Tag Archives: legged

#436186 Video Friday: Invasion of the Mini ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, Wash., USA
Let us know if you have suggestions for next week, and enjoy today’s videos.

There will be a Mini-Cheetah Workshop (sponsored by Naver Labs) a year from now at IROS 2020 in Las Vegas. Mini-Cheetahs for everyone!

That’s just a rendering, of course, but this isn’t:

[ MCW ]

I was like 95 percent sure that the Urban Circuit of the DARPA SubT Challenge was going to be in something very subway station-y. Oops!

In the Subterranean (SubT) Challenge, teams deploy autonomous ground and aerial systems to attempt to map, identify, and report artifacts along competition courses in underground environments. The artifacts represent items a first responder or service member may encounter in unknown underground sites. This video provides a preview of the Urban Circuit event location. The Urban Circuit is scheduled for February 18-27, 2020, at Satsop Business Park west of Olympia, Washington.

[ SubT ]

Researchers at SEAS and the Wyss Institute for Biologically Inspired Engineering have developed a resilient RoboBee powered by soft artificial muscles that can crash into walls, fall onto the floor, and collide with other RoboBees without being damaged. It is the first microrobot powered by soft actuators to achieve controlled flight.

To solve the problem of power density, the researchers built upon the electrically-driven soft actuators developed in the lab of David Clarke, the Extended Tarr Family Professor of Materials. These soft actuators are made using dielectric elastomers, soft materials with good insulating properties, that deform when an electric field is applied. By improving the electrode conductivity, the researchers were able to operate the actuator at 500 Hertz, on par with the rigid actuators used previously in similar robots.

Next, the researchers aim to increase the efficiency of the soft-powered robot, which still lags far behind more traditional flying robots.

[ Harvard ]

We present a system for fast and robust handovers with a robot character, together with a user study investigating the effect of robot speed and reaction time on perceived interaction quality. The system can match and exceed human speeds and confirms that users prefer human-level timing.

In a 3×3 user study, we vary the speed of the robot and add variable sensorimotor delays. We evaluate the social perception of the robot using the Robot Social Attribute Scale (RoSAS). Inclusion of a small delay, mimicking the delay of the human sensorimotor system, leads to an improvement in perceived qualities over both no delay and long delay conditions. Specifically, with no delay the robot is perceived as more discomforting and with a long delay, it is perceived as less warm.

[ Disney Research ]

When cars are autonomous, they’re not going to be able to pump themselves full of gas. Or, more likely, electrons. Kuka has the solution.

[ Kuka ]

This looks like fun, right?

[ Robocoaster ]

NASA is leading the way in the use of On-orbit Servicing, Assembly, and Manufacturing to enable large, persistent, upgradable, and maintainable spacecraft. This video was developed by the Advanced Concepts Lab (ACL) at NASA Langley Research Center.

[ NASA ]

The noisiest workshop by far at Humanoids last month (by far) was Musical Interactions With Humanoids, the end result of which was this:

[ Workshop ]

IROS is an IEEE event, and in furthering the IEEE mission to benefit humanity through technological innovation, IROS is doing a great job. But don’t take it from us – we are joined by IEEE President-Elect Professor Toshio Fukuda to find out a bit more about the impact events like IROS can have, as well as examine some of the issues around intelligent robotics and systems – from privacy to transparency of the systems at play.

[ IROS ]

Speaking of IROS, we hope you’ve been enjoying our coverage. We have already featured Harvard’s strange sea-urchin-inspired robot and a Japanese quadruped that can climb vertical ladders, with more stories to come over the next several weeks.

In the mean time, enjoy these 10 videos from the conference (as usual, we’re including the title, authors, and abstract for each—if you’d like more details about any of these projects, let us know and we’ll find out more for you).

“A Passive Closing, Tendon Driven, Adaptive Robot Hand for Ultra-Fast, Aerial Grasping and Perching,” by Andrew McLaren, Zak Fitzgerald, Geng Gao, and Minas Liarokapis from the University of Auckland, New Zealand.

Current grasping methods for aerial vehicles are slow, inaccurate and they cannot adapt to any target object. Thus, they do not allow for on-the-fly, ultra-fast grasping. In this paper, we present a passive closing, adaptive robot hand design that offers ultra-fast, aerial grasping for a wide range of everyday objects. We investigate alternative uses of structural compliance for the development of simple, adaptive robot grippers and hands and we propose an appropriate quick release mechanism that facilitates an instantaneous grasping execution. The quick release mechanism is triggered by a simple distance sensor. The proposed hand utilizes only two actuators to control multiple degrees of freedom over three fingers and it retains the superior grasping capabilities of adaptive grasping mechanisms, even under significant object pose or other environmental uncertainties. The hand achieves a grasping time of 96 ms, a maximum grasping force of 56 N and it is able to secure objects of various shapes at high speeds. The proposed hand can serve as the end-effector of grasping capable Unmanned Aerial Vehicle (UAV) platforms and it can offer perching capabilities, facilitating autonomous docking.

“Unstructured Terrain Navigation and Topographic Mapping With a Low-Cost Mobile Cuboid Robot,” by Andrew S. Morgan, Robert L. Baines, Hayley McClintock, and Brian Scassellati from Yale University, USA.

Current robotic terrain mapping techniques require expensive sensor suites to construct an environmental representation. In this work, we present a cube-shaped robot that can roll through unstructured terrain and construct a detailed topographic map of the surface that it traverses in real time with low computational and monetary expense. Our approach devolves many of the complexities of locomotion and mapping to passive mechanical features. Namely, rolling movement is achieved by sequentially inflating latex bladders that are located on four sides of the robot to destabilize and tip it. Sensing is achieved via arrays of fine plastic pins that passively conform to the geometry of underlying terrain, retracting into the cube. We developed a topography by shade algorithm to process images of the displaced pins to reconstruct terrain contours and elevation. We experimentally validated the efficacy of the proposed robot through object mapping and terrain locomotion tasks.

“Toward a Ballbot for Physically Leading People: A Human-Centered Approach,” by Zhongyu Li and Ralph Hollis from Carnegie Mellon University, USA.

This work presents a new human-centered method for indoor service robots to provide people with physical assistance and active guidance while traveling through congested and narrow spaces. As most previous work is robot-centered, this paper develops an end-to-end framework which includes a feedback path of the measured human positions. The framework combines a planning algorithm and a human-robot interaction module to guide the led person to a specified planned position. The approach is deployed on a person-size dynamically stable mobile robot, the CMU ballbot. Trials were conducted where the ballbot physically led a blindfolded person to safely navigate in a cluttered environment.

“Achievement of Online Agile Manipulation Task for Aerial Transformable Multilink Robot,” by Fan Shi, Moju Zhao, Tomoki Anzai, Keita Ito, Xiangyu Chen, Kei Okada, and Masayuki Inaba from the University of Tokyo, Japan.

Transformable aerial robots are favorable in aerial manipulation tasks for their flexible ability to change configuration during the flight. By assuming robot keeping in the mild motion, the previous researches sacrifice aerial agility to simplify the complex non-linear system into a single rigid body with a linear controller. In this paper, we present a framework towards agile swing motion for the transformable multi-links aerial robot. We introduce a computational-efficient non-linear model predictive controller and joints motion primitive frame-work to achieve agile transforming motions and validate with a novel robot named HYRURS-X. Finally, we implement our framework under a table tennis task to validate the online and agile performance.

“Small-Scale Compliant Dual Arm With Tail for Winged Aerial Robots,” by Alejandro Suarez, Manuel Perez, Guillermo Heredia, and Anibal Ollero from the University of Seville, Spain.

Winged aerial robots represent an evolution of aerial manipulation robots, replacing the multirotor vehicles by fixed or flapping wing platforms. The development of this morphology is motivated in terms of efficiency, endurance and safety in some inspection operations where multirotor platforms may not be suitable. This paper presents a first prototype of compliant dual arm as preliminary step towards the realization of a winged aerial robot capable of perching and manipulating with the wings folded. The dual arm provides 6 DOF (degrees of freedom) for end effector positioning in a human-like kinematic configuration, with a reach of 25 cm (half-scale w.r.t. the human arm), and 0.2 kg weight. The prototype is built with micro metal gear motors, measuring the joint angles and the deflection with small potentiometers. The paper covers the design, electronics, modeling and control of the arms. Experimental results in test-bench validate the developed prototype and its functionalities, including joint position and torque control, bimanual grasping, the dynamic equilibrium with the tail, and the generation of 3D maps with laser sensors attached at the arms.

“A Novel Small-Scale Turtle-inspired Amphibious Spherical Robot,” by Huiming Xing, Shuxiang Guo, Liwei Shi, Xihuan Hou, Yu Liu, Huikang Liu, Yao Hu, Debin Xia, and Zan Li from Beijing Institute of Technology, China.

This paper describes a novel small-scale turtle-inspired Amphibious Spherical Robot (ASRobot) to accomplish exploration tasks in the restricted environment, such as amphibious areas and narrow underwater cave. A Legged, Multi-Vectored Water-Jet Composite Propulsion Mechanism (LMVWCPM) is designed with four legs, one of which contains three connecting rod parts, one water-jet thruster and three joints driven by digital servos. Using this mechanism, the robot is able to walk like amphibious turtles on various terrains and swim flexibly in submarine environment. A simplified kinematic model is established to analyze crawling gaits. With simulation of the crawling gait, the driving torques of different joints contributed to the choice of servos and the size of links of legs. Then we also modeled the robot in water and proposed several underwater locomotion. In order to assess the performance of the proposed robot, a series of experiments were carried out in the lab pool and on flat ground using the prototype robot. Experiments results verified the effectiveness of LMVWCPM and the amphibious control approaches.

“Advanced Autonomy on a Low-Cost Educational Drone Platform,” by Luke Eller, Theo Guerin, Baichuan Huang, Garrett Warren, Sophie Yang, Josh Roy, and Stefanie Tellex from Brown University, USA.

PiDrone is a quadrotor platform created to accompany an introductory robotics course. Students build an autonomous flying robot from scratch and learn to program it through assignments and projects. Existing educational robots do not have significant autonomous capabilities, such as high-level planning and mapping. We present a hardware and software framework for an autonomous aerial robot, in which all software for autonomy can run onboard the drone, implemented in Python. We present an Unscented Kalman Filter (UKF) for accurate state estimation. Next, we present an implementation of Monte Carlo (MC) Localization and Fast-SLAM for Simultaneous Localization and Mapping (SLAM). The performance of UKF, localization, and SLAM is tested and compared to ground truth, provided by a motion-capture system. Our evaluation demonstrates that our autonomous educational framework runs quickly and accurately on a Raspberry Pi in Python, making it ideal for use in educational settings.

“FlightGoggles: Photorealistic Sensor Simulation for Perception-driven Robotics using Photogrammetry and Virtual Reality,” by Winter Guerra, Ezra Tal, Varun Murali, Gilhyun Ryou and Sertac Karaman from the Massachusetts Institute of Technology, USA.

FlightGoggles is a photorealistic sensor simulator for perception-driven robotic vehicles. The key contributions of FlightGoggles are twofold. First, FlightGoggles provides photorealistic exteroceptive sensor simulation using graphics assets generated with photogrammetry. Second, it provides the ability to combine (i) synthetic exteroceptive measurements generated in silico in real time and (ii) vehicle dynamics and proprioceptive measurements generated in motio by vehicle(s) in flight in a motion-capture facility. FlightGoggles is capable of simulating a virtual-reality environment around autonomous vehicle(s) in flight. While a vehicle is in flight in the FlightGoggles virtual reality environment, exteroceptive sensors are rendered synthetically in real time while all complex dynamics are generated organically through natural interactions of the vehicle. The FlightGoggles framework allows for researchers to accelerate development by circumventing the need to estimate complex and hard-to-model interactions such as aerodynamics, motor mechanics, battery electrochemistry, and behavior of other agents. The ability to perform vehicle-in-the-loop experiments with photorealistic exteroceptive sensor simulation facilitates novel research directions involving, e.g., fast and agile autonomous flight in obstacle-rich environments, safe human interaction, and flexible sensor selection. FlightGoggles has been utilized as the main test for selecting nine teams that will advance in the AlphaPilot autonomous drone racing challenge. We survey approaches and results from the top AlphaPilot teams, which may be of independent interest. FlightGoggles is distributed as open-source software along with the photorealistic graphics assets for several simulation environments, under the MIT license at http://flightgoggles.mit.edu.

“An Autonomous Quadrotor System for Robust High-Speed Flight Through Cluttered Environments Without GPS,” by Marc Rigter, Benjamin Morrell, Robert G. Reid, Gene B. Merewether, Theodore Tzanetos, Vinay Rajur, KC Wong, and Larry H. Matthies from University of Sydney, Australia; NASA Jet Propulsion Laboratory, California Institute of Technology, USA; and Georgia Institute of Technology, USA.

Robust autonomous flight without GPS is key to many emerging drone applications, such as delivery, search and rescue, and warehouse inspection. These and other appli- cations require accurate trajectory tracking through cluttered static environments, where GPS can be unreliable, while high- speed, agile, flight can increase efficiency. We describe the hardware and software of a quadrotor system that meets these requirements with onboard processing: a custom 300 mm wide quadrotor that uses two wide-field-of-view cameras for visual- inertial motion tracking and relocalization to a prior map. Collision-free trajectories are planned offline and tracked online with a custom tracking controller. This controller includes compensation for drag and variability in propeller performance, enabling accurate trajectory tracking, even at high speeds where aerodynamic effects are significant. We describe a system identification approach that identifies quadrotor-specific parameters via maximum likelihood estimation from flight data. Results from flight experiments are presented, which 1) validate the system identification method, 2) show that our controller with aerodynamic compensation reduces tracking error by more than 50% in both horizontal flights at up to 8.5 m/s and vertical flights at up to 3.1 m/s compared to the state-of-the-art, and 3) demonstrate our system tracking complex, aggressive, trajectories.

“Morphing Structure for Changing Hydrodynamic Characteristics of a Soft Underwater Walking Robot,” by Michael Ishida, Dylan Drotman, Benjamin Shih, Mark Hermes, Mitul Luhar, and Michael T. Tolley from the University of California, San Diego (UCSD) and University of Southern California, USA.

Existing platforms for underwater exploration and inspection are often limited to traversing open water and must expend large amounts of energy to maintain a position in flow for long periods of time. Many benthic animals overcome these limitations using legged locomotion and have different hydrodynamic profiles dictated by different body morphologies. This work presents an underwater legged robot with soft legs and a soft inflatable morphing body that can change shape to influence its hydrodynamic characteristics. Flow over the morphing body separates behind the trailing edge of the inflated shape, so whether the protrusion is at the front, center, or back of the robot influences the amount of drag and lift. When the legged robot (2.87 N underwater weight) needs to remain stationary in flow, an asymmetrically inflated body resists sliding by reducing lift on the body by 40% (from 0.52 N to 0.31 N) at the highest flow rate tested while only increasing drag by 5.5% (from 1.75 N to 1.85 N). When the legged robot needs to walk with flow, a large inflated body is pushed along by the flow, causing the robot to walk 16% faster than it would with an uninflated body. The body shape significantly affects the ability of the robot to walk against flow as it is able to walk against 0.09 m/s flow with the uninflated body, but is pushed backwards with a large inflated body. We demonstrate that the robot can detect changes in flow velocity with a commercial force sensor and respond by morphing into a hydrodynamically preferable shape. Continue reading

Posted in Human Robots

#436155 This MIT Robot Wants to Use Your ...

MIT researchers have demonstrated a new kind of teleoperation system that allows a two-legged robot to “borrow” a human operator’s physical skills to move with greater agility. The system works a bit like those haptic suits from the Spielberg movie “Ready Player One.” But while the suits in the film were used to connect humans to their VR avatars, the MIT suit connects the operator to a real robot.

The robot is called Little HERMES, and it’s currently just a pair of little legs, about a third the size of an average adult. It can step and jump in place or walk a short distance while supported by a gantry. While that in itself is not very impressive, the researchers say their approach could help bring capable disaster robots closer to reality. They explain that, despite recent advances, building fully autonomous robots with motor and decision-making skills comparable to those of humans remains a challenge. That’s where a more advanced teleoperation system could help.

The researchers, João Ramos, now an assistant professor at the University of Illinois at Urbana-Champaign, and Sangbae Kim, director of MIT’s Biomimetic Robotics Lab, describe the project in this week’s issue of Science Robotics. In the paper, they argue that existing teleoperation systems often can’t effectively match the operator’s motions to that of a robot. In addition, conventional systems provide no physical feedback to the human teleoperator about what the robot is doing. Their new approach addresses these two limitations, and to see how it would work in practice, they built Little HERMES.

Image: Science Robotics

The main components of MIT’s bipedal robot Little HERMES: (A) Custom actuators designed to withstand impact and capable of producing high torque. (B) Lightweight limbs with low inertia and fast leg swing. (C) Impact-robust and lightweight foot sensors with three-axis contact force sensor. (D) Ruggedized IMU to estimates the robot’s torso posture, angular rate, and linear acceleration. (E) Real-time computer sbRIO 9606 from National Instruments for robot control. (F) Two three-cell lithium-polymer batteries in series. (G) Rigid and lightweight frame to minimize the robot mass.

Early this year, the MIT researchers wrote an in-depth article for IEEE Spectrum about the project, which includes Little HERMES and also its big brother, HERMES (for Highly Efficient Robotic Mechanisms and Electromechanical System). In that article, they describe the two main components of the system:

[…] We are building a telerobotic system that has two parts: a humanoid capable of nimble, dynamic behaviors, and a new kind of two-way human-machine interface that sends your motions to the robot and the robot’s motions to you. So if the robot steps on debris and starts to lose its balance, the operator feels the same instability and instinctively reacts to avoid falling. We then capture that physical response and send it back to the robot, which helps it avoid falling, too. Through this human-robot link, the robot can harness the operator’s innate motor skills and split-second reflexes to keep its footing.

You could say we’re putting a human brain inside the machine.

Image: Science Robotics

The human-machine interface built by the MIT researchers for controlling Little HERMES is different from conventional ones in that it relies on the operator’s reflexes to improve the robot’s stability. The researchers call it the balance-feedback interface, or BFI. The main modules of the BFI include: (A) Custom interface attachments for torso and feet designed to capture human motion data at high speed (1 kHz). (B) Two underactuated modules to track the position and orientation of the torso and apply forces to the operator. (C) Each actuation module has three DoFs, one of which is a push/pull rod actuated by a DC brushless motor. (D) A series of linkages with passive joints connected to the operator’s feet and track their spatial translation. (E) Real-time controller cRIO 9082 from National Instruments to close the BFI control loop. (F) Force plate to estimated the operator’s center of pressure position and measure the shear and normal components of the operator’s net contact force.

Here’s more footage of the experiments, showing Little HERMES stepping and jumping in place, walking a few steps forward and backward, and balancing. Watch until the end to see a compilation of unsuccessful stepping experiments. Poor Little HERMES!

In the new Science Robotics paper, the MIT researchers explain how they solved one of the key challenges in making their teleoperation system effective:

The challenge of this strategy lies in properly mapping human body motion to the machine while simultaneously informing the operator how closely the robot is reproducing the movement. Therefore, we propose a solution for this bilateral feedback policy to control a bipedal robot to take steps, jump, and walk in synchrony with a human operator. Such dynamic synchronization was achieved by (i) scaling the core components of human locomotion data to robot proportions in real time and (ii) applying feedback forces to the operator that are proportional to the relative velocity between human and robot.

Little HERMES is now taking its first steps, quite literally, but the researchers say they hope to use robotic legs with similar design as part of a more advanced humanoid. One possibility they’ve envisioned is a fast-moving quadruped robot that could run through various kinds of terrain and then transform into a bipedal robot that would use its hands to perform dexterous manipulations. This could involve merging some of the robots the MIT researchers have built in their lab, possibly creating hybrids between Cheetah and HERMES, or Mini Cheetah and Little HERMES. We can’t wait to see what the resulting robots will look like.

[ Science Robotics ] Continue reading

Posted in Human Robots

#436146 Video Friday: Kuka’s Robutt Is a ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Kuka’s “robutt” can, according to the company, simulate “thousands of butts in the pursuit of durability and comfort.” Two of the robots are used at a Ford development center in Germany to evaluate new car seats. The tests are quite exhaustive, consisting of around 25,000 simulated sitting motions for each new seat design.” Or as Kuka puts it, “Pleasing all the butts on the planet is serious business.”

[ Kuka ]

Here’s a clever idea: 3D printing manipulators, and then using the 3D printer head to move those manipulators around and do stuff with them:

[ Paper ]

Two former soldiers performed a series of tests to see if the ONYX Exoskeleton gave them extra strength and endurance in difficult environments.

So when can I rent one of these to help me move furniture?

[ Lockheed ]

One of the defining characteristics of legged robots in general (and humanoid robots in particular) is the ability of walking on various types of terrain. In this video, we show our humanoid robot TORO walking dynamically over uneven (on grass outside the lab), rough (large gravel), and compliant terrain (a soft gym mattress). The robot can maintain its balance, even when the ground shifts rapidly under foot, such as when walking over gravel. This behaviour showcases the torque-control capability of quickly adapting the contact forces compared to position control methods.

An in-depth discussion of the current implementation is presented in the paper “Dynamic Walking on Compliant and Uneven Terrain using DCM and Passivity-based Whole-body Control”.

[ DLR RMC ]

Tsuki is a ROS-enabled quadruped designed and built by Lingkang Zhang. It’s completely position controlled, with no contact sensors on the feet, or even an IMU.

It can even do flips!

[ Tsuki ]

Thanks Lingkang!

TRI CEO Dr. Gill Pratt presents TRI’s contributions to Toyota’s New “LQ” Concept Vehicle, which includes onboard artificial intelligence agent “Yui” and LQ’s automated driving technology.

[ TRI ]

Hooman Hedayati wrote in to share some work (presented at HRI this year) on using augmented reality to make drone teleoperation more intuitive. Get a virtual drone to do what you want first, and then the real drone will follow.

[ Paper ]

Thanks Hooman!

You can now order a Sphero RVR for $250. It’s very much not spherical, but it does other stuff, so we’ll give it a pass.

[ Sphero ]

The AI Gamer Q56 robot is an expert at whatever this game is, using AI plus actual physical control manipulation. Watch until the end!

[ Bandai Namco ]

We present a swarm of autonomous flying robots for the exploration of unknown environments. The tiny robots do not make maps of their environment, but deal with obstacles on the fly. In robotics, the algorithms for navigating like this are called “bug algorithms”. The navigation of the robots involves them first flying away from the base station and later finding their way back with the help of a wireless beacon.

[ MAVLab ]

Okay Soft Robotics you successfully and disgustingly convinced us that vacuum grippers should never be used for food handling. Yuck!

[ Soft Robotics ]

Beyond the asteroid belt are “fossils of planet formation” known as the Trojan asteroids. These primitive bodies share Jupiter’s orbit in two vast swarms, and may hold clues to the formation and evolution of our solar system. Now, NASA is preparing to explore the Trojan asteroids for the first time. A mission called Lucy will launch in 2021 and visit seven asteroids over the course of twelve years – one in the main belt and six in Jupiter’s Trojan swarms.

[ NASA ]

I’m not all that impressed by this concept car from Lexus except that it includes some kind of super-thin autonomous luggage-carrying drone.

The LF-30 Electrified also carries the ‘Lexus Airporter’ drone-technology support vehicle. Using autonomous control, the Lexus Airporter is capable of such tasks as independently transporting baggage from a household doorstep to the vehicle’s luggage area.

[ Lexus ]

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

Tech United Eindhoven is looking good for RoboCup@Home 2020.

[ Tech United ]

Penn engineers participated in the Subterranean (SubT) Challenge hosted by DARPA, the Defense Advanced Research Projects Agency. The goal of this Challenge is for teams to develop automated systems that can work in underground environments so they could be deployed after natural disasters or on dangerous search-and-rescue missions.

[ Team PLUTO ]

It’s BeetleCam vs White Rhinos in Kenya, and the White Rhinos don’t seem to mind at all.

[ Will Burrard-Lucas ] Continue reading

Posted in Human Robots

#436094 Agility Robotics Unveils Upgraded Digit ...

Last time we saw Agility Robotics’ Digit biped, it was picking up a box from a Ford delivery van and autonomously dropping it off on a porch, while at the same time managing to not trip over stairs, grass, or small children. As a demo, it was pretty impressive, but of course there’s an enormous gap between making a video of a robot doing a successful autonomous delivery and letting that robot out into the semi-structured world and expecting it to reliably do a good job.

Agility Robotics is aware of this, of course, and over the last six months they’ve been making substantial improvements to Digit to make it more capable and robust. A new video posted today shows what’s new with the latest version of Digit—Digit v2.

We appreciate Agility Robotics foregoing music in the video, which lets us hear exactly what Digit sounds like in operation. The most noticeable changes are in Digit’s feet, torso, and arms, and I was particularly impressed to see Digit reposition the box on the table before grasping it to make sure that it could get a good grip. Otherwise, it’s hard to tell what’s new, so we asked Agility Robotics’ CEO Damion Shelton to get us up to speed.

IEEE Spectrum: Can you summarize the differences between Digit v1 and v2? We’re particularly interested in the new feet.

Damion Shelton: The feet now include a roll degree of freedom, so that Digit can resist lateral forces without needing to side step. This allows Digit v2 to balance on one foot statically, which Digit v1 and Cassie could not do. The larger foot also dramatically decreases load per unit area, for improved performance on very soft surfaces like sand.

The perception stack includes four Intel RealSense cameras used for obstacle detection and pick/place, plus the lidar. In Digit v1, the perception systems were brought up incrementally over time for development purposes. In Digit v2, all perception systems are active from the beginning and tied to a dedicated computer. The perception system is used for a number of additional things beyond manipulation, which we’ll start to show in the next few weeks.

The torso changes are a bit more behind-the-scenes. All of the electronics in it are now fully custom, thermally managed, and environmentally sealed. We’ve also included power and ethernet to a payload bay that can fit either a NUC or Jetson module (or other customer payload).

What exactly are we seeing in the video in terms of Digit’s autonomous capabilities?

At the moment this is a demonstration of shared autonomy. Picking and placing the box is fully autonomous. Balance and footstep placement are fully autonomous, but guidance and obstacle avoidance are under local teleop. It’s no longer a radio controller as in early videos; we’re not ready to reveal our current controller design but it’s a reasonably significant upgrade. This is v2 hardware, so there’s one more full version in development prior to the 2020 launch, which will expand the autonomy envelope significantly.

“This is a demonstration of shared autonomy. Picking and placing the box is fully autonomous. Balance and footstep placement are fully autonomous, but guidance and obstacle avoidance are under local teleop. It’s no longer a radio controller as in early videos; we’re not ready to reveal our current controller design but it’s a reasonably significant upgrade”
—Damion Shelton, Agility Robotics

What are some unique features or capabilities of Digit v2 that might not be obvious from the video?

For those who’ve used Cassie robots, the power-up and power-down ergonomics are a lot more user friendly. Digit can be disassembled into carry-on luggage sized pieces (give or take) in under 5 minutes for easy transport. The battery charges in-situ using a normal laptop-style charger.

I’m curious about this “stompy” sort of gait that we see in Digit and many other bipedal robots—are there significant challenges or drawbacks to implementing a more human-like (and presumably quieter) heel-toe gait?

There are no drawbacks other than increased complexity in controls and foot design. With Digit v2, the larger surface area helps with the noise, and v2 has similar or better passive-dynamic performance as compared to Cassie or Digit v1. The foot design is brand new, and new behaviors like heel-toe are an active area of development.

How close is Digit v2 to a system that you’d be comfortable operating commercially?

We’re on track for a 2020 launch for Digit v3. Changes from v2 to v3 are mostly bug-fix in nature, with a few regulatory upgrades like full battery certification. Safety is a major concern for us, and we have launch customers that will be operating Digit in a safe environment, with a phased approach to relaxing operational constraints. Digit operates almost exclusively under force control (as with cobots more generally), but at the moment we’ll err on the side of caution during operation until we have the stats to back up safety and reliability. The legged robot industry has too much potential for us to screw it up by behaving irresponsibly.

It will be a while before Digit (or any other humanoid robot) is operating fully autonomously in crowds of people, but there are so many large market opportunities (think indoor factory/warehouse environments) to address prior to that point that we expect to mature the operational safety side of things well in advance of having saturated the more robot-tolerant markets.

[ Agility Robotics ] Continue reading

Posted in Human Robots

#436042 Video Friday: Caltech’s Drone With ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Caltech has been making progress on LEONARDO (LEg ON Aerial Robotic DrOne), their leggy thruster powered humanoid-thing. It can now balance and walk, which is quite impressive to see.

We’ll circle back again when they’ve got it jumping and floating around.

[ Caltech ]

Turn the subtitles on to learn how robots became experts at slicing bubbly, melty, delicious cheese.

These robots learned how to do the traditional Swiss raclette from demonstration. The Robot Learning & Interaction group at the Idiap Research Institute has developed an imitation learning technique allowing the robot to acquire new skills by considering position and force information, with an automatic adaptation to new situations. The range of applications is wide, including industrial robots, service robots, and assistive robots.

[ Idiap ]

Thanks Sylvain!

Some amazing news this week from Skydio, with the announcement of their better in every single way Skydio 2 autonomous drone. Read our full article for details, but here’s a getting started video that gives you an overview of what the drone can do.

The first batch sold out in 36 hours, but you can put down a $100 deposit to reserve the $999 drone for 2020 delivery.

[ Skydio ]

UBTECH is introducing a couple new robot kits for the holidays: ChampBot and FireBot.

$130 each, available on October 20.

[ Ubtech ]

NASA’s InSight lander on Mars is trying to use its robotic arm to get the mission’s heat flow probe, or mole, digging again. InSight team engineer Ashitey Trebbi-Ollennu, based at NASA’s Jet Propulsion Laboratory in Pasadena, California, explains what has been attempted and the game plan for the coming weeks. The next tactic they’ll try will be “pinning” the mole against the hole it’s in.

[ NASA ]

We introduce shape-changing swarm robots. A swarm of self-transformable robots can both individually and collectively change their configuration to display information, actuate objects, act as tangible controllers, visualize data, and provide physical affordances. ShapeBots is a concept prototype of shape-changing swarm robots. Each robot can change its shape by leveraging small linear actuators that are thin (2.5 cm) and highly extendable (up to 20cm) in both horizontal and vertical directions.

[ Ryo Suzuki ]

Robot abuse!

Vision 60 legged robot managing unstructured terrain without vision or force sensors in its legs. Using only high-transparency actuators and 2kHz algorithmic stability control… 4-limbs and 12-motors with only a velocity command.

[ Ghost Robotics ]

We asked real people to bring in real products they needed picked for their application. In MINUTES, we assembled the right tool.

This is a cool idea, but for a real challenge they should try it outside a supermarket. Or a pet store.

[ Soft Robotics ]

Good water quality is important to humans and to nature. In a country with as much water as the Netherlands has, ensuring water quality is a very labour-intensive undertaking. To address this issue, researchers from TU Delft have developed a ‘pelican drone’: a drone capable of taking water samples quickly, in combination with a measuring instrument that immediately analyses the water quality. The drone was tested this week at the new Marker Wadden nature area ‘Living Lab’.

[ MAVLab ]

In an international collaboration led by scientists in Switzerland, three amputees merge with their bionic prosthetic legs as they climb over various obstacles without having to look. The amputees report using and feeling their bionic leg as part of their own body, thanks to sensory feedback from the prosthetic leg that is delivered to nerves in the leg’s stump.

[ EPFL ]

It’s a little hard to see, but this is one way of testing out asteroid imaging spacecraft without actually going into space: a fake asteroid and a 2D microgravity simulator.

[ Caltech ]

Drones can help filmmakers do the kinds of shots that would be otherwise impossible.

[ DJI ]

Two long interviews this week from Lex Fridman’s AI Podcast, and both of them are worth watching: Gary Marcus, and Peter Norvig.

[ AI Podcast ]

This week’s CMU RI Seminar comes from Tucker Hermans at the University of Utah, on “Improving Multi-fingered Robot Manipulation by Unifying Learning and Planning.”

Multi-fingered hands offer autonomous robots increased dexterity, versatility, and stability over simple two-fingered grippers. Naturally, this increased ability comes with increased complexity in planning and executing manipulation actions. As such, I propose combining model-based planning with learned components to improve over purely data-driven or purely-model based approaches to manipulation. This talk examines multi-fingered autonomous manipulation when the robot has only partial knowledge of the object of interest. I will first present results on planning multi-fingered grasps for novel objects using a learned neural network. I will then present our approach to planning in-hand manipulation tasks when dynamic properties of objects are not known. I will conclude with a discussion of our ongoing and future research to further unify these two approaches.

[ CMU RI ] Continue reading

Posted in Human Robots