Tag Archives: need

#437805 Video Friday: Quadruped Robot HyQ ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Four-legged HyQ balancing on two legs. Nice results from the team at IIT’s Dynamic Legged Systems Lab. And we can’t wait to see the “ninja walk,” currently shown in simulation, implemented with the real robot!

The development of balance controllers for legged robots with point feet remains a challenge when they have to traverse extremely constrained environments. We present a balance controller that has the potential to achieve line walking for quadruped robots. Our initial experiments show the 90-kg robot HyQ balancing on two feet and recovering from external pushes, as well as some changes in posture achieved without losing balance.

[ IIT ]

Thanks Victor!

Ava Robotics’ telepresence robot has been beheaded by MIT, and it now sports a coronavirus-destroying UV array.

UV-C light has proven to be effective at killing viruses and bacteria on surfaces and aerosols, but it’s unsafe for humans to be exposed. Fortunately, Ava’s telepresence robot doesn’t require any human supervision. Instead of the telepresence top, the team subbed in a UV-C array for disinfecting surfaces. Specifically, the array uses short-wavelength ultraviolet light to kill microorganisms and disrupt their DNA in a process called ultraviolet germicidal irradiation. The complete robot system is capable of mapping the space — in this case, GBFB’s warehouse — and navigating between waypoints and other specified areas. In testing the system, the team used a UV-C dosimeter, which confirmed that the robot was delivering the expected dosage of UV-C light predicted by the model.

[ MIT ]

While it’s hard enough to get quadrupedal robots to walk in complex environments, this work from the Robotic Systems Lab at ETH Zurich shows some impressive whole body planning that allows ANYmal to squeeze its body through small or weirdly shaped spaces.

[ RSL ]

Engineering researchers at North Carolina State University and Temple University have developed soft robots inspired by jellyfish that can outswim their real-life counterparts. More practically, the new jellyfish-bots highlight a technique that uses pre-stressed polymers to make soft robots more powerful.

The researchers also used the technique to make a fast-moving robot that resembles a larval insect curling its body, then jumping forward as it quickly releases its stored energy. Lastly, the researchers created a three-pronged gripping robot – with a twist. Most grippers hang open when “relaxed,” and require energy to hold on to their cargo as it is lifted and moved from point A to point B. But this claw’s default position is clenched shut. Energy is required to open the grippers, but once they’re in position, the grippers return to their “resting” mode – holding their cargo tight.

[ NC State ]

As control skills increase, we are more and more impressed by what a Cassie bipedal robot can do. Those who have been following our channel, know that we always show the limitations of our work. So while there is still much to do, you gotta like the direction things are going. Later this year, you will see this controller integrated with our real-time planner and perception system. Autonomy with agility! Watch out for us!

[ University of Michigan ]

GITAI’s S1 arm is a little less exciting than their humanoid torso, but it looks like this one might actually be going to the ISS next year.

Here’s how the humanoid would handle a similar task:

[ GITAI ]

Thanks Fan!

If you need a robot that can lift 250 kg at 10 m/s across a workspace of a thousand cubic meters, here’s your answer.

[ Fraunhofer ]

Penn engineers with funding from the National Science Foundation, have nanocardboard plates able to levitate when bright light is shone on them. This fleet of tiny aircraft could someday explore the skies of other worlds, including Mars. The thinner atmosphere there would give the flyers a boost, enabling them to carry payloads ten times as massive as they are, making them an efficient, light-weight alternative to the Mars helicopter.

[ UPenn ]

Erin Sparks, assistant professor in Plant and Soil Sciences, dreamed of a robot she could use in her research. A perfect partnership was formed when Adam Stager, then a mechanical engineering Ph.D. student, reached out about a robot he had a gut feeling might be useful in agriculture. The pair moved forward with their research with corn at the UD Farm, using the robot to capture dynamic phenotyping information of brace roots over time.

[ Sparks Lab ]

This is a video about robot spy turtles but OMG that bird drone landing gear.

[ PBS ]

If you have a DJI Mavic, you now have something new to worry about.

[ DroGone ]

I was able to spot just one single person in the warehouse footage in this video.

[ Berkshire Grey ]

Flyability has partnered with the ROBINS Project to help fill gaps in the technology used in ship inspections. Watch this video to learn more about the ROBINS project and how Flyability’s drones for confined spaces are helping make inspections on ships safer, cheaper, and more efficient.

[ Flyability ]

In this video, a mission of the Alpha Aerial Scout of Team CERBERUS during the DARPA Subterranean Challenge Urban Circuit event is presented. The Alpha Robot operates inside the Satsop Abandoned Power Plant and performs autonomous exploration. This deployment took place during the 3rd field trial of team CERBERUS during the Urban Circuit event of the DARPA Subterranean Challenge.

[ ARL ]

More excellent talks from the remote Legged Robots ICRA workshop- we’ve posted three here, but there are several other good talks this week as well.

[ ICRA 2020 Legged Robots Workshop ] Continue reading

Posted in Human Robots

#437800 Malleable Structure Makes Robot Arm More ...

The majority of robot arms are built out of some combination of long straight tubes and actuated joints. This isn’t surprising, since our limbs are built the same way, which was a clever and efficient bit of design. By adding more tubes and joints (or degrees of freedom), you can increase the versatility of your robot arm, but the tradeoff is that complexity, weight, and cost will increase, too.

At ICRA, researchers from Imperial College London’s REDS Lab, headed by Nicolas Rojas, introduced a design for a robot that’s built around a malleable structure rather than a rigid one, allowing you to improve how versatile the arm is without having to add extra degrees of freedom. The idea is that you’re no longer constrained to static tubes and joints but can instead reconfigure your robot to set it up exactly the way you want and easily change it whenever you feel like.

Inside of that bendable section of arm are layers and layers of mylar sheets, cut into flaps and stacked on top of one another so that each flap is overlapping or overlapped by at least 11 other flaps. The mylar is slippery enough that under most circumstances, the flaps can move smoothly against each other, letting you adjust the shape of the arm. The flaps are sealed up between latex membranes, and when air is pumped out from between the membranes, they press down on each other and turn the whole structure rigid, locking itself in whatever shape you’ve put it in.

Image: Imperial College London

The malleable part of the robot consists of layers of mylar sheets, cut into flaps that can move smoothly against each other, letting you adjust the shape of the arm. The flaps are sealed up between latex membranes, and when air is pumped out from between the membranes, they press down on each other and turn the whole structure rigid, locking itself in whatever shape you’ve put it in.

The nice thing about this system is that it’s a sort of combination of a soft robot and a rigid robot—you get the flexibility (both physical and metaphorical) of a soft system, without necessarily having to deal with all of the control problems. It’s more mechanically complex than either (as hybrid systems tend to be), but you save on cost, size, and weight, and reduce the number of actuators you need, which tend to be points of failure. You do need to deal with creating and maintaining a vacuum, and the fact that the malleable arm is not totally rigid, but depending on your application, those tradeoffs could easily be worth it.

For more details, we spoke with first author Angus B. Clark via email.

IEEE Spectrum: Where did this idea come from?

Angus Clark: The idea of malleable robots came from the realization that the majority of serial robot arms have 6 or more degrees of freedom (DoF)—usually rotary joints—yet are typically performing tasks that only require 2 or 3 DoF. The idea of a robot arm that achieves flexibility and adaptation to tasks but maintains the simplicity of a low DoF system, along with the rapid development of variable stiffness continuum robots for medical applications, inspired us to develop the malleable robot concept.

What are some ways in which a malleable robot arm could provide unique advantages, and what are some potential applications that could leverage these advantages?

Malleable robots have the ability to complete multiple traditional tasks, such as pick and place or bin picking operations, without the added bulk of extra joints that are not directly used within each task, as the flexibility of the robot arm is provided by ​a malleable link instead. This results in an overall smaller form factor, including weight and footprint of the robot, as well as a lower power requirement and cost of the robot as fewer joints are needed, without sacrificing adaptability. This makes the robot ideal for scenarios where any of these factors are critical, such as in space robotics—where every kilogram saved is vital—or in rehabilitation robotics, where cost reduction may facilitate adoption, to name two examples. Moreover, the collaborative soft-robot-esque nature of malleable robots also tends towards collaborative robots in factories working safely alongside and with humans.

“The idea of malleable robots came from the realization that the majority of serial robot arms have 6 or more degrees of freedom (DoF), yet are typically performing tasks that only require 2 or 3 DoF”
—Angus B. Clark, Imperial College London

Compared to a conventional rigid link between joints, what are the disadvantages of using a malleable link?

Currently the maximum stiffness of a malleable link is considerably weaker than that of an equivalent solid steel rigid link, and this is one of the key areas we are focusing research on improving as motion precision and accuracy are impacted. We have created the largest existing variable stiffness link at roughly 800 mm length and 50 mm diameter, which suits malleable robots towards small and medium size workspaces. Our current results evaluating this accuracy are good, however achieving a uniform stiffness across the entire malleable link can be problematic due to the production of wrinkles under bending in the encapsulating membrane. As demonstrated by our SCARA topology results, this can produce slight structural variations resulting in reduced accuracy.

Does the robot have any way of knowing its own shape? Potentially, could this system reconfigure itself somehow?

Currently we compute the robot topology using motion tracking, with markers placed on the joints of the robot. Using distance geometry, we are then able to obtain the forward and inverse kinematics of the robot, of which we can use to control the end effector (the gripper) of the robot. Ideally, in the future we would love to develop a system that no longer requires the use of motion tracking cameras.

As for the robot reconfiguring itself, which we call an “intrinsic malleable link,” there are many methods that have been demonstrated for controlling a continuum structure, such as using positive pressure or via tendon wires, however the ability to in real-time determine the curvature of the link, not just the joint positions, is a significant hurdle to solve. However, we hope to see future development on malleable robots work towards solving this problem.

What are you working on next?

For us, refining the kinematics of the robot to enable a robust and complete system for allowing a user to collaboratively reshape the robot, while still achieving the accuracy expected from robotic systems, is our current main goal. Malleable robots are a brand new field we have introduced, and as such provide many opportunities for development and optimization. Over the coming years, we hope to see other researchers work alongside us to solve these problems.

“Design and Workspace Characterization of Malleable Robots,” by Angus B. Clark and Nicolas Rojas from Imperial College London, was presented at ICRA 2020.

< Back to IEEE Journal Watch Continue reading

Posted in Human Robots

#437796 AI Seeks ET: Machine Learning Powers ...

Can artificial intelligence help the search for life elsewhere in the solar system? NASA thinks the answer may be “yes”—and not just on Mars either.

A pilot AI system is now being tested for use on the ExoMars mission that is currently slated to launch in the summer or fall of 2022. The machine-learning algorithms being developed will help science teams decide how to test Martian soil samples to return only the most meaningful data.

For ExoMars, the AI system will only be used back on earth to analyze data gather by the ExoMars rover. But if the system proves to be as useful to the rovers as now suspected, a NASA mission to Saturn’s moon Titan (now scheduled for 2026 launch) could automate the scientific sleuthing process in the field. This mission will rely on the Dragonfly octocopter drone to fly from surface location to surface location through Titan’s dense atmosphere and drill for signs of life there.

The hunt for microbial life in another world’s soil, either as fossilized remnants or as present-day samples, is very challenging, says Eric Lyness, software lead of the NASA Goddard Planetary Environments Lab in Greenbelt, Md. There is of course no precedent to draw upon, because no one has yet succeeded in astrobiology’s holy grail quest.

But that doesn’t mean AI can’t provide substantial assistance. Lyness explained that for the past few years he’d been puzzling over how to automate portions of an exploratory mission’s geochemical investigation, wherever in the solar system the scientific craft may be.

Last year he decided to try machine learning. “So we got some interns,” he said. “People right out of college or in college, who have been studying machine learning. … And they did some amazing stuff. It turned into much more than we expected.” Lyness and his collaborators presented their scientific analysis algorithm at a geochemistry conference last month.

Illustration: ESA

The ExoMars rover, named Rosalind Franklin, will be the first that can drill down to 2-meter depths, where living soil bacteria could possibly be found.

ExoMars’s rover—named Rosalind Franklin, after one of the co-discoverers of DNA—will be the first that can drill down to 2-meter depths, beyond where solar UV light might penetrate and kill any life forms. In other words, ExoMars will be the first Martian craft with the ability to reach soil depths where living soil bacteria could possibly be found.

“We could potentially find forms of life, microbes or other things like that,” Lyness said. However, he quickly added, very little conclusive evidence today exists to suggest that there’s present-day (microbial) life on Mars. (NASA’s Curiosity rover has sent back some inexplicable observations of both methane and molecular oxygen in the Martian atmosphere that could conceivably be a sign of microbial life forms, though non-biological processes could explain these anomalies too.)

Less controversially, the Rosalind Franklin rover’s drill could also turn up fossilized evidence of life in the Martian soil from earlier epochs when Mars was more hospitable.

NASA’s contribution to the joint Russian/European Space Agency ExoMars project is an instrument called a mass spectrometer that will be used to analyze soil samples from the drill cores. Here, Lyness said, is where AI could really provide a helping hand.

Because the Dragonfly drone and possibly a future mission to Jupiter’s moon Europa would be operating in hostile environments with less opportunity for data transmission to Earth, automating a craft’s astrobiological exploration would be practically a requirement

The spectrometer, which studies the mass distribution of ions in a sample of material, works by blasting the drilled soil sample with a laser and then mapping out the atomic masses of the various molecules and portions of molecules that the laser has liberated. The problem is any given mass spectrum could originate from any number of source compounds, minerals and components. Which always makes analyzing a mass spectrum a gigantic puzzle.

Lyness said his group is studying the mineral montmorillonite, a commonplace component of the Martian soil, to see the many ways it might reveal itself in a mass spectrum. Then his team sneaks in an organic compound with the montmorillonite sample to see how that changes the mass spectrometer output.

“It could take a long time to really break down a spectrum and understand why you’re seeing peaks at certain [masses] in the spectrum,” he said. “So anything you can do to point scientists into a direction that says, ‘Don’t worry, I know it’s not this kind of thing or that kind of thing,’ they can more quickly identify what’s in there.”

Lyness said the ExoMars mission will provide a fertile training ground for his team’s as-yet-unnamed AI algorithm. (He said he’s open to suggestions—though, please, no spoof Boaty McBoatface submissions need apply.)

Because the Dragonfly drone and possibly a future astrobiology mission to Jupiter’s moon Europa would be operating in much more hostile environments with much less opportunity for data transmission back and forth to Earth, automating a craft’s astrobiological exploration would be practically a requirement.

All of which points to a future in mid-2030s in which a nuclear-powered octocopter on a moon of Saturn flies from location to location to drill for evidence of life on this tantalizingly bio-possible world. And machine learning will help power the science.

“We should be researching how to make the science instruments smarter,” Lyness said. “If you can make it smarter at the source, especially for planetary exploration, it has huge payoffs.” Continue reading

Posted in Human Robots

#437791 Is the Pandemic Spurring a Robot ...

“Are robots really destined to take over restaurant kitchens?” This was the headline of an article published by Eater four years ago. One of the experts interviewed was Siddhartha Srinivasa, at the time professor of the Robotics Institute at Carnegie Mellon University and currently director of Robotics and AI for Amazon. He said, “I’d love to make robots unsexy. It’s weird to say this, but when something becomes unsexy, it means that it works so well that you don’t have to think about it. You don’t stare at your dishwasher as it washes your dishes in fascination, because you know it’s gonna work every time… I want to get robots to that stage of reliability.”

Have we managed to get there over the last four years? Are robots unsexy yet? And how has the pandemic changed the trajectory of automation across industries?

The Covid Effect
The pandemic has had a massive economic impact all over the world, and one of the problems faced by many companies has been keeping their businesses running without putting employees at risk of infection. Many organizations are seeking to remain operational in the short term by automating tasks that would otherwise be carried out by humans. According to Digital Trends, since the start of the pandemic we have seen a significant increase in automation efforts in manufacturing, meat packing, grocery stores and more. In a June survey, 44 percent of corporate financial officers said they were considering more automation in response to coronavirus.

MIT economist David Autor described the economic crisis and the Covid-19 pandemic as “an event that forces automation.” But he added that Covid-19 created a kind of disruption that has forced automation in sectors and activities with a shortage of workers, while at the same time there has been no reduction in demand. This hasn’t taken place in hospitality, where demand has practically disappeared, but it is still present in agriculture and distribution. The latter is being altered by the rapid growth of e-commerce, with more efficient and automated warehouses that can provide better service.

China Leads the Way
China is currently in a unique position to lead the world’s automation economy. Although the country boasts a huge workforce, labor costs have multiplied by 10 over the past 20 years. As the world’s factory, China has a strong incentive to automate its manufacturing sector, which enjoys a solid leadership in high quality products. China is currently the largest and fastest-growing market in the world for industrial robotics, with a 21 percent increase up to $5.4 billion in 2019. This represents one third of global sales. As a result, Chinese companies are developing a significant advantage in terms of learning to work with metallic colleagues.

The reasons behind this Asian dominance are evident: the population has a greater capacity and need for tech adoption. A large percentage of the population will soon be of retirement age, without an equivalent younger demographic to replace it, leading to a pressing need to adopt automation in the short term.

China is well ahead of other countries in restaurant automation. As reported in Bloomberg, in early 2020 UBS Group AG conducted a survey of over 13,000 consumers in different countries and found that 64 percent of Chinese participants had ordered meals through their phones at least once a week, compared to a mere 17 percent in the US. As digital ordering gains ground, robot waiters and chefs are likely not far behind. The West harbors a mistrust towards non-humans that the East does not.

The Robot Evolution
The pandemic was a perfect excuse for robots to replace us. But despite the hype around this idea, robots have mostly disappointed during the pandemic.

Just over 66 different kinds of “social” robots have been piloted in hospitals, health centers, airports, office buildings, and other public and private spaces in response to the pandemic, according to a study from researchers at Pompeu Fabra University (Barcelona, Spain). Their survey looked at 195 robot deployments across 35 countries including China, the US, Thailand, and Hong Kong.

But if the “robot revolution” is a movement in which automation, robotics, and artificial intelligence proliferate through the value chain of various industries, bringing a paradigm shift in how we produce, consume, and distribute products—it hasn’t happened yet.

But there’s a more nuanced answer: rather than a revolution, we’re seeing an incremental robot evolution. It’s a trend that will likely accelerate over the next five years, particularly when 5G takes center stage and robotics as a field leaves behind imitation and evolves independently.

Automation Anxiety
Why don’t we finally welcome the long-promised robotic takeover? Despite progress in AI and increased adoption of industrial robots, consumer-facing robotic products are not nearly as ubiquitous as popular culture predicted decades ago. As Amara’s Law says: “We tend to overestimate the effect of a technology in the short run and underestimate the effect in the long run.” It seems we are living through the Gartner hype cycle.

People have a complicated relationship with robots, torn between admiring them, fearing them, rejecting them, and even boycotting them, as has happened in the automobile industry.

Retail robot in a Walmart store. Credit: Bossa Nova Robotics
Walmart terminated its contract with Bossa Nova and withdrew its 1,000 inventory robots from its stores because the company was concerned about how shoppers were reacting to seeing the six-foot robots in the aisles.

With road blocks like this, will the World Economic Forum’s prediction of almost half of tasks being carried out by machines by 2025 come to pass?

At the rate we’re going, it seems unlikely, even with the boost in automation caused by the pandemic. Robotics will continue to advance its capabilities, and will take over more human jobs as it does so, but it’s unlikely we’ll hit a dramatic inflection point that could be described as a “revolution.” Instead, the robot evolution will happen the way most societal change does: incrementally, with time for people to adapt both practically and psychologically.

For now though, robots are still pretty sexy.

Image Credit: charles taylor / Shutterstock.com Continue reading

Posted in Human Robots

#437789 Video Friday: Robotic Glove Features ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RSS 2020 – July 12-16, 2020 – [Virtual Conference]
CLAWAR 2020 – August 24-26, 2020 – [Virtual Conference]
ICUAS 2020 – September 1-4, 2020 – Athens, Greece
ICRES 2020 – September 28-29, 2020 – Taipei, Taiwan
IROS 2020 – October 25-29, 2020 – Las Vegas, Nevada
ICSR 2020 – November 14-16, 2020 – Golden, Colorado
Let us know if you have suggestions for next week, and enjoy today’s videos.

Evidently, the folks at Unitree were paying attention to last week’s Video Friday.

[ Unitree ]

RoboSoft 2020 was a virtual conference this year (along with everything else), but they still held a soft robots contest, and here are four short vids—you can watch the rest of them here.

[ RoboSoft 2020 ]

If you were wondering why SoftBank bought Aldebaran Robotics and Boston Dynamics, here’s the answer.

I am now a Hawks fan. GO HAWKS!

[ Softbank Hawks ] via [ RobotStart ]

Scientists at the University of Liverpool have developed a fully autonomous mobile robot to assist them in their research. Using a type of AI, the robot has been designed to work uninterrupted for weeks at a time, allowing it to analyse data and make decisions on what to do next. Using a flexible arm with customised gripper it can be calibrated to interact with most standard lab equipment and machinery as well as navigate safely around human co-workers and obstacles.

[ Nature ]

Oregon State’s Cassie has been on break for a couple of months, but it’s back in the lab and moving alarmingly quickly.

[ DRL ]

The current situation linked to COVID-19 sadly led to the postponing of this year RoboCup 2020 at Bordeaux. As an official sponsor of The RoboCup, SoftBank Robotics wanted to take this opportunity to thank all RoboCupers and The RoboCup Federation for their support these past 13 years. We invite you to take a look at NAO’s adventure at The RoboCup as the official robot of the Standard Platform League. See you in Bordeaux 2021!

[ RoboCup 2021 ]

Miniature SAW robot crawling inside the intestines of a pig. You’re welcome.

[ Zarrouk Lab ]

The video demonstrates fast autonomous flight experiments in cluttered unknown environments, with the support of a robust and perception-aware replanning framework called RAPTOR. The associated paper is submitted to TRO.

[ HKUST ]

Since we haven’t gotten autonomy quite right yet, there’s a lot of telepresence going on for robots that operate in public spaces. Usually, you’ve got one remote human managing multiple robots, so it would be nice to make that interface a little more friendly, right?

[ HCI Lab ]

Arguable whether or not this is a robot, but it’s cool enough to spend a minute watching.

[ Ishikawa Lab ]

Communication is critical to collaboration; however, too much of it can degrade performance. Motivated by the need for effective use of a robot’s communication modalities, in this work, we present a computational framework that decides if, when, and what to communicate during human-robot collaboration.

[ Interactive Robotics ]

Robotiq has released the next generation of the grippers for collaborative robots: the 2F-85 and 2F-140. Both models gain greater robustness, safety, and customizability while retaining the same key benefits that have inspired thousands of manufacturers to choose them since their launch 6 years ago.

[ Robotiq ]

ANYmal C, the autonomous legged robot designed for industrial challenging environments, provides the mobility, autonomy and inspection intelligence to enable safe and efficient inspection operations. In this virtual showcase, discover how ANYmal climbs stairs, recovers from a fall, performs an autonomous mission and avoids obstacles, docks to charge by itself, digitizes analogue sensors and monitors the environment.

[ ANYbotics ]

At Waymo, we are committed to addressing inequality, and we believe listening is a critical first step toward driving positive change. Earlier this year, five Waymonauts sat down to share their thoughts on equity at work, challenging the status quo, and more. This is what they had to say.

[ Waymo ]

Nice of ABB to take in old robots and upgrade them to turn them into new robots again. Robots forever!

[ ABB ]

It’s nice seeing the progress being made by GITAI, one of the teams competing in the ANA Avatar XPRIZE Challenge, and also meet the humans behind the robots.

[ GITAI ] via [ XPRIZE ]

One more talk from the ICRA Legged Robotics Workshop: Jingyu Liu from DeepRobotics and Qiuguo Zhu from Zhejiang University.

[ Deep Robotics ] Continue reading

Posted in Human Robots