored designs—advance further in the years to come, these trends in cost and performance may continue. Eventually, if all goes to plan, we might all carry a pocket brain that can do the work of today’s best AI.
Image credit: Peng Lin Continue reading
#437171 Scientists Tap the World’s Most ...
In The Hitchhiker’s Guide to the Galaxy by Douglas Adams, the haughty supercomputer Deep Thought is asked whether it can find the answer to the ultimate question concerning life, the universe, and everything. It replies that, yes, it can do it, but it’s tricky and it’ll have to think about it. When asked how long it will take it replies, “Seven-and-a-half million years. I told you I’d have to think about it.”
Real-life supercomputers are being asked somewhat less expansive questions but tricky ones nonetheless: how to tackle the Covid-19 pandemic. They’re being used in many facets of responding to the disease, including to predict the spread of the virus, to optimize contact tracing, to allocate resources and provide decisions for physicians, to design vaccines and rapid testing tools, and to understand sneezes. And the answers are needed in a rather shorter time frame than Deep Thought was proposing.
The largest number of Covid-19 supercomputing projects involves designing drugs. It’s likely to take several effective drugs to treat the disease. Supercomputers allow researchers to take a rational approach and aim to selectively muzzle proteins that SARS-CoV-2, the virus that causes Covid-19, needs for its life cycle.
The viral genome encodes proteins needed by the virus to infect humans and to replicate. Among these are the infamous spike protein that sniffs out and penetrates its human cellular target, but there are also enzymes and molecular machines that the virus forces its human subjects to produce for it. Finding drugs that can bind to these proteins and stop them from working is a logical way to go.
The Summit supercomputer at Oak Ridge National Laboratory has a peak performance of 200,000 trillion calculations per second—equivalent to about a million laptops. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy, CC BY
I am a molecular biophysicist. My lab, at the Center for Molecular Biophysics at the University of Tennessee and Oak Ridge National Laboratory, uses a supercomputer to discover drugs. We build three-dimensional virtual models of biological molecules like the proteins used by cells and viruses, and simulate how various chemical compounds interact with those proteins. We test thousands of compounds to find the ones that “dock” with a target protein. Those compounds that fit, lock-and-key style, with the protein are potential therapies.
The top-ranked candidates are then tested experimentally to see if they indeed do bind to their targets and, in the case of Covid-19, stop the virus from infecting human cells. The compounds are first tested in cells, then animals, and finally humans. Computational drug discovery with high-performance computing has been important in finding antiviral drugs in the past, such as the anti-HIV drugs that revolutionized AIDS treatment in the 1990s.
World’s Most Powerful Computer
Since the 1990s the power of supercomputers has increased by a factor of a million or so. Summit at Oak Ridge National Laboratory is presently the world’s most powerful supercomputer, and has the combined power of roughly a million laptops. A laptop today has roughly the same power as a supercomputer had 20-30 years ago.
However, in order to gin up speed, supercomputer architectures have become more complicated. They used to consist of single, very powerful chips on which programs would simply run faster. Now they consist of thousands of processors performing massively parallel processing in which many calculations, such as testing the potential of drugs to dock with a pathogen or cell’s proteins, are performed at the same time. Persuading those processors to work together harmoniously is a pain in the neck but means we can quickly try out a lot of chemicals virtually.
Further, researchers use supercomputers to figure out by simulation the different shapes formed by the target binding sites and then virtually dock compounds to each shape. In my lab, that procedure has produced experimentally validated hits—chemicals that work—for each of 16 protein targets that physician-scientists and biochemists have discovered over the past few years. These targets were selected because finding compounds that dock with them could result in drugs for treating different diseases, including chronic kidney disease, prostate cancer, osteoporosis, diabetes, thrombosis and bacterial infections.
Scientists are using supercomputers to find ways to disable the various proteins—including the infamous spike protein (green protrusions)—produced by SARS-CoV-2, the virus responsible for Covid-19. Image credit: Thomas Splettstoesser scistyle.com, CC BY-ND
Billions of Possibilities
So which chemicals are being tested for Covid-19? A first approach is trying out drugs that already exist for other indications and that we have a pretty good idea are reasonably safe. That’s called “repurposing,” and if it works, regulatory approval will be quick.
But repurposing isn’t necessarily being done in the most rational way. One idea researchers are considering is that drugs that work against protein targets of some other virus, such as the flu, hepatitis or Ebola, will automatically work against Covid-19, even when the SARS-CoV-2 protein targets don’t have the same shape.
Our own work has now expanded to about 10 targets on SARS-CoV-2, and we’re also looking at human protein targets for disrupting the virus’s attack on human cells. Top-ranked compounds from our calculations are being tested experimentally for activity against the live virus. Several of these have already been found to be active.The best approach is to check if repurposed compounds will actually bind to their intended target. To that end, my lab published a preliminary report of a supercomputer-driven docking study of a repurposing compound database in mid-February. The study ranked 8,000 compounds in order of how well they bind to the viral spike protein. This paper triggered the establishment of a high-performance computing consortium against our viral enemy, announced by President Trump in March. Several of our top-ranked compounds are now in clinical trials.
Also, we and others are venturing out into the wild world of new drug discovery for Covid-19—looking for compounds that have never been tried as drugs before. Databases of billions of these compounds exist, all of which could probably be synthesized in principle but most of which have never been made. Billion-compound docking is a tailor-made task for massively parallel supercomputing.
Dawn of the Exascale Era
Work will be helped by the arrival of the next big machine at Oak Ridge, called Frontier, planned for next year. Frontier should be about 10 times more powerful than Summit. Frontier will herald the “exascale” supercomputing era, meaning machines capable of 1,000,000,000,000,000,000 calculations per second.
Although some fear supercomputers will take over the world, for the time being, at least, they are humanity’s servants, which means that they do what we tell them to. Different scientists have different ideas about how to calculate which drugs work best—some prefer artificial intelligence, for example—so there’s quite a lot of arguing going on.
Hopefully, scientists armed with the most powerful computers in the world will, sooner rather than later, find the drugs needed to tackle Covid-19. If they do, then their answers will be of more immediate benefit, if less philosophically tantalizing, than the answer to the ultimate question provided by Deep Thought, which was, maddeningly, simply 42.
This article is republished from The Conversation under a Creative Commons license. Read the original article.
Image credit: NIH/NIAID Continue reading
#437145 3 Major Materials Science ...
Few recognize the vast implications of materials science.
To build today’s smartphone in the 1980s, it would cost about $110 million, require nearly 200 kilowatts of energy (compared to 2kW per year today), and the device would be 14 meters tall, according to Applied Materials CTO Omkaram Nalamasu.
That’s the power of materials advances. Materials science has democratized smartphones, bringing the technology to the pockets of over 3.5 billion people. But far beyond devices and circuitry, materials science stands at the center of innumerable breakthroughs across energy, future cities, transit, and medicine. And at the forefront of Covid-19, materials scientists are forging ahead with biomaterials, nanotechnology, and other materials research to accelerate a solution.
As the name suggests, materials science is the branch devoted to the discovery and development of new materials. It’s an outgrowth of both physics and chemistry, using the periodic table as its grocery store and the laws of physics as its cookbook.
And today, we are in the middle of a materials science revolution. In this article, we’ll unpack the most important materials advancements happening now.
Let’s dive in.
The Materials Genome Initiative
In June 2011 at Carnegie Mellon University, President Obama announced the Materials Genome Initiative, a nationwide effort to use open source methods and AI to double the pace of innovation in materials science. Obama felt this acceleration was critical to the US’s global competitiveness, and held the key to solving significant challenges in clean energy, national security, and human welfare. And it worked.
By using AI to map the hundreds of millions of different possible combinations of elements—hydrogen, boron, lithium, carbon, etc.—the initiative created an enormous database that allows scientists to play a kind of improv jazz with the periodic table.
This new map of the physical world lets scientists combine elements faster than ever before and is helping them create all sorts of novel elements. And an array of new fabrication tools are further amplifying this process, allowing us to work at altogether new scales and sizes, including the atomic scale, where we’re now building materials one atom at a time.
Biggest Materials Science Breakthroughs
These tools have helped create the metamaterials used in carbon fiber composites for lighter-weight vehicles, advanced alloys for more durable jet engines, and biomaterials to replace human joints. We’re also seeing breakthroughs in energy storage and quantum computing. In robotics, new materials are helping us create the artificial muscles needed for humanoid, soft robots—think Westworld in your world.
Let’s unpack some of the leading materials science breakthroughs of the past decade.
(1) Lithium-ion batteries
The lithium-ion battery, which today powers everything from our smartphones to our autonomous cars, was first proposed in the 1970s. It couldn’t make it to market until the 1990s, and didn’t begin to reach maturity until the past few years.
An exponential technology, these batteries have been dropping in price for three decades, plummeting 90 percent between 1990 and 2010, and 80 percent since. Concurrently, they’ve seen an eleven-fold increase in capacity.
But producing enough of them to meet demand has been an ongoing problem. Tesla has stepped up to the challenge: one of the company’s Gigafactories in Nevada churns out 20 gigawatts of energy storage per year, marking the first time we’ve seen lithium-ion batteries produced at scale.
Musk predicts 100 Gigafactories could store the energy needs of the entire globe. Other companies are moving quickly to integrate this technology as well: Renault is building a home energy storage based on their Zoe batteries, BMW’s 500 i3 battery packs are being integrated into the UK’s national energy grid, and Toyota, Nissan, and Audi have all announced pilot projects.
Lithium-ion batteries will continue to play a major role in renewable energy storage, helping bring down solar and wind energy prices to compete with those of coal and gasoline.
(2) Graphene
Derived from the same graphite found in everyday pencils, graphene is a sheet of carbon just one atom thick. It is nearly weightless, but 200 times stronger than steel. Conducting electricity and dissipating heat faster than any other known substance, this super-material has transformative applications.
Graphene enables sensors, high-performance transistors, and even gel that helps neurons communicate in the spinal cord. Many flexible device screens, drug delivery systems, 3D printers, solar panels, and protective fabric use graphene.
As manufacturing costs decrease, this material has the power to accelerate advancements of all kinds.
(3) Perovskite
Right now, the “conversion efficiency” of the average solar panel—a measure of how much captured sunlight can be turned into electricity—hovers around 16 percent, at a cost of roughly $3 per watt.
Perovskite, a light-sensitive crystal and one of our newer new materials, has the potential to get that up to 66 percent, which would double what silicon panels can muster.
Perovskite’s ingredients are widely available and inexpensive to combine. What do all these factors add up to? Affordable solar energy for everyone.
Materials of the Nano-World
Nanotechnology is the outer edge of materials science, the point where matter manipulation gets nano-small—that’s a million times smaller than an ant, 8,000 times smaller than a red blood cell, and 2.5 times smaller than a strand of DNA.
Nanobots are machines that can be directed to produce more of themselves, or more of whatever else you’d like. And because this takes place at an atomic scale, these nanobots can pull apart any kind of material—soil, water, air—atom by atom, and use these now raw materials to construct just about anything.
Progress has been surprisingly swift in the nano-world, with a bevy of nano-products now on the market. Never want to fold clothes again? Nanoscale additives to fabrics help them resist wrinkling and staining. Don’t do windows? Not a problem! Nano-films make windows self-cleaning, anti-reflective, and capable of conducting electricity. Want to add solar to your house? We’ve got nano-coatings that capture the sun’s energy.
Nanomaterials make lighter automobiles, airplanes, baseball bats, helmets, bicycles, luggage, power tools—the list goes on. Researchers at Harvard built a nanoscale 3D printer capable of producing miniature batteries less than one millimeter wide. And if you don’t like those bulky VR goggles, researchers are now using nanotech to create smart contact lenses with a resolution six times greater than that of today’s smartphones.
And even more is coming. Right now, in medicine, drug delivery nanobots are proving especially useful in fighting cancer. Computing is a stranger story, as a bioengineer at Harvard recently stored 700 terabytes of data in a single gram of DNA.
On the environmental front, scientists can take carbon dioxide from the atmosphere and convert it into super-strong carbon nanofibers for use in manufacturing. If we can do this at scale—powered by solar—a system one-tenth the size of the Sahara Desert could reduce CO2 in the atmosphere to pre-industrial levels in about a decade.
The applications are endless. And coming fast. Over the next decade, the impact of the very, very small is about to get very, very large.
Final Thoughts
With the help of artificial intelligence and quantum computing over the next decade, the discovery of new materials will accelerate exponentially.
And with these new discoveries, customized materials will grow commonplace. Future knee implants will be personalized to meet the exact needs of each body, both in terms of structure and composition.
Though invisible to the naked eye, nanoscale materials will integrate into our everyday lives, seamlessly improving medicine, energy, smartphones, and more.
Ultimately, the path to demonetization and democratization of advanced technologies starts with re-designing materials— the invisible enabler and catalyst. Our future depends on the materials we create.
(Note: This article is an excerpt from The Future Is Faster Than You Think—my new book, just released on January 28th! To get your own copy, click here!)
Join Me
(1) A360 Executive Mastermind: If you’re an exponentially and abundance-minded entrepreneur who would like coaching directly from me, consider joining my Abundance 360 Mastermind, a highly selective community of 360 CEOs and entrepreneurs who I coach for 3 days every January in Beverly Hills, Ca. Through A360, I provide my members with context and clarity about how converging exponential technologies will transform every industry. I’m committed to running A360 for the course of an ongoing 25-year journey as a “countdown to the Singularity.”
If you’d like to learn more and consider joining our 2021 membership, apply here.
(2) Abundance-Digital Online Community: I’ve also created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is Singularity University’s ‘onramp’ for exponential entrepreneurs—those who want to get involved and play at a higher level. Click here to learn more.
(Both A360 and Abundance-Digital are part of Singularity University—your participation opens you to a global community.)
This article originally appeared on diamandis.com. Read the original article here.
Image Credit: Anand Kumar from Pixabay Continue reading