Tag Archives: mit

#439081 Classify This Robot-Woven Sneaker With ...

For athletes trying to run fast, the right shoe can be essential to achieving peak performance. For athletes trying to run fast as humanly possible, a runner’s shoe can also become a work of individually customized engineering.

This is why Adidas has married 3D printing with robotic automation in a mass-market footwear project it’s called Futurecraft.Strung, expected to be available for purchase as soon as later this year. Using a customized, 3D-printed sole, a Futurecraft.Strung manufacturing robot can place some 2,000 threads from up to 10 different sneaker yarns in one upper section of the shoe.

Skylar Tibbits, founder and co-director of the Self-Assembly Lab and associate professor in MIT's Department of Architecture, says that because of its small scale, footwear has been an area of focus for 3D printing and additive manufacturing, which involves adding material bit by bit.

“There are really interesting complex geometry problems,” he says. “It’s pretty well suited.”

Photo: Adidas

Beginning with a 3D-printed sole, Adidas robots weave together some 2000 threads from up to 10 different sneaker yarns to make one Futurecraft.Strung shoe—expected on the marketplace later this year or sometime in 2022.

Adidas began working on the Futurecraft.Strung project in 2016. Then two years later, Adidas Futurecraft, the company’s innovation incubator, began collaborating with digital design studio Kram/Weisshaar. In less than a year the team built the software and hardware for the upper part of the shoe, called Strung uppers.

“Most 3D printing in the footwear space has been focused on the midsole or outsole, like the bottom of the shoe,” Tibbits explains. But now, he says, Adidas is bringing robotics and a threaded design to the upper part of the shoe. The company bases its Futurecraft.Strung design on high-resolution scans of how runners’ feet move as they travel.

This more flexible design can benefit athletes in multiple sports, according to an Adidas blog post. It will be able to use motion capture of an athlete’s foot and feedback from the athlete to make the design specific to the athlete’s specific gait. Adidas customizes the weaving of the shoe’s “fabric” (really more like an elaborate woven string figure, a cat’s cradle to fit the foot) to achieve a close and comfortable fit, the company says.

What they call their “4D sole” consists of a design combining 3D printing with materials that can change their shape and properties over time. In fact, Tibbits coined the term 4D printing to describe this process in 2013. The company takes customized data from the Adidas Athlete Intelligent Engine to make the shoe, according to Kram/Weisshaar’s website.

Photo: Adidas

Closeup of the weaving process behind a Futurecraft.Strung shoe

“With Strung for the first time, we can program single threads in any direction, where each thread has a different property or strength,” Fionn Corcoran-Tadd, an innovation designer at Adidas’ Futurecraft lab, said in a company video. Each thread serves a purpose, the video noted. “This is like customized string art for your feet,” Tibbits says.

Although the robotics technology the company uses has been around for many years, what Adidas’s robotic weavers can achieve with thread is a matter of elaborate geometry. “It’s more just like a really elegant way to build up material combining robotics and the fibers and yarns into these intricate and complex patterns,” he says.

Robots can of course create patterns with more precision than if someone wound it by hand, as well as rapidly and reliably changing the yarn and color of the fabric pattern. Adidas says it can make a single upper in 45 minutes and a pair of sneakers in 1 hour and 30 minutes. It plans to reduce this time down to minutes in the months ahead, the company said.

An Adidas spokesperson says sneakers incorporating the Futurecraft.Strung uppers design are a prototype, but the company plans to bring a Strung shoe to market in late 2021 or 2022. However, Adidas Futurecraft sneakers are currently available with a 3D-printed midsole.
Adidas plans to continue gathering data from athletes to customize the uppers of sneakers. “We’re building up a library of knowledge and it will get more interesting as we aggregate data of testing and from different athletes and sports,” the Adidas Futurecraft team writes in a blog post. “The more we understand about how data can become design code, the more we can take that and apply it to new Strung textiles. It’s a continuous evolution.” Continue reading

Posted in Human Robots

#439066 Video Friday: Festo’s BionicSwift

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Festo's Bionic Learning Network for 2021 presents a flock of BionicSwifts.

To execute the flight maneuvers as true to life as possible, the wings are modeled on the plumage of birds. The individual lamellae are made of an ultralight, flexible but very robust foam and lie on top of each other like shingles. Connected to a carbon quill, they are attached to the actual hand and arm wings as in the natural model.

During the wing upstroke, the individual lamellae fan out so that air can flow through the wing. This means that the birds need less force to pull the wing up. During the downstroke, the lamellae close up so that the birds can generate more power to fly. Due to this close-to-nature replica of the wings, the BionicSwifts have a better flight profile than previous wing-beating drives.

[ Festo ]

While we've seen a wide variety of COVID-motivated disinfecting robots, they're usually using either ultraviolet light or a chemical fog. This isn't the way that humans clean—we wipe stuff down, which gets rid of surface dirt and disinfects at the same time. Fraunhofer has been working on a mobile manipulator that can clean in the same ways that we do.

It's quite the technical challenge, but it has the potential to be both more efficient and more effective.

[ Fraunhofer ]

In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says. The researchers have developed a robot that uses radio waves, which can pass through walls, to sense occluded objects. The robot, called RF-Grasp, combines this powerful sensing with more traditional computer vision to locate and grasp items that might otherwise be blocked from view.

[ MIT ]

Ingenuity is now scheduled to fly on April 11.

[ JPL ]

The legendary Zenta is back after a two year YouTube hiatus with “a kind of freaky furry hexapod bunny creature.”

[ Zenta ]

It is with great pride and excitement that the South Australia Police announce a new expansion to their kennel by introducing three new Police Dog (PD) recruits. These dogs have been purposely targeted to bring a whole new range of dog operational capabilities known as the ‘small area urban search and guided evacuation’ dogs. Police have been working closely with specialist vets and dog trainers to ascertain if the lightweight dogs could be transported safely by drones and released into hard-to-access areas where at the moment the larger PDs just simply cannot get in due to their size.

[ SA Police ]

SoftBank may not have Spot cheerleading robots for their baseball team anymore, but they've more than made up for it with a full century of Peppers. And one dude doing the robot.

[ SoftBank ]

MAB Robotics is a Polish company developing walking robots for inspection, and here's a prototype they've been working on.

[ MAB Robotics ]

Thanks Jakub!

DoraNose: Smell your way to a better tomorrow.

[ Dorabot ]

Our robots need to learn how to cope with their new neighbors, and we have just the solution for this, the egg detector! Using cutting-edge AI, it provides incredible precision in detecting a vast variety of eggs. We have deployed this new feature on Boston Dynamics Spot, one of our fleet's robots. It can now detect eggs with its cameras and avoid them on his autonomous missions.

[ Energy Robotics ]

When dropping a squishy robot from an airplane 1,000 feet up, make sure that you land as close to people's cars as you can.

Now do it from orbit!

[ Squishy Robotics ]

An autonomous robot that is able to physically guide humans through narrow and cluttered spaces could be a big boon to the visually-impaired. Most prior robotic guiding systems are based on wheeled platforms with large bases with actuated rigid guiding canes. The large bases and the actuated arms limit these prior approaches from operating in narrow and cluttered environments. We propose a method that introduces a quadrupedal robot with a leash to enable the robot-guiding-human system to change its intrinsic dimension (by letting the leash go slack) in order to fit into narrow spaces.

[ Hybrid Robotics ]

How to prove that your drone is waterproof.

[ UNL ]

Well this ought to be pretty good once it gets out of simulation.

[ Hybrid Robotics ]

MIDAS is Aurora’s AI-enabled, multi-rotor sUAV outfitted with optical sensors and a customized payload that can defeat multiple small UAVs per flight with low-collateral effects.

[ Aurora ]

The robots​ of the DFKI have the advantage of being able to reach extreme environments: they can be used for decontamination purposes in high-risk areas or inspect and maintain underwater​ structures, for which they are tested in the North Sea near Heligoland​.

[ DFKI ]

After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.

[ 60 Minutes ]

In 2007, Noel Sharky stated that “we are sleepwalking into a brave new world where robots decide who, where and when to kill.” Since then thousands of AI and robotics researchers have joined his calls to regulate “killer robots.” But sometime this year, Turkey will deploy fully autonomous home-built kamikaze drones on its border with Syria. What are the ethical choices we need to consider? Will we end up in an episode of Black Mirror? Or is the UN listening to calls and starting the process of regulating this space? Prof. Toby Walsh will discuss this important issue, consider where we are at and where we need to go.

[ ICRA 2020 ]

In the second session of HAI's spring conference, artists and technologists discussed how technology can enhance creativity, reimagine meaning, and support racial and social justice. The conference, called “Intelligence Augmentation: AI Empowering People to Solve Global Challenges,” took place on 25 March 2021.

[ Stanford HAI ]

This spring 2021 GRASP SFI comes from Monroe Kennedy III at Stanford University, on “Considerations for Human-Robot Collaboration.”

The field of robotics has evolved over the past few decades. We’ve seen robots progress from the automation of repetitive tasks in manufacturing to the autonomy of mobilizing in unstructured environments to the cooperation of swarm robots that are centralized or decentralized. These abilities have required advances in robotic hardware, modeling, and artificial intelligence. The next frontier is robots collaborating in complex tasks with human teammates, in environments traditionally configured for humans. While solutions to this challenge must utilize all the advances of robotics, the human element adds a unique aspect that must be addressed. Collaborating with a human teammate means that the robot must have a contextual understanding of the task as well as all participant’s roles. We will discuss what constitutes an effective teammate and how we can capture this behavior in a robotic collaborator.

[ UPenn ] Continue reading

Posted in Human Robots

#439036 Video Friday: Shadow Plays Jenga, and ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

The Shadow Robot team couldn't resist! Our Operator, Joanna, is using the Shadow Teleoperation System which, fun and games aside, can help those in difficult, dangerous and distant jobs.

Shadow could challenge this MIT Jenga-playing robot, but I bet they wouldn't win:

[ Shadow Robot ]

Digit is gradually stomping the Agility Robotics logo into a big grassy field fully autonomously.

[ Agility Robotics ]

This is a pretty great and very short robotic magic show.

[ Mario the Magician ]

A research team at the Georgia Institute of Technology has developed a modular solution for drone delivery of larger packages without the need for a complex fleet of drones of varying sizes. By allowing teams of small drones to collaboratively lift objects using an adaptive control algorithm, the strategy could allow a wide range of packages to be delivered using a combination of several standard-sized vehicles.

[ GA Tech ]

I've seen this done using vision before, but Flexiv's Rizon 4s can keep a ball moving along a specific trajectory using only force sensing and control.

[ Flexiv ]

Thanks Yunfan!

This combination of a 3D aerial projection system and a sensing interface can be used as an interactive and intuitive control system for things like robot arms, but in this case, it's being used to make simulated pottery. Much less messy than the traditional way of doing it.

More details on Takafumi Matsumaru's work at the Bio-Robotics & Human-Mechatronics Laboratory at Waseda University at the link below.

[ BLHM ]

U.S. Vice President Kamala Harris called astronauts Shannon Walker and Kate Rubins on the ISS, and they brought up Astrobee, at which point Shannon reaches over and rips Honey right off of her charging dock to get her on camera.

[ NASA ]

Here's a quick three minute update on Perseverance and Ingenuity from JPL.

[ Mars 2020 ]

Rigid grippers used in existing aerial manipulators require precise positioning to achieve successful grasps and transmit large contact forces that may destabilize the drone. This limits the speed during grasping and prevents “dynamic grasping,” where the drone attempts to grasp an object while moving. On the other hand, biological systems (e.g. birds) rely on compliant and soft parts to dampen contact forces and compensate for grasping inaccuracy, enabling impressive feats. This paper presents the first prototype of a soft drone—a quadrotor where traditional (i.e. rigid) landing gears are replaced with a soft tendon-actuated gripper to enable aggressive grasping.

[ MIT ]

In this video we present results from a field deployment inside the Løkken Mine underground pyrite mine in Norway. The Løkken mine was operative from 1654 to 1987 and contains narrow but long corridors, alongside vast rooms and challenging vertical stopes. In this field study we evaluated selected autonomous exploration and visual search capabilities of a subset of the aerial robots of Team CERBERUS towards the goal of complete subterranean autonomy.

[ Team CERBERUS ]

What you can do with a 1,000 FPS projector with a high speed tracking system.

[ Ishikawa Group ]

ANYbotics’ collaboration with BASF, one of the largest global chemical manufacturers, displays the efficiency, quality, and scalability of robotic inspection and data-collection capabilities in complex industrial environments.

[ ANYbotics ]

Does your robot arm need a stylish jacket?

[ Fraunhofer ]

Trossen Robotics unboxes a Unitree A1, and it's actually an unboxing where they have to figure out everything from scratch.

[ Trossen ]

Robots have learned to drive cars, assist in surgeries―and vacuum our floors. But can they navigate the unwritten rules of a busy sidewalk? Until they can, robotics experts Leila Takayama and Chris Nicholson believe, robots won’t be able to fulfill their immense potential. In this conversation, Chris and Leila explore the future of robotics and the role open source will play in it.

[ Red Hat ]

Christoph Bartneck's keynote at the 6th Joint UAE Symposium on Social Robotics, focusing on what roles robots can play during the Covid crisis and why so many social robots fail in the market.

[ HIT Lab ]

Decision-making based on arbitrary criteria is legal in some contexts, such as employment, and not in others, such as criminal sentencing. As algorithms replace human deciders, HAI-EIS fellow Kathleen Creel argues arbitrariness at scale is morally and legally problematic. In this HAI seminar, she explains how the heart of this moral issue relates to domination and a lack of sufficient opportunity for autonomy. It relates in interesting ways to the moral wrong of discrimination. She proposes technically informed solutions that can lessen the impact of algorithms at scale and so mitigate or avoid the moral harm identified.

[ Stanford HAI ]

Sawyer B. Fuller speaks on Autonomous Insect-Sized Robots at the UC Berkeley EECS Colloquium series.

Sub-gram (insect-sized) robots have enormous potential that is largely untapped. From a research perspective, their extreme size, weight, and power (SWaP) constraints also forces us to reimagine everything from how they compute their control laws to how they are fabricated. These questions are the focus of the Autonomous Insect Robotics Laboratory at the University of Washington. I will discuss potential applications for insect robots and recent advances from our group. These include the first wireless flights of a sub-gram flapping-wing robot that weighs barely more than a toothpick. I will describe efforts to expand its capabilities, including the first multimodal ground-flight locomotion, the first demonstration of steering control, and how to find chemical plume sources by integrating the smelling apparatus of a live moth. I will also describe a backpack for live beetles with a steerable camera and conceptual design of robots that could scale all the way down to the “gnat robots” first envisioned by Flynn & Brooks in the ‘80s.

[ UC Berkeley ]

Thanks Fan!

Joshua Vander Hook, Computer Scientist, NIAC Fellow, and Technical Group Supervisor at NASA JPL, presents an overview of the AI Group(s) at JPL, and recent work on single and multi-agent autonomous systems supporting space exploration, Earth science, NASA technology development, and national defense programs.

[ UMD ] Continue reading

Posted in Human Robots

#439032 To Learn To Deal With Uncertainty, This ...

AI is endowing robots, autonomous vehicles and countless of other forms of tech with new abilities and levels of self-sufficiency. Yet these models faithfully “make decisions” based on whatever data is fed into them, which could have dangerous consequences. For instance, if an autonomous car is driving down a highway and the sensor picks up a confusing signal (e.g., a paint smudge that is incorrectly interpreted as a lane marking), this could cause the car to swerve into another lane unnecessarily.

But in the ever-evolving world of AI, researchers are developing new ways to address challenges like this. One group of researchers has devised a new algorithm that allows the AI model to account for uncertain data, which they describe in a study published February 15 in IEEE Transactions on Neural Networks and Learning Systems.

“While we would like robots to work seamlessly in the real world, the real world is full of uncertainty,” says Michael Everett, a post-doctoral associate at MIT who helped develop the new approach. “It's important for a system to be aware of what it knows and what it is unsure about, which has been a major challenge for modern AI.”

His team focused on a type of AI called reinforcement learning (RL), whereby the model tries to learn the “value” of taking each action in a given scenario through trial-and-error. They developed a secondary algorithm, called Certified Adversarial Robustness for deep RL (CARRL), that can be built on top of an existing RL model.

“Our key innovation is that rather than blindly trusting the measurements, as is done today [by AI models], our algorithm CARRL thinks through all possible measurements that could have been made, and makes a decision that considers the worst-case outcome,” explains Everett.

In their study, the researchers tested CARRL across several different tasks, including collision avoidance simulations and Atari pong. For younger readers who may not be familiar with it, Atari pong is a classic computer game whereby an electronic paddle is used to direct a ping pong on the screen. In the test scenario, CARRL helped move the paddle slightly higher or lower to compensate for the possibility that the ball could approach at a slightly different point than what the input data indicated. All the while, CARRL would try to ensure that the ball would make contact with at least some part of paddle.

Gif: MIT Aerospace Controls Laboratory

In a perfect world, the information that an AI model is fed would be accurate all the time and AI model will perform well (left). But in some cases, the AI may be given inaccurate data, causing it to miss its targets (middle). The new algorithm CARRL helps AIs account for uncertainty in its data inputs, yielding a better performance when relying on poor data (right).

Across all test scenarios, the RL model was better at compensating for potential inaccurate or “noisy” data with CARRL, than without CARRL.

But the results also show that, like with humans, too much self-doubt and uncertainty can be unhelpful. In the collision avoidance scenario, for example, indulging in too much uncertainty caused the main moving object in the simulation to avoid both the obstacle and its goal. “There is definitely a limit to how ‘skeptical’ the algorithm can be without becoming overly conservative,” Everett says.

This research was funded by Ford Motor Company, but Everett notes that it could be applicable under many other commercial applications requiring safety-aware AI, including aerospace, healthcare, or manufacturing domains.

“This work is a step toward my vision of creating ‘certifiable learning machines’—systems that can discover how to explore and perform in the real world on their own, while still having safety and robustness guarantees,” says Everett. “We'd like to bring CARRL into robotic hardware while continuing to explore the theoretical challenges at the interface of robotics and AI.” Continue reading

Posted in Human Robots

#439010 Video Friday: Nanotube-Powered Insect ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online Conference]
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
Let us know if you have suggestions for next week, and enjoy today's videos.

If you’ve ever swatted a mosquito away from your face, only to have it return again (and again and again), you know that insects can be remarkably acrobatic and resilient in flight. Those traits help them navigate the aerial world, with all of its wind gusts, obstacles, and general uncertainty. Such traits are also hard to build into flying robots, but MIT Assistant Professor Kevin Yufeng Chen has built a system that approaches insects’ agility.

Chen’s actuators can flap nearly 500 times per second, giving the drone insect-like resilience. “You can hit it when it’s flying, and it can recover,” says Chen. “It can also do aggressive maneuvers like somersaults in the air.” And it weighs in at just 0.6 grams, approximately the mass of a large bumble bee. The drone looks a bit like a tiny cassette tape with wings, though Chen is working on a new prototype shaped like a dragonfly.

[ MIT ]

National Robotics Week is April 3-11, 2021!

[ NRW ]

This is in a motion capture environment, but still, super impressive!

[ Paper ]

Thanks Fan!

Why wait for Boston Dynamics to add an arm to your Spot if you can just do it yourself?

[ ETHZ ]

This video shows the deep-sea free swimming of soft robot in the South China Sea. The soft robot was grasped by a robotic arm on ‘HAIMA’ ROV and reached the bottom of the South China Sea (depth of 3,224 m). After the releasing, the soft robot was actuated with an on-board AC voltage of 8 kV at 1 Hz and demonstrated free swimming locomotion with its flapping fins.

Um, did they bring it back?

[ Nature ]

Quadruped Yuki Mini is 12 DOF robot equipped with a Raspberry Pi that runs ROS. Also, BUNNIES!

[ Lingkang Zhang ]

Thanks Lingkang!

Deployment of drone swarms usually relies on inter-agent communication or visual markers that are mounted on the vehicles to simplify their mutual detection. The vswarm package enables decentralized vision-based control of drone swarms without relying on inter-agent communication or visual fiducial markers. The results show that the drones can safely navigate in an outdoor environment despite substantial background clutter and difficult lighting conditions.

[ Vswarm ]

A conventional adopted method for operating a waiter robot is based on the static position control, where pre-defined goal positions are marked on a map. However, this solution is not optimal in a dynamic setting, such as in a coffee shop or an outdoor catering event, because the customers often change their positions. We explore an alternative human-robot interface design where a human operator communicates the identity of the customer to the robot instead. Inspired by how [a] human communicates, we propose a framework for communicating a visual goal to the robot, through interactive two-way communications.

[ Paper ]

Thanks Poramate!

In this video, LOLA reacts to undetected ground height changes, including a drop and leg-in-hole experiment. Further tests show the robustness to vertical disturbances using a seesaw. The robot is technically blind, not using any camera-based or prior information on the terrain.

[ TUM ]

RaiSim is a cross-platform multi-body physics engine for robotics and AI. It fully supports Linux, Mac OS, and Windows.

[ RaiSim ]

Thanks Fan!

The next generation of LoCoBot is here. The LoCoBot is an ROS research rover for mapping, navigation and manipulation (optional) that enables researchers, educators and students alike to focus on high level code development instead of hardware and building out lower level code. Development on the LoCoBot is simplified with open source software, full ROS-mapping and navigation packages and modular opensource Python API that allows users to move the platform as well as (optional) manipulator in as few as 10 lines of code.

[ Trossen ]

MIT Media Lab Research Specialist Dr. Kate Darling looks at how robots are portrayed in popular film and TV shows.

Kate's book, The New Breed: What Our History with Animals Reveals about Our Future with Robots can be pre-ordered now and comes out next month.

[ Kate Darling ]

The current autonomous mobility systems for planetary exploration are wheeled rovers, limited to flat, gently-sloping terrains and agglomerate regolith. These vehicles cannot tolerate instability and operate within a low-risk envelope (i.e., low-incline driving to avoid toppling). Here, we present ‘Mars Dogs’ (MD), four-legged robotic dogs, the next evolution of extreme planetary exploration.

[ Team CoSTAR ]

In 2020, first-year PhD students at the MIT Media Lab were tasked with a special project—to reimagine the Lab and write sci-fi stories about the MIT Media Lab in the year 2050. “But, we are researchers. We don't only write fiction, we also do science! So, we did what scientists do! We used a secret time machine under the MIT dome to go to the year 2050 and see what’s going on there! Luckily, the Media Lab still exists and we met someone…really cool!” Enjoy this interview of Cyber Joe, AI Mentor for MIT Media Lab Students of 2050.

[ MIT ]

In this talk, we will give an overview of the diverse research we do at CSIRO’s Robotics and Autonomous Systems Group and delve into some specific technologies we have developed including SLAM and Legged robotics. We will also give insights into CSIRO’s participation in the current DARPA Subterranean Challenge where we are deploying a fleet of heterogeneous robots into GPS-denied unknown underground environments.

[ GRASP Seminar ]

Marco Hutter (ETH) and Hae-Won Park (KAIST) talk about “Robotics Inspired by Nature.”

[ Swiss-Korean Science Club ]

Thanks Fan!

In this keynote, Guy Hoffman Assistant Professor and the Mills Family Faculty Fellow in the Sibley School of Mechanical and Aerospace Engineering at Cornell University, discusses “The Social Uncanny of Robotic Companions.”

[ Designerly HRI ] Continue reading

Posted in Human Robots