Tag Archives: mit
#436200 AI and the Future of Work: The Economic ...
This week at MIT, academics and industry officials compared notes, studies, and predictions about AI and the future of work. During the discussions, an insurance company executive shared details about one AI program that rolled out at his firm earlier this year. A chatbot the company introduced, the executive said, now handles 150,000 calls per month.
Later in the day, a panelist—David Fanning, founder of PBS’s Frontline—remarked that this statistic is emblematic of broader fears he saw when reporting a new Frontline documentary about AI. “People are scared,” Fanning said of the public’s AI anxiety.
Fanning was part of a daylong symposium about AI’s economic consequences—good, bad, and otherwise—convened by MIT’s Task Force on the Work of the Future.
“Dig into every industry, and you’ll find AI changing the nature of work,” said Daniela Rus, director of MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL). She cited recent McKinsey research that found 45 percent of the work people are paid to do today can be automated with currently available technologies. Those activities, McKinsey found, represent some US $2 trillion in wages.
However, the threat of automation—whether by AI or other technologies—isn’t as new as technologists on America’s coasts seem to believe, said panelist Fred Goff, CEO of Jobcase, Inc.
“If you live in Detroit or Toledo, where I come from, technology has been displacing jobs for the last half-century,” Goff said. “I don’t think that most people in this country have the increased anxiety that the coasts do, because they’ve been living this.”
Goff added that the challenge AI poses for the workforce is not, as he put it, “getting coal miners to code.” Rather, he said, as AI automates some jobs, it will also open opportunities for “reskilling” that may have nothing to do with AI or automation. He touted trade schools—teaching skills like welding, plumbing, and electrical work—and certification programs for sales industry software packages like Salesforce.
On the other hand, a documentarian who reported another recent program on AI—Krishna Andavolu, senior correspondent for Vice Media—said “reskilling” may not be an easy answer.
“People in rooms like this … don’t realize that a lot of people don’t want to work that much,” Andavolu said. “They’re not driven by passion for their career, they’re driven by passion for life. We’re telling a lot of these workers that they need to reskill. But to a lot of people that sounds like, ‘I’ve got to work twice as hard for what I have now.’ That sounds scary. We underestimate that at our peril.”
Part of the problem with “reskilling,” Andavolu said, is that some high-growth industries involve caregiving for seniors and in medical facilities—roles which are traditionally considered “feminized” careers. Destigmatizing these jobs, and increasing the pay to match the salaries of displaced jobs like long-haul truck drivers, is another challenge.
Daron Acemoglu, MIT Institute Professor of Economics, faulted the comparably slim funding of academic research into AI.
“There is nothing preordained about the progress of technology,” he said. Computers, the Internet, antibiotics, and sensors all grew out of government and academic research programs. What he called the “blue-sky thinking” of non-corporate AI research can also develop applications that are not purely focused on maximizing profits.
American companies, Acemoglu said, get tax breaks for capital R&D—but not for developing new technologies for their employees. “We turn around and [tell companies], ‘Use your technologies to empower workers,’” he said. “But why should they do that? Hiring workers is expensive in many ways. And we’re subsidizing capital.”
Said Sarita Gupta, director of the Ford Foundation’s Future of Work(ers) Program, “Low and middle income workers have for over 30 years been experiencing stagnant and declining pay, shrinking benefits, and less power on the job. Now technology is brilliant at enabling scale. But the question we sit with is—how do we make sure that we’re not scaling these longstanding problems?”
Andrew McAfee, co-director of MIT’s Initiative on the Digital Economy, said AI may not reduce the number of jobs available in the workplace today. But the quality of those jobs is another story. He cited the Dutch economist Jan Tinbergen who decades ago said that “Inequality is a race between technology and education.”
McAfee said, ultimately, the time to solve the economic problems AI poses for workers in the United States is when the U.S. economy is doing well—like right now.
“We do have the wind at our backs,” said Elisabeth Reynolds, executive director of MIT’s Task Force on the Work of the Future.
“We have some breathing room right now,” McAfee agreed. “Economic growth has been pretty good. Unemployment is pretty low. Interest rates are very, very low. We might not have that war chest in the future.” Continue reading
#436184 Why People Demanded Privacy to Confide ...
This is part four of a six-part series on the history of natural language processing.
Between 1964 and 1966, Joseph Weizenbaum, a German American computer scientist at MIT’s artificial intelligence lab, developed the first-ever chatbot [PDF].
While there were already some rudimentary digital language generators in existence—programs that could spit out somewhat coherent lines of text—Weizenbaum’s program was the first designed explicitly for interactions with humans. The user could type in some statement or set of statements in their normal language, press enter, and receive a response from the machine. As Weizenbaum explained, his program made “certain kinds of natural-language conversation between man and computer possible.”
He named the program Eliza after Eliza Doolittle, the working-class hero of George Bernard Shaw’s Pygmalion who learns how to talk with an upper-class accent. The new Eliza was written for the 36-bit IBM 7094, an early transistorized mainframe computer, in a programming language that Weizenbaum developed called MAD-SLIP.
Because computer time was a valuable resource, Eliza could only be run via a time-sharing system; the user interacted with the program remotely via an electric typewriter and printer. When the user typed in a sentence and pressed enter, a message was sent to the mainframe computer. Eliza scanned the message for the presence of a keyword and used it in a new sentence to form a response that was sent back, printed out, and read by the user.
To encourage ongoing dialogue, Weizenbaum designed Eliza to simulate the type of conversational style used by a Rogerian psychoanalyst. The program would take something the user said and reflect it back with a question, as can be seen in the example below. (Notice how the program takes keywords like “boyfriend” and “depressed” and re-uses them.)
Human: Men are all alike.
Computer: IN WHAT WAY?
Human: They're always bugging us about something or other.
Computer: CAN YOU THINK OF A SPECIFIC EXAMPLE?
Human: Well, my boyfriend made me come here.
Computer: YOUR BOYFRIEND MADE YOU COME HERE
Human: He says I'm depressed much of the time.
Computer: I AM SORRY TO HEAR YOU ARE DEPRESSED
Human: It's true. I am unhappy.
Weizenbaum chose this mode of dialogue for Eliza because it gave the impression that the computer understood what was being said without having to offer anything new to the conversation. It created the illusion of comprehension and engagement in a mere 200 lines of code.
To test Eliza’s capacity to engage an interlocutor, Weizenbaum invited students and colleagues into his office and let them chat with the machine while he looked on. He noticed, with some concern, that during their brief interactions with Eliza, many users began forming emotional attachments to the algorithm. They would open up to the machine and confess problems they were facing in their lives and relationships.
During their brief interactions with Eliza, many users began forming emotional attachments to the algorithm.
Even more surprising was that this sense of intimacy persisted even after Weizenbaum described how the machine worked and explained that it didn’t really understand anything that was being said. Weizenbaum was most troubled when his secretary, who had watched him build the program from scratch over many months, insisted that he leave the room so she could talk to Eliza in private.
For Weizenbaum, this experiment with Eliza made him question an idea that Alan Turing had proposed in 1950 about machine intelligence. In his paper, entitled “Computing Machinery and Intelligence,” Turing suggested that if a computer could conduct a convincingly human conversation in text, one could assume it was intelligent—an idea that became the basis of the famous Turing Test.
But Eliza demonstrated that convincing communication between a human and a machine could take place even if comprehension only flowed from one side: The simulation of intelligence, rather than intelligence itself, was enough to fool people. Weizenbaum called this the Eliza effect, and believed it was a type of “delusional thinking” that humanity would collectively suffer from in the digital age. This insight was a profound shock for Weizenbaum, and one that came to define his intellectual trajectory over the next decade.
The simulation of intelligence, rather than intelligence itself, was enough to fool people.
In 1976, he published Computing Power and Human Reason: From Judgment to Calculation [PDF], which offered a long meditation on why people are willing to believe that a simple machine might be able to understand their complex human emotions.
In this book, he argues that the Eliza effect signifies a broader pathology afflicting “modern man.” In a world conquered by science, technology, and capitalism, people had grown accustomed to viewing themselves as isolated cogs in a large and uncaring machine. In such a diminished social world, Weizenbaum reasoned, people had grown so desperate for connection that they put aside their reason and judgment in order to believe that a program could care about their problems.
Weizenbaum spent the rest of his life developing this humanistic critique of artificial intelligence and digital technology. His mission was to remind people that their machines were not as smart as they were often said to be. And that even though it sometimes appeared as though they could talk, they were never really listening.
This is the fourth installment of a six-part series on the history of natural language processing. Last week’s post described Andrey Markov and Claude Shannon’s painstaking efforts to create statistical models of language for text generation. Come back next Monday for part five, “In 2016, Microsoft’s Racist Chatbot Revealed the Dangers of Conversation.”
You can also check out our prior series on the untold history of AI. Continue reading
#436174 How Selfish Are You? It Matters for ...
Our personalities impact almost everything we do, from the career path we choose to the way we interact with others to how we spend our free time.
But what about the way we drive—could personality be used to predict whether a driver will cut someone off, speed, or, say, zoom through a yellow light instead of braking?
There must be something to the idea that those of us who are more mild-mannered are likely to drive a little differently than the more assertive among us. At least, that’s what a team from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) is betting on.
“Working with and around humans means figuring out their intentions to better understand their behavior,” said graduate student Wilko Schwarting, lead author on the paper published this week in Proceedings of the National Academy of Sciences. “People’s tendencies to be collaborative or competitive often spills over into how they behave as drivers. In this paper we sought to understand if this was something we could actually quantify.”
The team is building a model that classifies drivers according to how selfish or selfless they are, then uses that classification to help predict how drivers will behave on the road. Ideally, the system will help improve safety for self-driving cars by integrating a degree of ‘humanity’ into how their software perceives its surroundings; right now, human drivers and their cars are just another object, not much different than a tree or a sign.
But unlike trees and signs, humans have behavioral patterns and motivations. For greater success on roads that are still dominated by us mercurial humans, the CSAIL team believes, driverless cars should take our personalities into account.
How Selfish Are You?
About how important is your own well-being to you vs. the well-being of other people? It’s a hard question to answer without specifying who the other people are; your answer would likely differ if we’re talking about your friends, loved ones, strangers, or people you actively dislike.
In social psychology, social value orientation (SVO) refers to people’s preferences for allocating resources between themselves and others. The two broad categories people can fall into are pro-social (people who are more cooperative, and expect cooperation from others) and pro-self (pretty self-explanatory: “Me first!”).
Based on drivers’ behavior in two different road scenarios—merging and making a left turn—the CSAIL team’s model classified drivers as pro-social or egoistic. Slowing down to let someone merge into your lane in front of you would earn you a pro-social classification, while cutting someone off or not slowing down to allow a left turn would make you egoistic.
On the Road
The system then uses these classifications to model and predict drivers’ behavior. The team demonstrated that using their model, errors in predicting the behavior of other cars were reduced by 25 percent.
In a left-turn simulation, for example, their car would wait when an approaching car had an egoistic driver, but go ahead and make the turn when the other driver was prosocial. Similarly, if a self-driving car is trying to merge into the left lane and it’s identified the drivers in that lane as egoistic, it will assume they won’t slow down to let it in, and will wait to merge behind them. If, on the other hand, the self-driving car knows that the human drivers in the left lane are prosocial, it will attempt to merge between them since they’re likely to let it in.
So how does this all translate to better safety?
It’s essentially a starting point for imbuing driverless cars with some of the abilities and instincts that are innate to humans. If you’re driving down the highway and you see a car swerving outside its lane, you’ll probably distance yourself from that car because you know it’s more likely to cause an accident. Our senses take in information we can immediately interpret and act on, and this includes predictions about what might happen based on observations of what just happened. Our observations can clue us in to a driver’s personality (the swerver must be careless) or simply to the circumstances of a given moment (the swerver was texting).
But right now, self-driving cars assume all human drivers behave the same way, and they have no mechanism for incorporating observations about behavioral differences between drivers into their decisions.
“Creating more human-like behavior in autonomous vehicles (AVs) is fundamental for the safety of passengers and surrounding vehicles, since behaving in a predictable manner enables humans to understand and appropriately respond to the AV’s actions,” said Schwarting.
Though it may feel a bit unsettling to think of an algorithm lumping you into a category and driving accordingly around you, maybe it’s less unsettling than thinking of self-driving cars as pre-programmed, oblivious robots unable to adapt to different driving styles.
The team’s next step is to apply their model to pedestrians, bikes, and other agents frequently found in driving environments. They also plan to look into other robotic systems acting among people, like household robots, and integrating social value orientation into their algorithms.
Image Credit: Image by Free-Photos from Pixabay Continue reading