Tag Archives: mit
#434772 Traditional Higher Education Is Losing ...
Should you go to graduate school? If so, why? If not, what are your alternatives? Millions of young adults across the globe—and their parents and mentors—find themselves asking these questions every year.
Earlier this month, I explored how exponential technologies are rising to meet the needs of the rapidly changing workforce.
In this blog, I’ll dive into a highly effective way to build the business acumen and skills needed to make the most significant impact in these exponential times.
To start, let’s dive into the value of graduate school versus apprenticeship—especially during this time of extraordinarily rapid growth, and the micro-diversification of careers.
The True Value of an MBA
All graduate schools are not created equal.
For complex technical trades like medicine, engineering, and law, formal graduate-level training provides a critical foundation for safe, ethical practice (until these trades are fully augmented by artificial intelligence and automation…).
For the purposes of today’s blog, let’s focus on the value of a Master in Business Administration (MBA) degree, compared to acquiring your business acumen through various forms of apprenticeship.
The Waning of Business Degrees
Ironically, business schools are facing a tough business problem. The rapid rate of technological change, a booming job market, and the digitization of education are chipping away at the traditional graduate-level business program.
The data speaks for itself.
The Decline of Graduate School Admissions
Enrollment in two-year, full-time MBA programs in the US fell by more than one-third from 2010 to 2016.
While in previous years, top business schools (e.g. Stanford, Harvard, and Wharton) were safe from the decrease in applications, this year, they also felt the waning interest in MBA programs.
Harvard Business School: 4.5 percent decrease in applications, the school’s biggest drop since 2005.
Wharton: 6.7 percent decrease in applications.
Stanford Graduate School: 4.6 percent decrease in applications.
Another signal of change began unfolding over the past week. You may have read news headlines about an emerging college admissions scam, which implicates highly selective US universities, sports coaches, parents, and students in a conspiracy to game the undergraduate admissions process.
Already, students are filing multibillion-dollar civil lawsuits arguing that the scheme has devalued their degrees or denied them a fair admissions opportunity.
MBA Graduates in the Workforce
To meet today’s business needs, startups and massive companies alike are increasingly hiring technologists, developers, and engineers in place of the MBA graduates they may have preferentially hired in the past.
While 85 percent of US employers expect to hire MBA graduates this year (a decrease from 91 percent in 2017), 52 percent of employers worldwide expect to hire graduates with a master’s in data analytics (an increase from 35 percent last year).
We’re also seeing the waning of MBA degree holders at the CEO level.
For decades, an MBA was the hallmark of upward mobility towards the C-suite of top companies.
But as exponential technologies permeate not only products but every part of the supply chain—from manufacturing and shipping to sales, marketing and customer service—that trend is changing by necessity.
Looking at the Harvard Business Review’s Top 100 CEOs in 2018 list, more CEOs on the list held engineering degrees than MBAs (34 held engineering degrees, while 32 held MBAs).
There’s much more to leading innovative companies than an advanced business degree.
How Are Schools Responding?
With disruption to the advanced business education system already here, some business schools are applying notes from their own innovation classes to brace for change.
Over the past half-decade, we’ve seen schools with smaller MBA programs shut their doors in favor of advanced degrees with more specialization. This directly responds to market demand for skills in data science, supply chain, and manufacturing.
Some degrees resemble the precise skills training of technical trades. Others are very much in line with the apprenticeship models we’ll explore next.
Regardless, this new specialization strategy is working and attracting more new students. Over the past decade (2006 to 2016), enrollment in specialized graduate business programs doubled.
Higher education is also seeing a preference shift toward for-profit trade schools, like coding boot camps. This shift is one of several forces pushing universities to adopt skill-specific advanced degrees.
But some schools are slow to adapt, raising the question: how and when will these legacy programs be disrupted? A survey of over 170 business school deans around the world showed that many programs are operating at a loss.
But if these schools are world-class business institutions, as advertised, why do they keep the doors open even while they lose money? The surveyed deans revealed an important insight: they keep the degree program open because of the program’s prestige.
Why Go to Business School?
Shorthand Credibility, Cognitive Biases, and Prestige
Regardless of what knowledge a person takes away from graduate school, attending one of the world’s most rigorous and elite programs gives grads external validation.
With over 55 percent of MBA applicants applying to just 6 percent of graduate business schools, we have a clear cognitive bias toward the perceived elite status of certain universities.
To the outside world, thanks to the power of cognitive biases, an advanced degree is credibility shorthand for your capabilities.
Simply passing through a top school’s filtration system means that you had some level of abilities and merits.
And startup success statistics tend to back up that perceived enhanced capability. Let’s take, for example, universities with the most startup unicorn founders (see the figure below).
When you consider the 320+ unicorn startups around the world today, these numbers become even more impressive. Stanford’s 18 unicorn companies account for over 5 percent of global unicorns, and Harvard is responsible for producing just under 5 percent.
Combined, just these two universities (out of over 5,000 in the US, and thousands more around the world) account for 1 in 10 of the billion-dollar private companies in the world.
By the numbers, the prestigious reputation of these elite business programs has a firm basis in current innovation success.
While prestige may be inherent to the degree earned by graduates from these business programs, the credibility boost from holding one of these degrees is not a guaranteed path to success in the business world.
For example, you might expect that the Harvard School of Business or Stanford Graduate School of Business would come out on top when tallying up the alma maters of Fortune 500 CEOs.
It turns out that the University of Wisconsin-Madison leads the business school pack with 14 CEOs to Harvard’s 12. Beyond prestige, the success these elite business programs see translates directly into cultivating unmatched networks and relationships.
Relationships
Graduate schools—particularly at the upper echelon—are excellent at attracting sharp students.
At an elite business school, if you meet just five to ten people with extraordinary skill sets, personalities, ideas, or networks, then you have returned your $200,000 education investment.
It’s no coincidence that some 40 percent of Silicon Valley venture capitalists are alumni of either Harvard or Stanford.
From future investors to advisors, friends, and potential business partners, relationships are critical to an entrepreneur’s success.
Apprenticeships
As we saw above, graduate business degree programs are melting away in the current wave of exponential change.
With an increasing $1.5 trillion in student debt, there must be a more impactful alternative to attending graduate school for those starting their careers.
When I think about the most important skills I use today as an entrepreneur, writer, and strategic thinker, they didn’t come from my decade of graduate school at Harvard or MIT… they came from my experiences building real technologies and companies, and working with mentors.
Apprenticeship comes in a variety of forms; here, I’ll cover three top-of-mind approaches:
Real-world business acumen via startup accelerators
A direct apprenticeship model
The 6 D’s of mentorship
Startup Accelerators and Business Practicum
Let’s contrast the shrinking interest in MBA programs with applications to a relatively new model of business education: startup accelerators.
Startup accelerators are short-term (typically three to six months), cohort-based programs focusing on providing startup founders with the resources (capital, mentorship, relationships, and education) needed to refine their entrepreneurial acumen.
While graduate business programs have been condensing, startup accelerators are alive, well, and expanding rapidly.
In the 10 years from 2005 (when Paul Graham founded Y Combinator) through 2015, the number of startup accelerators in the US increased by more than tenfold.
The increase in startup accelerator activity hints at a larger trend: our best and brightest business minds are opting to invest their time and efforts in obtaining hands-on experience, creating tangible value for themselves and others, rather than diving into the theory often taught in business school classrooms.
The “Strike Force” Model
The Strike Force is my elite team of young entrepreneurs who work directly with me across all of my companies, travel by my side, sit in on every meeting with me, and help build businesses that change the world.
Previous Strike Force members have gone on to launch successful companies, including Bold Capital Partners, my $250 million venture capital firm.
Strike Force is an apprenticeship for the next generation of exponential entrepreneurs.
To paraphrase my good friend Tony Robbins: If you want to short-circuit the video game, find someone who’s been there and done that and is now doing something you want to one day do.
Every year, over 500,000 apprentices in the US follow this precise template. These apprentices are learning a craft they wish to master, under the mentorship of experts (skilled metal workers, bricklayers, medical technicians, electricians, and more) who have already achieved the desired result.
What if we more readily applied this model to young adults with aspirations of creating massive value through the vehicles of entrepreneurship and innovation?
For the established entrepreneur: How can you bring young entrepreneurs into your organization to create more value for your company, while also passing on your ethos and lessons learned to the next generation?
For the young, driven millennial: How can you find your mentor and convince him or her to take you on as an apprentice? What value can you create for this person in exchange for their guidance and investment in your professional development?
The 6 D’s of Mentorship
In my last blog on education, I shared how mobile device and internet penetration will transform adult literacy and basic education. Mobile phones and connectivity already create extraordinary value for entrepreneurs and young professionals looking to take their business acumen and skill set to the next level.
For all of human history up until the last decade or so, if you wanted to learn from the best and brightest in business, leadership, or strategy, you either needed to search for a dated book that they wrote at the local library or bookstore, or you had to be lucky enough to meet that person for a live conversation.
Now you can access the mentorship of just about any thought leader on the planet, at any time, for free.
Thanks to the power of the internet, mentorship has digitized, demonetized, dematerialized, and democratized.
What do you want to learn about?
Investing? Leadership? Technology? Marketing? Project management?
You can access a near-infinite stream of cutting-edge tools, tactics, and lessons from thousands of top performers from nearly every field—instantaneously, and for free.
For example, every one of Warren Buffett’s letters to his Berkshire Hathaway investors over the past 40 years is available for free on a device that fits in your pocket.
The rise of audio—particularly podcasts and audiobooks—is another underestimated driving force away from traditional graduate business programs and toward apprenticeships.
Over 28 million podcast episodes are available for free. Once you identify the strong signals in the noise, you’re still left with thousands of hours of long-form podcast conversation from which to learn valuable lessons.
Whenever and wherever you want, you can learn from the world’s best. In the future, mentorship and apprenticeship will only become more personalized. Imagine accessing a high-fidelity, AI-powered avatar of Bill Gates, Richard Branson, or Arthur C. Clarke (one of my early mentors) to help guide you through your career.
Virtual mentorship and coaching are powerful education forces that are here to stay.
Bringing It All Together
The education system is rapidly changing. Traditional master’s programs for business are ebbing away in the tides of exponential technologies. Apprenticeship models are reemerging as an effective way to train tomorrow’s leaders.
In a future blog, I’ll revisit the concept of apprenticeships and other effective business school alternatives.
If you are a young, ambitious entrepreneur (or the parent of one), remember that you live in the most abundant time ever in human history to refine your craft.
Right now, you have access to world-class mentorship and cutting-edge best-practices—literally in the palm of your hand. What will you do with this extraordinary power?
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: fongbeerredhot / Shutterstock.com Continue reading →
#434755 This Week’s Awesome Stories From ...
ARTIFICIAL INTELLIGENCE
DeepMind and Google: The Battle to Control Artificial Intelligence
Hal Hodson | 1843
“Hassabis thought DeepMind would be a hybrid: it would have the drive of a startup, the brains of the greatest universities, and the deep pockets of one of the world’s most valuable companies. Every element was in place to hasten the arrival of AGI and solve the causes of human misery.”
ROBOTICS
Robot Valets Are Now Parking Cars in One of France’s Busiest Airports
James Vincent | The Verge
“Stanley Robotics say its system uses space much more efficiently than humans, fitting 50 percent more cars into the same area. This is thanks in part to the robots’ precision driving, but also because the system keeps track of when customers will return. This means the robots can park cars three or four deep, but then dig out the right vehicle ready for its owner’s return.”
COMPUTING
Quantum Computing Should Supercharge This Machine-Learning Technique
Will Knight | MIT Technology Review
“Quantum computing and artificial intelligence are both hyped ridiculously. But it seems a combination of the two may indeed combine to open up new possibilities.”
BIOTECH
Scientists Reawaken Cells From a 28,000-Year-Old Mammoth
Becky Ferreira | Motherboard
“Yuka the woolly mammoth died a long time ago, but scientists gave her cells a short second life in mouse egg cells.”
ETHICS
CRISPR Experts Are Calling for a Global Moratorium on Heritable Gene Editing
Niall Firth | MIT Technology Review
“We still don’t know what the majority of our genes do, so the risks of unintended consequences or so-called off-target effects—good or bad—are huge. …Changes in a genome might have unforeseen outcomes in future generations as well. ‘Attempting to reshape the species on the basis of our current state of knowledge would be hubris,’ the letter reads.”
GENETICS
Unleash the Full Potential of the Human Genome Project
Paul Glimcher | The Hill
“So how do the risks embedded in our genes become the diseases, the so-called phenotypes, we seek to cure or prevent? …It is not just nature, but also nurture, which leads to disease. This is something that we have known for centuries, but which we seem to have conveniently forgotten in our rush to embrace the technology of genetics. In 1990 the only thing we could measure comprehensively was genetics, so we did it. But why did we stop there?”
Image Credit: Fernanda Marin / Unsplash Continue reading →
#434705 How MIT’s Mini Cheetah Can Help ...
Sangbae Kim talks to us about the new Mini Cheetah quadruped and his future plans for the robot Continue reading →
#434658 The Next Data-Driven Healthtech ...
Increasing your healthspan (i.e. making 100 years old the new 60) will depend to a large degree on artificial intelligence. And, as we saw in last week’s blog, healthcare AI systems are extremely data-hungry.
Fortunately, a slew of new sensors and data acquisition methods—including over 122 million wearables shipped in 2018—are bursting onto the scene to meet the massive demand for medical data.
From ubiquitous biosensors, to the mobile healthcare revolution, to the transformative power of the Health Nucleus, converging exponential technologies are fundamentally transforming our approach to healthcare.
In Part 4 of this blog series on Longevity & Vitality, I expand on how we’re acquiring the data to fuel today’s AI healthcare revolution.
In this blog, I’ll explore:
How the Health Nucleus is transforming “sick care” to healthcare
Sensors, wearables, and nanobots
The advent of mobile health
Let’s dive in.
Health Nucleus: Transforming ‘Sick Care’ to Healthcare
Much of today’s healthcare system is actually sick care. Most of us assume that we’re perfectly healthy, with nothing going on inside our bodies, until the day we travel to the hospital writhing in pain only to discover a serious or life-threatening condition.
Chances are that your ailment didn’t materialize that morning; rather, it’s been growing or developing for some time. You simply weren’t aware of it. At that point, once you’re diagnosed as “sick,” our medical system engages to take care of you.
What if, instead of this retrospective and reactive approach, you were constantly monitored, so that you could know the moment anything was out of whack?
Better yet, what if you more closely monitored those aspects of your body that your gene sequence predicted might cause you difficulty? Think: your heart, your kidneys, your breasts. Such a system becomes personalized, predictive, and possibly preventative.
This is the mission of the Health Nucleus platform built by Human Longevity, Inc. (HLI). While not continuous—that will come later, with the next generation of wearable and implantable sensors—the Health Nucleus was designed to ‘digitize’ you once per year to help you determine whether anything is going on inside your body that requires immediate attention.
The Health Nucleus visit provides you with the following tests during a half-day visit:
Whole genome sequencing (30x coverage)
Whole body (non-contrast) MRI
Brain magnetic resonance imaging/angiography (MRI/MRA)
CT (computed tomography) of the heart and lungs
Coronary artery calcium scoring
Electrocardiogram
Echocardiogram
Continuous cardiac monitoring
Clinical laboratory tests and metabolomics
In late 2018, HLI published the results of the first 1,190 clients through the Health Nucleus. The results were eye-opening—especially since these patients were all financially well-off, and already had access to the best doctors.
Following are the physiological and genomic findings in these clients who self-selected to undergo evaluation at HLI’s Health Nucleus.
Physiological Findings [TG]
Two percent had previously unknown tumors detected by MRI
2.5 percent had previously undetected aneurysms detected by MRI
Eight percent had cardiac arrhythmia found on cardiac rhythm monitoring, not previously known
Nine percent had moderate-severe coronary artery disease risk, not previously known
16 percent discovered previously unknown cardiac structure/function abnormalities
30 percent had elevated liver fat, not previously known
Genomic Findings [TG]
24 percent of clients uncovered a rare (unknown) genetic mutation found on WGS
63 percent of clients had a rare genetic mutation with a corresponding phenotypic finding
In summary, HLI’s published results found that 14.4 percent of clients had significant findings that are actionable, requiring immediate or near-term follow-up and intervention.
Long-term value findings were found in 40 percent of the clients we screened. Long-term clinical findings include discoveries that require medical attention or monitoring but are not immediately life-threatening.
The bottom line: most people truly don’t know their actual state of health. The ability to take a fully digital deep dive into your health status at least once per year will enable you to detect disease at stage zero or stage one, when it is most curable.
Sensors, Wearables, and Nanobots
Wearables, connected devices, and quantified self apps will allow us to continuously collect enormous amounts of useful health information.
Wearables like the Quanttus wristband and Vital Connect can transmit your electrocardiogram data, vital signs, posture, and stress levels anywhere on the planet.
In April 2017, we were proud to grant $2.5 million in prize money to the winning team in the Qualcomm Tricorder XPRIZE, Final Frontier Medical Devices.
Using a group of noninvasive sensors that collect data on vital signs, body chemistry, and biological functions, Final Frontier integrates this data in their powerful, AI-based DxtER diagnostic engine for rapid, high-precision assessments.
Their engine combines learnings from clinical emergency medicine and data analysis from actual patients.
Google is developing a full range of internal and external sensors (e.g. smart contact lenses) that can monitor the wearer’s vitals, ranging from blood sugar levels to blood chemistry.
In September 2018, Apple announced its Series 4 Apple Watch, including an FDA-approved mobile, on-the-fly ECG. Granted its first FDA approval, Apple appears to be moving deeper into the sensing healthcare market.
Further, Apple is reportedly now developing sensors that can non-invasively monitor blood sugar levels in real time for diabetic treatment. IoT-connected sensors are also entering the world of prescription drugs.
Last year, the FDA approved the first sensor-embedded pill, Abilify MyCite. This new class of digital pills can now communicate medication data to a user-controlled app, to which doctors may be granted access for remote monitoring.
Perhaps what is most impressive about the next generation of wearables and implantables is the density of sensors, processing, networking, and battery capability that we can now cheaply and compactly integrate.
Take the second-generation OURA ring, for example, which focuses on sleep measurement and management.
The OURA ring looks like a slightly thick wedding band, yet contains an impressive array of sensors and capabilities, including:
Two infrared LED
One infrared sensor
Three temperature sensors
One accelerometer
A six-axis gyro
A curved battery with a seven-day life
The memory, processing, and transmission capability required to connect with your smartphone
Disrupting Medical Imaging Hardware
In 2018, we saw lab breakthroughs that will drive the cost of an ultrasound sensor to below $100, in a packaging smaller than most bandages, powered by a smartphone. Dramatically disrupting ultrasound is just the beginning.
Nanobots and Nanonetworks
While wearables have long been able to track and transmit our steps, heart rate, and other health data, smart nanobots and ingestible sensors will soon be able to monitor countless new parameters and even help diagnose disease.
Some of the most exciting breakthroughs in smart nanotechnology from the past year include:
Researchers from the École Polytechnique Fédérale de Lausanne (EPFL) and the Swiss Federal Institute of Technology in Zurich (ETH Zurich) demonstrated artificial microrobots that can swim and navigate through different fluids, independent of additional sensors, electronics, or power transmission.
Researchers at the University of Chicago proposed specific arrangements of DNA-based molecular logic gates to capture the information contained in the temporal portion of our cells’ communication mechanisms. Accessing the otherwise-lost time-dependent information of these cellular signals is akin to knowing the tune of a song, rather than solely the lyrics.
MIT researchers built micron-scale robots able to sense, record, and store information about their environment. These tiny robots, about 100 micrometers in diameter (approximately the size of a human egg cell), can also carry out pre-programmed computational tasks.
Engineers at University of California, San Diego developed ultrasound-powered nanorobots that swim efficiently through your blood, removing harmful bacteria and the toxins they produce.
But it doesn’t stop there.
As nanosensor and nanonetworking capabilities develop, these tiny bots may soon communicate with each other, enabling the targeted delivery of drugs and autonomous corrective action.
Mobile Health
The OURA ring and the Series 4 Apple Watch are just the tip of the spear when it comes to our future of mobile health. This field, predicted to become a $102 billion market by 2022, puts an on-demand virtual doctor in your back pocket.
Step aside, WebMD.
In true exponential technology fashion, mobile device penetration has increased dramatically, while image recognition error rates and sensor costs have sharply declined.
As a result, AI-powered medical chatbots are flooding the market; diagnostic apps can identify anything from a rash to diabetic retinopathy; and with the advent of global connectivity, mHealth platforms enable real-time health data collection, transmission, and remote diagnosis by medical professionals.
Already available to residents across North London, Babylon Health offers immediate medical advice through AI-powered chatbots and video consultations with doctors via its app.
Babylon now aims to build up its AI for advanced diagnostics and even prescription. Others, like Woebot, take on mental health, using cognitive behavioral therapy in communications over Facebook messenger with patients suffering from depression.
In addition to phone apps and add-ons that test for fertility or autism, the now-FDA-approved Clarius L7 Linear Array Ultrasound Scanner can connect directly to iOS and Android devices and perform wireless ultrasounds at a moment’s notice.
Next, Healthy.io, an Israeli startup, uses your smartphone and computer vision to analyze traditional urine test strips—all you need to do is take a few photos.
With mHealth platforms like ClickMedix, which connects remotely-located patients to medical providers through real-time health data collection and transmission, what’s to stop us from delivering needed treatments through drone delivery or robotic telesurgery?
Welcome to the age of smartphone-as-a-medical-device.
Conclusion
With these DIY data collection and diagnostic tools, we save on transportation costs (time and money), and time bottlenecks.
No longer will you need to wait for your urine or blood results to go through the current information chain: samples will be sent to the lab, analyzed by a technician, results interpreted by your doctor, and only then relayed to you.
Just like the “sage-on-the-stage” issue with today’s education system, healthcare has a “doctor-on-the-dais” problem. Current medical procedures are too complicated and expensive for a layperson to perform and analyze on their own.
The coming abundance of healthcare data promises to transform how we approach healthcare, putting the power of exponential technologies in the patient’s hands and revolutionizing how we live.
Join Me
Abundance-Digital Online Community: I’ve created a Digital/Online community of bold, abundance-minded entrepreneurs called Abundance-Digital. Abundance-Digital is my ‘onramp’ for exponential entrepreneurs – those who want to get involved and play at a higher level. Click here to learn more.
Image Credit: Titima Ongkantong / Shutterstock.com Continue reading →
#434611 This Week’s Awesome Stories From ...
AUTOMATION
The Rise of the Robot Reporter
Jaclyn Paiser | The New York Times
“In addition to covering company earnings for Bloomberg, robot reporters have been prolific producers of articles on minor league baseball for The Associated Press, high school football for The Washington Post and earthquakes for The Los Angeles Times.”
ROBOTICS
Penny-Sized Ionocraft Flies With No Moving Parts
Evan Ackerman | IEEE Spectrum
“Electrohydrodynamic (EHD) thrusters, sometimes called ion thrusters, use a high strength electric field to generate a plasma of ionized air. …Magical, right? No moving parts, completely silent, and it flies!”
ARTIFICIAL INTELLIGENCE
Making New Drugs With a Dose of Artificial Intelligence
Cade Metz | The New York Times
“…DeepMind won the [protein folding] competition by a sizable margin—it improved the prediction accuracy nearly twice as much as experts expected from the contest winner. DeepMind’s victory showed how the future of biochemical research will increasingly be driven by machines and the people who oversee those machines.”
COMPUTING
Nano-Switches Made Out of Graphene Could Make Our Devices Even Smaller
Emerging Technology From the arXiv | MIT Technology Review
“For the first time, physicists have built reliable, efficient graphene nanomachines that can be fabricated on silicon chips. They could lead to even greater miniaturization.”
BIOTECH
The Problem With Big DNA
Sarah Zhang | The Atlantic
“It took researchers days to search through thousands of genome sequences. Now it takes just a few seconds. …As sequencing becomes more common, the number of publicly available bacterial and viral genomes has doubled. At the rate this work is going, within a few years multiple millions of searchable pathogen genomes will be available—a library of DNA and disease, spread the world over.”
CRYPTOCURRENCY
Fire (and Lots of It): Berkeley Researcher on the Only Way to Fix Cryptocurrency
Dan Goodin | Ars Technica
“Weaver said, there’s no basis for the promises that cryptocurrencies’ decentralized structure and blockchain basis will fundamentally transform commerce or economics. That means the sky-high valuations spawned by those false promises are completely unjustified. …To support that conclusion, Weaver recited an oft-repeated list of supposed benefits of cryptocurrencies and explained why, after closer scrutiny, he believed them to be myths.”
Image Credit: Katya Havok / Shutterstock.com Continue reading →