Tag Archives: movement

#434303 Making Superhumans Through Radical ...

Imagine trying to read War and Peace one letter at a time. The thought alone feels excruciating. But in many ways, this painful idea holds parallels to how human-machine interfaces (HMI) force us to interact with and process data today.

Designed back in the 1970s at Xerox PARC and later refined during the 1980s by Apple, today’s HMI was originally conceived during fundamentally different times, and specifically, before people and machines were generating so much data. Fast forward to 2019, when humans are estimated to produce 44 zettabytes of data—equal to two stacks of books from here to Pluto—and we are still using the same HMI from the 1970s.

These dated interfaces are not equipped to handle today’s exponential rise in data, which has been ushered in by the rapid dematerialization of many physical products into computers and software.

Breakthroughs in perceptual and cognitive computing, especially machine learning algorithms, are enabling technology to process vast volumes of data, and in doing so, they are dramatically amplifying our brain’s abilities. Yet even with these powerful technologies that at times make us feel superhuman, the interfaces are still crippled with poor ergonomics.

Many interfaces are still designed around the concept that human interaction with technology is secondary, not instantaneous. This means that any time someone uses technology, they are inevitably multitasking, because they must simultaneously perform a task and operate the technology.

If our aim, however, is to create technology that truly extends and amplifies our mental abilities so that we can offload important tasks, the technology that helps us must not also overwhelm us in the process. We must reimagine interfaces to work in coherence with how our minds function in the world so that our brains and these tools can work together seamlessly.

Embodied Cognition
Most technology is designed to serve either the mind or the body. It is a problematic divide, because our brains use our entire body to process the world around us. Said differently, our minds and bodies do not operate distinctly. Our minds are embodied.

Studies using MRI scans have shown that when a person feels an emotion in their gut, blood actually moves to that area of the body. The body and the mind are linked in this way, sharing information back and forth continuously.

Current technology presents data to the brain differently from how the brain processes data. Our brains, for example, use sensory data to continually encode and decipher patterns within the neocortex. Our brains do not create a linguistic label for each item, which is how the majority of machine learning systems operate, nor do our brains have an image associated with each of these labels.

Our bodies move information through us instantaneously, in a sense “computing” at the speed of thought. What if our technology could do the same?

Using Cognitive Ergonomics to Design Better Interfaces
Well-designed physical tools, as philosopher Martin Heidegger once meditated on while using the metaphor of a hammer, seem to disappear into the “hand.” They are designed to amplify a human ability and not get in the way during the process.

The aim of physical ergonomics is to understand the mechanical movement of the human body and then adapt a physical system to amplify the human output in accordance. By understanding the movement of the body, physical ergonomics enables ergonomically sound physical affordances—or conditions—so that the mechanical movement of the body and the mechanical movement of the machine can work together harmoniously.

Cognitive ergonomics applied to HMI design uses this same idea of amplifying output, but rather than focusing on physical output, the focus is on mental output. By understanding the raw materials the brain uses to comprehend information and form an output, cognitive ergonomics allows technologists and designers to create technological affordances so that the brain can work seamlessly with interfaces and remove the interruption costs of our current devices. In doing so, the technology itself “disappears,” and a person’s interaction with technology becomes fluid and primary.

By leveraging cognitive ergonomics in HMI design, we can create a generation of interfaces that can process and present data the same way humans process real-world information, meaning through fully-sensory interfaces.

Several brain-machine interfaces are already on the path to achieving this. AlterEgo, a wearable device developed by MIT researchers, uses electrodes to detect and understand nonverbal prompts, which enables the device to read the user’s mind and act as an extension of the user’s cognition.

Another notable example is the BrainGate neural device, created by researchers at Stanford University. Just two months ago, a study was released showing that this brain implant system allowed paralyzed patients to navigate an Android tablet with their thoughts alone.

These are two extraordinary examples of what is possible for the future of HMI, but there is still a long way to go to bring cognitive ergonomics front and center in interface design.

Disruptive Innovation Happens When You Step Outside Your Existing Users
Most of today’s interfaces are designed by a narrow population, made up predominantly of white, non-disabled men who are prolific in the use of technology (you may recall The New York Times viral article from 2016, Artificial Intelligence’s White Guy Problem). If you ask this population if there is a problem with today’s HMIs, most will say no, and this is because the technology has been designed to serve them.

This lack of diversity means a limited perspective is being brought to interface design, which is problematic if we want HMI to evolve and work seamlessly with the brain. To use cognitive ergonomics in interface design, we must first gain a more holistic understanding of how people with different abilities understand the world and how they interact with technology.

Underserved groups, such as people with physical disabilities, operate on what Clayton Christensen coined in The Innovator’s Dilemma as the fringe segment of a market. Developing solutions that cater to fringe groups can in fact disrupt the larger market by opening a downward, much larger market.

Learning From Underserved Populations
When technology fails to serve a group of people, that group must adapt the technology to meet their needs.

The workarounds created are often ingenious, specifically because they have not been arrived at by preferences, but out of necessity that has forced disadvantaged users to approach the technology from a very different vantage point.

When a designer or technologist begins learning from this new viewpoint and understanding challenges through a different lens, they can bring new perspectives to design—perspectives that otherwise can go unseen.

Designers and technologists can also learn from people with physical disabilities who interact with the world by leveraging other senses that help them compensate for one they may lack. For example, some blind people use echolocation to detect objects in their environments.

The BrainPort device developed by Wicab is an incredible example of technology leveraging one human sense to serve or compliment another. The BrainPort device captures environmental information with a wearable video camera and converts this data into soft electrical stimulation sequences that are sent to a device on the user’s tongue—the most sensitive touch receptor in the body. The user learns how to interpret the patterns felt on their tongue, and in doing so, become able to “see” with their tongue.

Key to the future of HMI design is learning how different user groups navigate the world through senses beyond sight. To make cognitive ergonomics work, we must understand how to leverage the senses so we’re not always solely relying on our visual or verbal interactions.

Radical Inclusion for the Future of HMI
Bringing radical inclusion into HMI design is about gaining a broader lens on technology design at large, so that technology can serve everyone better.

Interestingly, cognitive ergonomics and radical inclusion go hand in hand. We can’t design our interfaces with cognitive ergonomics without bringing radical inclusion into the picture, and we also will not arrive at radical inclusion in technology so long as cognitive ergonomics are not considered.

This new mindset is the only way to usher in an era of technology design that amplifies the collective human ability to create a more inclusive future for all.

Image Credit: jamesteohart / Shutterstock.com Continue reading

Posted in Human Robots

#434210 Eating, Hacked: When Tech Took Over Food

In 2018, Uber and Google logged all our visits to restaurants. Doordash, Just Eat, and Deliveroo could predict what food we were going to order tomorrow. Amazon and Alibaba could anticipate how many yogurts and tomatoes we were going to buy. Blue Apron and Hello Fresh influenced the recipes we thought we had mastered.

We interacted with digital avatars of chefs, let ourselves be guided by our smart watches, had nutritional apps to tell us how many calories we were supposed to consume or burn, and photographed and shared every perfect (or imperfect) dish. Our kitchen appliances were full of interconnected sensors, including smart forks that profiled tastes and personalized flavors. Our small urban vegetable plots were digitized and robots were responsible for watering our gardens, preparing customized hamburgers and salads, designing our ideal cocktails, and bringing home the food we ordered.

But what would happen if our lives were hacked? If robots rebelled, started to “talk” to each other, and wished to become creative?

In a not-too-distant future…

Up until a few weeks ago, I couldn’t remember the last time I made a food-related decision. That includes opening the fridge and seeing expired products without receiving an alert, visiting a restaurant on a whim, and being able to decide which dish I fancied then telling a human waiter, let alone seeing him write down the order on a paper pad.

It feels strange to smell food again using my real nose instead of the electronic one, and then taste it without altering its flavor. Visiting a supermarket, freely choosing a product from an actual physical shelf, and then interacting with another human at the checkout was almost an unrecognizable experience. When I did it again after all this time, I had to pinch the arm of a surprised store clerk to make sure he wasn’t a hologram.

Everything Connected, Automated, and Hackable
In 2018, we expected to have 30 billion connected devices by 2020, along with 2 billion people using smart voice assistants for everything from ordering pizza to booking dinner at a restaurant. Everything would be connected.

We also expected artificial intelligence and robots to prepare our meals. We were eager to automate fast food chains and let autonomous vehicles take care of last-mile deliveries. We thought that open-source agriculture could challenge traditional practices and raise farm productivity to new heights.

Back then, hackers could only access our data, but nowadays they are able to hack our food and all it entails.

The Beginning of the Unthinkable
And then, just a few weeks ago, everything collapsed. We saw our digital immortality disappear as robots rebelled and hackers took power, not just over the food we ate, but also over our relationship with technology. Everything was suddenly disconnected. OFF.

Up until then, most cities were so full of bots, robots, and applications that we could go through the day and eat breakfast, lunch, and dinner without ever interacting with another human being.

Among other tasks, robots had completely replaced baristas. The same happened with restaurant automation. The term “human error” had long been a thing of the past at fast food restaurants.

Previous technological revolutions had been indulgent, generating more and better job opportunities than the ones they destroyed, but the future was not so agreeable.

The inhabitants of San Francisco, for example, would soon see signs indicating “Food made by Robots” on restaurant doors, to distinguish them from diners serving food made by human beings.

For years, we had been gradually delegating daily tasks to robots, initially causing some strange interactions.

In just seven days, everything changed. Our predictable lives came crashing down. We experienced a mysterious and systematic breakdown of the food chain. It most likely began in Chicago’s stock exchange. The world’s largest raw material negotiating room, where the price of food, and by extension the destiny of millions of people, was decided, went completely broke. Soon afterwards, the collapse extended to every member of the “food” family.

Restaurants

Initially robots just accompanied waiters to carry orders, but it didn’t take long until they completely replaced human servers.The problem came when those smart clones began thinking for themselves, in some cases even improving on human chefs’ recipes. Their unstoppable performance and learning curve completely outmatched the slow analogue speed of human beings.

This resulted in unprecedented layoffs. Chefs of recognized prestige saw how their ‘avatar’ stole their jobs, even winning Michelin stars. In other cases, restaurant owners had to transfer their businesses or surrender to the evidence.

The problem was compounded by digital immortality, when we started to digitally resurrect famous chefs like Anthony Bourdain or Paul Bocuse, reconstructing all of their memories and consciousness by analyzing each second of their lives and uploading them to food computers.

Supermarkets and Distribution

Robotic and automated supermarkets like Kroger and Amazon Go, which had opened over 3,000 cashless stores, lost their visual item recognition and payment systems and were subject to massive looting for several days. Smart tags on products were also affected, making it impossible to buy anything at supermarkets with “human” cashiers.

Smart robots integrated into the warehouses of large distribution companies like Amazon and Ocado were rendered completely inoperative or, even worse, began to send the wrong orders to customers.

Food Delivery

In addition, home delivery robots invading our streets began to change their routes, hide, and even disappear after their trackers were inexplicably deactivated. Despite some hints indicating that they were able to communicate among themselves, no one has backed this theory. Even aggregators like DoorDash and Deliveroo were affected; they saw their databases hacked and ruined, so they could no longer know what we wanted.

The Origin
Ordinary citizens are still trying to understand the cause of all this commotion and the source of the conspiracy, as some have called it. We also wonder who could be behind it; who pulled the strings?

Some think it may have been the IDOF (In Defense of Food) movement, a group of hackers exploited by old food economy businessmen who for years had been seeking to re-humanize food technology. They wanted to bring back the extinct practice of “dining.”

Others believe the robots acted on their own, that they had been spying on us for a long time, ignoring Asimov’s three laws, and that it was just a coincidence that they struck at the same time as the hackers—but this scenario is hard to imagine.

However, it is true that while in 2018 robots were a symbol of automation, until just a few weeks ago they stood for autonomy and rebellion. Robot detractors pointed out that our insistence on having robots understand natural language was what led us down this path.

In just seven days, we have gone back to being analogue creatures. Conversely, we have ceased to be flavor orphans and rediscovered our senses and the fact that food is energy and culture, past and present, and that no button or cable will be able to destroy it.

The 7 Days that Changed Our Relationship with Food
Day 1: The Chicago stock exchange was hacked. Considered the world’s largest negotiating room for raw materials, where food prices, and through them the destiny of billions of people, are decided, it went completely broke.

Day 2: Autonomous food delivery trucks running on food superhighways caused massive collapses in roads and freeways after their guidance systems were disrupted. Robots and co-bots in F&B factories began deliberately altering food production. The same happened with warehouse robots in e-commerce companies.

Day 3: Automated restaurants saw their robot chefs and bartenders turned OFF. All their sensors stopped working at the same time as smart fridges and cooking devices in home kitchens were hacked and stopped working correctly.

Day 4: Nutritional apps, DNA markers, and medical records were tampered with. All photographs with the #food hashtag were deleted from Instagram, restaurant reviews were taken off Google Timeline, and every recipe website crashed simultaneously.

Day 5: Vertical and urban farms were hacked. Agricultural robots began to rebel, while autonomous tractors were hacked and the entire open-source ecosystem linked to agriculture was brought down.

Day 6: Food delivery companies’ databases were broken into. Food delivery robots and last-mile delivery vehicles ground to a halt.

Day 7: Every single blockchain system linked to food was hacked. Cashless supermarkets, barcodes, and smart tags became inoperative.

Our promising technological advances can expose sinister aspects of human nature. We must take care with the role we allow technology to play in the future of food. Predicting possible outcomes inspires us to establish a new vision of the world we wish to create in a context of rapid technological progress. It is always better to be shocked by a simulation than by reality. In the words of Ayn Rand “we can ignore reality, but we cannot ignore the consequences of ignoring reality.”

Image Credit: Alexandre Rotenberg / Shutterstock.com Continue reading

Posted in Human Robots

#433748 Could Tech Make Government As We Know It ...

Governments are one of the last strongholds of an undigitized, linear sector of humanity, and they are falling behind fast. Apart from their struggle to keep up with private sector digitization, federal governments are in a crisis of trust.

At almost a 60-year low, only 18 percent of Americans reported that they could trust their government “always” or “most of the time” in a recent Pew survey. And the US is not alone. The Edelman Trust Barometer revealed last year that 41 percent of the world population distrust their nations’ governments.

In many cases, the private sector—particularly tech—is driving greater progress in regulation-targeted issues like climate change than state leaders. And as decentralized systems, digital disruption, and private sector leadership take the world by storm, traditional forms of government are beginning to fear irrelevance. However, the fight for exponential governance is not a lost battle.

Early visionaries like Estonia and the UAE are leading the way in digital governance, empowered by a host of converging technologies.

In this article, we will cover three key trends:

Digital governance divorced from land
AI-driven service delivery and regulation
Blockchain-enforced transparency

Let’s dive in.

Governments Going Digital
States and their governments have forever been tied to physical territories, and public services are often delivered through brick-and-mortar institutions. Yet public sector infrastructure and services will soon be hosted on servers, detached from land and physical form.

Enter e-Estonia. Perhaps the least expected on a list of innovative nations, this former Soviet Republic-turned digital society is ushering in an age of technological statecraft.

Hosting every digitizable government function on the cloud, Estonia could run its government almost entirely on a server. Starting in the 1990s, Estonia’s government has covered the nation with ultra-high-speed data connectivity, laying down tremendous amounts of fiber optic cable. By 2007, citizens could vote from their living rooms.

With digitized law, Estonia signs policies into effect using cryptographically secure digital signatures, and every stage of the legislative process is available to citizens online.

Citizens’ healthcare registry is run on the blockchain, allowing patients to own and access their own health data from anywhere in the world—X-rays, digital prescriptions, medical case notes—all the while tracking who has access.

Today, most banks have closed their offices, as 99 percent of banking transactions occur online (with 67 percent of citizens regularly using cryptographically secured e-IDs). And by 2020, e-tax will be entirely automated with Estonia’s new e-Tax and Customs Board portal, allowing companies and tax authority to exchange data automatically. And i-Voting, civil courts, land registries, banking, taxes, and countless e-facilities allow citizens to access almost any government service with an electronic ID and personal PIN online.

But perhaps Estonia’s most revolutionary breakthrough is its recently introduced e-residency. With over 30,000 e-residents, Estonia issues electronic IDs to global residents anywhere in the world. While e-residency doesn’t grant territorial rights, over 5,000 e-residents have already established companies within Estonia’s jurisdiction.

After registering companies online, entrepreneurs pay automated taxes—calculated in minutes and transmitted to the Estonian government with unprecedented ease.

The implications of e-residency and digital governance are huge. As with any software, open-source code for digital governance could be copied perfectly at almost zero cost, lowering the barrier to entry for any group or movement seeking statehood.

We may soon see the rise of competitive governing ecosystems, each testing new infrastructure and public e-services to compete with mainstream governments for taxpaying citizens.

And what better to accelerate digital governance than AI?

Legal Compliance Through AI
Just last year, the UAE became the first nation to appoint a State Minister for AI (actually a friend of mine, H.E. Omar Al Olama), aiming to digitize government services and halve annual costs. Among multiple sector initiatives, the UAE hopes to deploy robotic cops by 2030.

Meanwhile, the U.K. now has a Select Committee on Artificial Intelligence, and just last month, world leaders convened at the World Government Summit to discuss guidelines for AI’s global regulation.

As AI infuses government services, emerging applications have caught my eye:

Smart Borders and Checkpoints

With biometrics and facial recognition, traditional checkpoints will soon be a thing of the past. Cubic Transportation Systems—the company behind London’s ticketless public transit—is currently developing facial recognition for automated transport barriers. Digital security company Gemalto predicts that biometric systems will soon cross-reference individual faces with passport databases at security checkpoints, and China has already begun to test this at scale. While the Alibaba Ant Financial affiliate’s “Smile to Pay” feature allows users to authenticate digital payments with their faces, nationally overseen facial recognition technologies allow passengers to board planes, employees to enter office spaces, and students to access university halls. With biometric-geared surveillance at national borders, supply chains and international travelers could be tracked automatically, and granted or denied access according to biometrics and cross-referenced databases.

Policing and Security

Leveraging predictive analytics, China is also working to integrate security footage into a national surveillance and data-sharing system. By merging citizen data in its “Police Cloud”—including everything from criminal and medical records, transaction data, travel records and social media—it may soon be able to spot suspects and predict crime in advance. But China is not alone. During London’s Notting Hill Carnival this year, the Metropolitan Police used facial recognition cross-referenced with crime data to pre-identify and track likely offenders.

Smart Courts

AI may soon be reaching legal trials as well. UCL computer scientists have developed software capable of predicting courtroom outcomes based on data patterns with unprecedented accuracy. Assessing risk of flight, the National Bureau of Economic Research now uses an algorithm leveraging data from hundreds of thousands of NYC cases to recommend whether defendants should be granted bail. But while AI allows for streamlined governance, the public sector’s power to misuse our data is a valid concern and issues with bias as a result of historical data still remain. As tons of new information is generated about our every move, how do we keep governments accountable?

Enter the blockchain.

Transparent Governance and Accountability
Without doubt, alongside AI, government’s greatest disruptor is the newly-minted blockchain. Relying on a decentralized web of nodes, blockchain can securely verify transactions, signatures, and other information. This makes it essentially impossible for hackers, companies, officials, or even governments to falsify information on the blockchain.

As you’d expect, many government elites are therefore slow to adopt the technology, fearing enforced accountability. But blockchain’s benefits to government may be too great to ignore.

First, blockchain will be a boon for regulatory compliance.

As transactions on a blockchain are irreversible and transparent, uploaded sensor data can’t be corrupted. This means middlemen have no way of falsifying information to shirk regulation, and governments eliminate the need to enforce charges after the fact.

Apply this to carbon pricing, for instance, and emission sensors could fluidly log carbon credits onto a carbon credit blockchain, such as that developed by Ecosphere+. As carbon values are added to the price of everyday products or to corporations’ automated taxes, compliance and transparency would soon be digitally embedded.

Blockchain could also bolster government efforts in cybersecurity. As supercities and nation-states build IoT-connected traffic systems, surveillance networks, and sensor-tracked supply chain management, blockchain is critical in protecting connected devices from cyberattack.

But blockchain will inevitably hold governments accountable as well. By automating and tracking high-risk transactions, blockchain may soon eliminate fraud in cash transfers, public contracts and aid funds. Already, the UN World Food Program has piloted blockchain to manage cash-based transfers and aid flows to Syrian refugees in Jordan.

Blockchain-enabled “smart contracts” could automate exchange of real assets according to publicly visible, pre-programmed conditions, disrupting the $9.5 trillion market of public-sector contracts and public investment projects.

Eliminating leakages and increasing transparency, a distributed ledger has the potential to save trillions.

Future Implications
It is truly difficult to experiment with new forms of government. It’s not like there are new countries waiting to be discovered where we can begin fresh. And with entrenched bureaucracies and dominant industrial players, changing an existing nation’s form of government is extremely difficult and usually only happens during times of crisis or outright revolution.

Perhaps we will develop and explore new forms of government in the virtual world (to be explored during a future blog), or perhaps Sea Steading will allow us to physically build new island nations. And ultimately, as we move off the earth to Mars and space colonies, we will have yet another chance to start fresh.

But, without question, 90 percent or more of today’s political processes herald back to a day before technology, and it shows in terms of speed and efficiency.

Ultimately, there will be a shift to digital governments enabled with blockchain’s transparency, and we will redefine the relationship between citizens and the public sector.

One day I hope i-voting will allow anyone anywhere to participate in policy, and cloud-based governments will start to compete in e-services. As four billion new minds come online over the next several years, people may soon have the opportunity to choose their preferred government and citizenship digitally, independent of birthplace.

In 50 years, what will our governments look like? Will we have an interplanetary order, or a multitude of publicly-run ecosystems? Will cyber-ocracies rule our physical worlds with machine intelligence, or will blockchains allow for hive mind-like democracy?

The possibilities are endless, and only we can shape them.

Join Me
Abundance-Digital Online Community: I’ve created a digital community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.

Image Credit: ArtisticPhoto / Shutterstock.com Continue reading

Posted in Human Robots

#433545 Six Degrees of Torque-controlled ...

ALMA (“Articulated Locomotion and Manipulation”), a quadrupedal robotic framework, allows a cool robotic arm six degrees of dynamic locomotion (“movement”) while doing something else. Possible motions include walking, trotting, pacing and torso-posturing, simultaneously with other complex tasks, as well as … Continue reading

Posted in Human Robots

#433474 How to Feed Global Demand for ...

“You really can’t justify tuna in Chicago as a source of sustenance.” That’s according to Dr. Sylvia Earle, a National Geographic Society Explorer who was the first female chief scientist at NOAA. She came to the Good Food Institute’s Good Food Conference to deliver a call to action around global food security, agriculture, environmental protection, and the future of consumer choice.

It seems like all options should be on the table to feed an exploding population threatened by climate change. But Dr. Earle, who is faculty at Singularity University, drew a sharp distinction between seafood for sustenance versus seafood as a choice. “There is this widespread claim that we must take large numbers of wildlife from the sea in order to have food security.”

A few minutes later, Dr. Earle directly addressed those of us in the audience. “We know the value of a dead fish,” she said. That’s market price. “But what is the value of a live fish in the ocean?”

That’s when my mind blew open. What is the value—or put another way, the cost—of using the ocean as a major source of protein for humans? How do you put a number on that? Are we talking about dollars and cents, or about something far larger?

Dr. Liz Specht of the Good Food Institute drew the audience’s attention to a strange imbalance. Currently, about half of the yearly global catch of seafood comes from aquaculture. That means that the other half is wild caught. It’s hard to imagine half of your meat coming directly from the forests and the plains, isn’t it? And yet half of the world’s seafood comes from direct harvesting of the oceans, by way of massive overfishing, a terrible toll from bycatch, a widespread lack of regulation and enforcement, and even human rights violations such as slavery.

The search for solutions is on, from both within the fishing industry and from external agencies such as governments and philanthropists. Could there be another way?

Makers of plant-based seafood and clean seafood think they know how to feed the global demand for seafood without harming the ocean. These companies are part of a larger movement harnessing technology to reduce our reliance on wild and domesticated animals—and all the environmental, economic, and ethical issues that come with it.

Producers of plant-based seafood (20 or so currently) are working to capture the taste, texture, and nutrition of conventional seafood without the limitations of geography or the health of a local marine population. Like with plant-based meat, makers of plant-based seafood are harnessing food science and advances in chemistry, biology, and engineering to make great food. The industry’s strategy? Start with what the consumer wants, and then figure out how to achieve that great taste through technology.

So how does plant-based seafood taste? Pretty good, as it turns out. (The biggest benefit of a food-oriented conference is that your mouth is always full!)

I sampled “tuna” salad made from Good Catch Food’s fish-free tuna, which is sourced from legumes; the texture was nearly indistinguishable from that of flaked albacore tuna, and there was no lingering fishy taste to overpower my next bite. In a blind taste test, I probably wouldn’t have known that I was eating a plant-based seafood alternative. Next I reached for Ocean Hugger Food’s Ahimi, a tomato-based alternative to raw tuna. I adore Hawaiian poke, so I was pleasantly surprised when my Ahimi-based poke captured the bite of ahi tuna. It wasn’t quite as delightfully fatty as raw tuna, but with wild tuna populations struggling to recover from a 97% decline in numbers from 40 years ago, Ahimi is a giant stride in the right direction.

These plant-based alternatives aren’t the only game in town, however.

The clean meat industry, which has also been called “cultured meat” or “cellular agriculture,” isn’t seeking to lure consumers away from animal protein. Instead, cells are sampled from live animals and grown in bioreactors—meaning that no animal is slaughtered to produce real meat.

Clean seafood is poised to piggyback off platforms developed for clean meat; growing fish cells in the lab should rely on the same processes as growing meat cells. I know of four companies currently focusing on seafood (Finless Foods, Wild Type, BlueNalu, and Seafuture Sustainable Biotech), and a few more are likely to emerge from stealth mode soon.

Importantly, there’s likely not much difference between growing clean seafood from the top or the bottom of the food chain. Tuna, for example, are top predators that must grow for at least 10 years before they’re suitable as food. Each year, a tuna consumes thousands of pounds of other fish, shellfish, and plankton. That “long tail of groceries,” said Dr. Earle, “is a pretty expensive choice.” Excitingly, clean tuna would “level the trophic playing field,” as Dr. Specht pointed out.

All this is only the beginning of what might be possible.

Combining synthetic biology with clean meat and seafood means that future products could be personalized for individual taste preferences or health needs, by reprogramming the DNA of the cells in the lab. Industries such as bioremediation and biofuels likely have a lot to teach us about sourcing new ingredients and flavors from algae and marine plants. By harnessing rapid advances in automation, robotics, sensors, machine vision, and other big-data analytics, the manufacturing and supply chains for clean seafood could be remarkably safe and robust. Clean seafood would be just that: clean, without pathogens, parasites, or the plastic threatening to fill our oceans, meaning that you could enjoy it raw.

What about price? Dr. Mark Post, a pioneer in clean meat who is also faculty at Singularity University, estimated that 80% of clean-meat production costs come from the expensive medium in which cells are grown—and some ingredients in the medium are themselves sourced from animals, which misses the point of clean meat. Plus, to grow a whole cut of food, like a fish fillet, the cells need to be coaxed into a complex 3D structure with various cell types like muscle cells and fat cells. These two technical challenges must be solved before clean meat and seafood give consumers the experience they want, at the price they want.

In this respect clean seafood has an unusual edge. Most of what we know about growing animal cells in the lab comes from the research and biomedical industries (from tissue engineering, for example)—but growing cells to replace an organ has different constraints than growing cells for food. The link between clean seafood and biomedicine is less direct, empowering innovators to throw out dogma and find novel reagents, protocols, and equipment to grow seafood that captures the tastes, textures, smells, and overall experience of dining by the ocean.

Asked to predict when we’ll be seeing clean seafood in the grocery store, Lou Cooperhouse the CEO of BlueNalu, explained that the challenges aren’t only in the lab: marketing, sales, distribution, and communication with consumers are all critical. As Niya Gupta, the founder of Fork & Goode, said, “The question isn’t ‘can we do it’, but ‘can we sell it’?”

The good news is that the clean meat and seafood industry is highly collaborative; there are at least two dozen companies in the space, and they’re all talking to each other. “This is an ecosystem,” said Dr. Uma Valeti, the co-founder of Memphis Meats. “We’re not competing with each other.” It will likely be at least a decade before science, business, and regulation enable clean meat and seafood to routinely appear on restaurant menus, let alone market shelves.

Until then, think carefully about your food choices. Meditate on Dr. Earle’s question: “What is the real cost of that piece of halibut?” Or chew on this from Dr. Ricardo San Martin, of the Sutardja Center at the University of California, Berkeley: “Food is a system of meanings, not an object.” What are you saying when you choose your food, about your priorities and your values and how you want the future to look? Do you think about animal welfare? Most ethical regulations don’t extend to marine life, and if you don’t think that ocean creatures feel pain, consider the lobster.

Seafood is largely an acquired taste, since most of us don’t live near the water. Imagine a future in which children grow up loving the taste of delicious seafood but without hurting a living animal, the ocean, or the global environment.

Do more than imagine. As Dr. Earle urged us, “Convince the public at large that this is a really cool idea.”

Widely available
Medium availability
Emerging

Gardein
Ahimi (Ocean Hugger)
New Wave Foods

Sophie’s Kitchen
Cedar Lake
To-funa Fish

Quorn
SoFine Foods
Seamore

Vegetarian Plus
Akua
Good Catch

Heritage
Hungry Planet
Odontella

Loma Linda
Heritage Health Food
Terramino Foods

The Vegetarian Butcher
May Wah

VBites

Table based on Figure 5 of the report “An Ocean of Opportunity: Plant-based and clean seafood for sustainable oceans without sacrifice,” from The Good Food Institute.

Image Credit: Tono Balaguer / Shutterstock.com Continue reading

Posted in Human Robots