Tag Archives: latest

#433412 Why we love robotic dogs, puppets and ...

There's a lot of hype around the release of Sony's latest robotic dog. It's called Aibo, and is promoted as using artificial intelligence to respond to people looking at it, talking to it and touching it. Continue reading

Posted in Human Robots

#433386 What We Have to Gain From Making ...

The borders between the real world and the digital world keep crumbling, and the latter’s importance in both our personal and professional lives keeps growing. Some describe the melding of virtual and real worlds as part of the fourth industrial revolution. Said revolution’s full impact on us as individuals, our companies, communities, and societies is still unknown.

Greg Cross, chief business officer of New Zealand-based AI company Soul Machines, thinks one inescapable consequence of these crumbling borders is people spending more and more time interacting with technology. In a presentation at Singularity University’s Global Summit in San Francisco last month, Cross unveiled Soul Machines’ latest work and shared his views on the current state of human-like AI and where the technology may go in the near future.

Humanizing Technology Interaction
Cross started by introducing Rachel, one of Soul Machines’ “emotionally responsive digital humans.” The company has built 15 different digital humans of various sexes, groups, and ethnicities. Rachel, along with her “sisters” and “brothers,” has a virtual nervous system based on neural networks and biological models of different paths in the human brain. The system is controlled by virtual neurotransmitters and hormones akin to dopamine, serotonin, and oxytocin, which influence learning and behavior.

As a result, each digital human can have its own unique set of “feelings” and responses to interactions. People interact with them via visual and audio sensors, and the machines respond in real time.

“Over the last 20 or 30 years, the way we think about machines and the way we interact with machines has changed,” Cross said. “We’ve always had this view that they should actually be more human-like.”

The realism of the digital humans’ graphic representations comes thanks to the work of Soul Machines’ other co-founder, Dr. Mark Sager, who has won two Academy Awards for his work on some computer-generated movies, including James Cameron’s Avatar.

Cross pointed out, for example, that rather than being unrealistically flawless and clear, Rachel’s skin has blemishes and sun spots, just like real human skin would.

The Next Human-Machine Frontier
When people interact with each other face to face, emotional and intellectual engagement both heavily influence the interaction. What would it look like for machines to bring those same emotional and intellectual capacities to our interactions with them, and how would this type of interaction affect the way we use, relate to, and feel about AI?

Cross and his colleagues believe that humanizing artificial intelligence will make the technology more useful to humanity, and prompt people to use AI in more beneficial ways.

“What we think is a very important view as we move forward is that these machines can be more helpful to us. They can be more useful to us. They can be more interesting to us if they’re actually more like us,” Cross said.

It is an approach that seems to resonate with companies and organizations. For example, in the UK, where NatWest Bank is testing out Cora as a digital employee to help answer customer queries. In Germany, Daimler Financial Group plans to employ Sarah as something “similar to a personal concierge” for its customers. According to Cross, Daimler is looking at other ways it could deploy digital humans across the organization, from building digital service people, digital sales people, and maybe in the future, digital chauffeurs.

Soul Machines’ latest creation is Will, a digital teacher that can interact with children through a desktop, tablet, or mobile device and help them learn about renewable energy. Cross sees other social uses for digital humans, including potentially serving as doctors to rural communities.

Our Digital Friends—and Twins
Soul Machines is not alone in its quest to humanize technology. It is a direction many technology companies, including the likes of Amazon, also seem to be pursuing. Amazon is working on building a home robot that, according to Bloomberg, “could be a sort of mobile Alexa.”

Finding a more human form for technology seems like a particularly pervasive pursuit in Japan. Not just when it comes to its many, many robots, but also virtual assistants like Gatebox.

The Japanese approach was perhaps best summed up by famous android researcher Dr. Hiroshi Ishiguro, who I interviewed last year: “The human brain is set up to recognize and interact with humans. So, it makes sense to focus on developing the body for the AI mind, as well as the AI. I believe that the final goal for both Japanese and other companies and scientists is to create human-like interaction.”

During Cross’s presentation, Rob Nail, CEO and associate founder of Singularity University, joined him on the stage, extending an invitation to Rachel to be SU’s first fully digital faculty member. Rachel accepted, and though she’s the only digital faculty right now, she predicted this won’t be the case for long.

“In 10 years, all of you will have digital versions of yourself, just like me, to take on specific tasks and make your life a whole lot easier,” she said. “This is great news for me. I’ll have millions of digital friends.”

Image Credit: Soul Machines Continue reading

Posted in Human Robots

#433288 The New AI Tech Turning Heads in Video ...

A new technique using artificial intelligence to manipulate video content gives new meaning to the expression “talking head.”

An international team of researchers showcased the latest advancement in synthesizing facial expressions—including mouth, eyes, eyebrows, and even head position—in video at this month’s 2018 SIGGRAPH, a conference on innovations in computer graphics, animation, virtual reality, and other forms of digital wizardry.

The project is called Deep Video Portraits. It relies on a type of AI called generative adversarial networks (GANs) to modify a “target” actor based on the facial and head movement of a “source” actor. As the name implies, GANs pit two opposing neural networks against one another to create a realistic talking head, right down to the sneer or raised eyebrow.

In this case, the adversaries are actually working together: One neural network generates content, while the other rejects or approves each effort. The back-and-forth interplay between the two eventually produces a realistic result that can easily fool the human eye, including reproducing a static scene behind the head as it bobs back and forth.

The researchers say the technique can be used by the film industry for a variety of purposes, from editing facial expressions of actors for matching dubbed voices to repositioning an actor’s head in post-production. AI can not only produce highly realistic results, but much quicker ones compared to the manual processes used today, according to the researchers. You can read the full paper of their work here.

“Deep Video Portraits shows how such a visual effect could be created with less effort in the future,” said Christian Richardt, from the University of Bath’s motion capture research center CAMERA, in a press release. “With our approach, even the positioning of an actor’s head and their facial expression could be easily edited to change camera angles or subtly change the framing of a scene to tell the story better.”

AI Tech Different Than So-Called “Deepfakes”
The work is far from the first to employ AI to manipulate video and audio. At last year’s SIGGRAPH conference, researchers from the University of Washington showcased their work using algorithms that inserted audio recordings from a person in one instance into a separate video of the same person in a different context.

In this case, they “faked” a video using a speech from former President Barack Obama addressing a mass shooting incident during his presidency. The AI-doctored video injects the audio into an unrelated video of the president while also blending the facial and mouth movements, creating a pretty credible job of lip synching.

A previous paper by many of the same scientists on the Deep Video Portraits project detailed how they were first able to manipulate a video in real time of a talking head (in this case, actor and former California governor Arnold Schwarzenegger). The Face2Face system pulled off this bit of digital trickery using a depth-sensing camera that tracked the facial expressions of an Asian female source actor.

A less sophisticated method of swapping faces using a machine learning software dubbed FakeApp emerged earlier this year. Predictably, the tech—requiring numerous photos of the source actor in order to train the neural network—was used for more juvenile pursuits, such as injecting a person’s face onto a porn star.

The application gave rise to the term “deepfakes,” which is now used somewhat ubiquitously to describe all such instances of AI-manipulated video—much to the chagrin of some of the researchers involved in more legitimate uses.

Fighting AI-Created Video Forgeries
However, the researchers are keenly aware that their work—intended for benign uses such as in the film industry or even to correct gaze and head positions for more natural interactions through video teleconferencing—could be used for nefarious purposes. Fake news is the most obvious concern.

“With ever-improving video editing technology, we must also start being more critical about the video content we consume every day, especially if there is no proof of origin,” said Michael Zollhöfer, a visiting assistant professor at Stanford University and member of the Deep Video Portraits team, in the press release.

Toward that end, the research team is training the same adversarial neural networks to spot video forgeries. They also strongly recommend that developers clearly watermark videos that are edited through AI or otherwise, and denote clearly what part and element of the scene was modified.

To catch less ethical users, the US Department of Defense, through the Defense Advanced Research Projects Agency (DARPA), is supporting a program called Media Forensics. This latest DARPA challenge enlists researchers to develop technologies to automatically assess the integrity of an image or video, as part of an end-to-end media forensics platform.

The DARPA official in charge of the program, Matthew Turek, did tell MIT Technology Review that so far the program has “discovered subtle cues in current GAN-manipulated images and videos that allow us to detect the presence of alterations.” In one reported example, researchers have targeted eyes, which rarely blink in the case of “deepfakes” like those created by FakeApp, because the AI is trained on still pictures. That method would seem to be less effective to spot the sort of forgeries created by Deep Video Portraits, which appears to flawlessly match the entire facial and head movements between the source and target actors.

“We believe that the field of digital forensics should and will receive a lot more attention in the future to develop approaches that can automatically prove the authenticity of a video clip,” Zollhöfer said. “This will lead to ever-better approaches that can spot such modifications even if we humans might not be able to spot them with our own eyes.

Image Credit: Tancha / Shutterstock.com Continue reading

Posted in Human Robots

#433282 The 4 Waves of AI: Who Will Own the ...

Recently, I picked up Kai-Fu Lee’s newest book, AI Superpowers.

Kai-Fu Lee is one of the most plugged-in AI investors on the planet, managing over $2 billion between six funds and over 300 portfolio companies in the US and China.

Drawing from his pioneering work in AI, executive leadership at Microsoft, Apple, and Google (where he served as founding president of Google China), and his founding of VC fund Sinovation Ventures, Lee shares invaluable insights about:

The four factors driving today’s AI ecosystems;
China’s extraordinary inroads in AI implementation;
Where autonomous systems are headed;
How we’ll need to adapt.

With a foothold in both Beijing and Silicon Valley, Lee looks at the power balance between Chinese and US tech behemoths—each turbocharging new applications of deep learning and sweeping up global markets in the process.

In this post, I’ll be discussing Lee’s “Four Waves of AI,” an excellent framework for discussing where AI is today and where it’s going. I’ll also be featuring some of the hottest Chinese tech companies leading the charge, worth watching right now.

I’m super excited that this Tuesday, I’ve scored the opportunity to sit down with Kai-Fu Lee to discuss his book in detail via a webinar.

With Sino-US competition heating up, who will own the future of technology?

Let’s dive in.

The First Wave: Internet AI
In this first stage of AI deployment, we’re dealing primarily with recommendation engines—algorithmic systems that learn from masses of user data to curate online content personalized to each one of us.

Think Amazon’s spot-on product recommendations, or that “Up Next” YouTube video you just have to watch before getting back to work, or Facebook ads that seem to know what you’ll buy before you do.

Powered by the data flowing through our networks, internet AI leverages the fact that users automatically label data as we browse. Clicking versus not clicking; lingering on a web page longer than we did on another; hovering over a Facebook video to see what happens at the end.

These cascades of labeled data build a detailed picture of our personalities, habits, demands, and desires: the perfect recipe for more tailored content to keep us on a given platform.

Currently, Lee estimates that Chinese and American companies stand head-to-head when it comes to deployment of internet AI. But given China’s data advantage, he predicts that Chinese tech giants will have a slight lead (60-40) over their US counterparts in the next five years.

While you’ve most definitely heard of Alibaba and Baidu, you’ve probably never stumbled upon Toutiao.

Starting out as a copycat of America’s wildly popular Buzzfeed, Toutiao reached a valuation of $20 billion by 2017, dwarfing Buzzfeed’s valuation by more than a factor of 10. But with almost 120 million daily active users, Toutiao doesn’t just stop at creating viral content.

Equipped with natural-language processing and computer vision, Toutiao’s AI engines survey a vast network of different sites and contributors, rewriting headlines to optimize for user engagement, and processing each user’s online behavior—clicks, comments, engagement time—to curate individualized news feeds for millions of consumers.

And as users grow more engaged with Toutiao’s content, the company’s algorithms get better and better at recommending content, optimizing headlines, and delivering a truly personalized feed.

It’s this kind of positive feedback loop that fuels today’s AI giants surfing the wave of internet AI.

The Second Wave: Business AI
While internet AI takes advantage of the fact that netizens are constantly labeling data via clicks and other engagement metrics, business AI jumps on the data that traditional companies have already labeled in the past.

Think banks issuing loans and recording repayment rates; hospitals archiving diagnoses, imaging data, and subsequent health outcomes; or courts noting conviction history, recidivism, and flight.

While we humans make predictions based on obvious root causes (strong features), AI algorithms can process thousands of weakly correlated variables (weak features) that may have much more to do with a given outcome than the usual suspects.

By scouting out hidden correlations that escape our linear cause-and-effect logic, business AI leverages labeled data to train algorithms that outperform even the most veteran of experts.

Apply these data-trained AI engines to banking, insurance, and legal sentencing, and you get minimized default rates, optimized premiums, and plummeting recidivism rates.

While Lee confidently places America in the lead (90-10) for business AI, China’s substantial lag in structured industry data could actually work in its favor going forward.

In industries where Chinese startups can leapfrog over legacy systems, China has a major advantage.

Take Chinese app Smart Finance, for instance.

While Americans embraced credit and debit cards in the 1970s, China was still in the throes of its Cultural Revolution, largely missing the bus on this technology.

Fast forward to 2017, and China’s mobile payment spending outnumbered that of Americans’ by a ratio of 50 to 1. Without the competition of deeply entrenched credit cards, mobile payments were an obvious upgrade to China’s cash-heavy economy, embraced by 70 percent of China’s 753 million smartphone users by the end of 2017.

But by leapfrogging over credit cards and into mobile payments, China largely left behind the notion of credit.

And here’s where Smart Finance comes in.

An AI-powered app for microfinance, Smart Finance depends almost exclusively on its algorithms to make millions of microloans. For each potential borrower, the app simply requests access to a portion of the user’s phone data.

On the basis of variables as subtle as your typing speed and battery percentage, Smart Finance can predict with astounding accuracy your likelihood of repaying a $300 loan.

Such deployments of business AI and internet AI are already revolutionizing our industries and individual lifestyles. But still on the horizon lie two even more monumental waves— perception AI and autonomous AI.

The Third Wave: Perception AI
In this wave, AI gets an upgrade with eyes, ears, and myriad other senses, merging the digital world with our physical environments.

As sensors and smart devices proliferate through our homes and cities, we are on the verge of entering a trillion-sensor economy.

Companies like China’s Xiaomi are putting out millions of IoT-connected devices, and teams of researchers have already begun prototyping smart dust—solar cell- and sensor-geared particulates that can store and communicate troves of data anywhere, anytime.

As Kai-Fu explains, perception AI “will bring the convenience and abundance of the online world into our offline reality.” Sensor-enabled hardware devices will turn everything from hospitals to cars to schools into online-merge-offline (OMO) environments.

Imagine walking into a grocery store, scanning your face to pull up your most common purchases, and then picking up a virtual assistant (VA) shopping cart. Having pre-loaded your data, the cart adjusts your usual grocery list with voice input, reminds you to get your spouse’s favorite wine for an upcoming anniversary, and guides you through a personalized store route.

While we haven’t yet leveraged the full potential of perception AI, China and the US are already making incredible strides. Given China’s hardware advantage, Lee predicts China currently has a 60-40 edge over its American tech counterparts.

Now the go-to city for startups building robots, drones, wearable technology, and IoT infrastructure, Shenzhen has turned into a powerhouse for intelligent hardware, as I discussed last week. Turbocharging output of sensors and electronic parts via thousands of factories, Shenzhen’s skilled engineers can prototype and iterate new products at unprecedented scale and speed.

With the added fuel of Chinese government support and a relaxed Chinese attitude toward data privacy, China’s lead may even reach 80-20 in the next five years.

Jumping on this wave are companies like Xiaomi, which aims to turn bathrooms, kitchens, and living rooms into smart OMO environments. Having invested in 220 companies and incubated 29 startups that produce its products, Xiaomi surpassed 85 million intelligent home devices by the end of 2017, making it the world’s largest network of these connected products.

One KFC restaurant in China has even teamed up with Alipay (Alibaba’s mobile payments platform) to pioneer a ‘pay-with-your-face’ feature. Forget cash, cards, and cell phones, and let OMO do the work.

The Fourth Wave: Autonomous AI
But the most monumental—and unpredictable—wave is the fourth and final: autonomous AI.

Integrating all previous waves, autonomous AI gives machines the ability to sense and respond to the world around them, enabling AI to move and act productively.

While today’s machines can outperform us on repetitive tasks in structured and even unstructured environments (think Boston Dynamics’ humanoid Atlas or oncoming autonomous vehicles), machines with the power to see, hear, touch and optimize data will be a whole new ballgame.

Think: swarms of drones that can selectively spray and harvest entire farms with computer vision and remarkable dexterity, heat-resistant drones that can put out forest fires 100X more efficiently, or Level 5 autonomous vehicles that navigate smart roads and traffic systems all on their own.

While autonomous AI will first involve robots that create direct economic value—automating tasks on a one-to-one replacement basis—these intelligent machines will ultimately revamp entire industries from the ground up.

Kai-Fu Lee currently puts America in a commanding lead of 90-10 in autonomous AI, especially when it comes to self-driving vehicles. But Chinese government efforts are quickly ramping up the competition.

Already in China’s Zhejiang province, highway regulators and government officials have plans to build China’s first intelligent superhighway, outfitted with sensors, road-embedded solar panels and wireless communication between cars, roads and drivers.

Aimed at increasing transit efficiency by up to 30 percent while minimizing fatalities, the project may one day allow autonomous electric vehicles to continuously charge as they drive.

A similar government-fueled project involves Beijing’s new neighbor Xiong’an. Projected to take in over $580 billion in infrastructure spending over the next 20 years, Xiong’an New Area could one day become the world’s first city built around autonomous vehicles.

Baidu is already working with Xiong’an’s local government to build out this AI city with an environmental focus. Possibilities include sensor-geared cement, computer vision-enabled traffic lights, intersections with facial recognition, and parking lots-turned parks.

Lastly, Lee predicts China will almost certainly lead the charge in autonomous drones. Already, Shenzhen is home to premier drone maker DJI—a company I’ll be visiting with 24 top executives later this month as part of my annual China Platinum Trip.

Named “the best company I have ever encountered” by Chris Anderson, DJI owns an estimated 50 percent of the North American drone market, supercharged by Shenzhen’s extraordinary maker movement.

While the long-term Sino-US competitive balance in fourth wave AI remains to be seen, one thing is certain: in a matter of decades, we will witness the rise of AI-embedded cityscapes and autonomous machines that can interact with the real world and help solve today’s most pressing grand challenges.

Join Me
Webinar with Dr. Kai-Fu Lee: Dr. Kai-Fu Lee — one of the world’s most respected experts on AI — and I will discuss his latest book AI Superpowers: China, Silicon Valley, and the New World Order. Artificial Intelligence is reshaping the world as we know it. With U.S.-Sino competition heating up, who will own the future of technology? Register here for the free webinar on September 4th, 2018 from 11:00am–12:30pm PST.

Image Credit: Elena11 / Shutterstock.com Continue reading

Posted in Human Robots

#432181 Putting AI in Your Pocket: MIT Chip Cuts ...

Neural networks are powerful things, but they need a lot of juice. Engineers at MIT have now developed a new chip that cuts neural nets’ power consumption by up to 95 percent, potentially allowing them to run on battery-powered mobile devices.

Smartphones these days are getting truly smart, with ever more AI-powered services like digital assistants and real-time translation. But typically the neural nets crunching the data for these services are in the cloud, with data from smartphones ferried back and forth.

That’s not ideal, as it requires a lot of communication bandwidth and means potentially sensitive data is being transmitted and stored on servers outside the user’s control. But the huge amounts of energy needed to power the GPUs neural networks run on make it impractical to implement them in devices that run on limited battery power.

Engineers at MIT have now designed a chip that cuts that power consumption by up to 95 percent by dramatically reducing the need to shuttle data back and forth between a chip’s memory and processors.

Neural nets consist of thousands of interconnected artificial neurons arranged in layers. Each neuron receives input from multiple neurons in the layer below it, and if the combined input passes a certain threshold it then transmits an output to multiple neurons above it. The strength of the connection between neurons is governed by a weight, which is set during training.

This means that for every neuron, the chip has to retrieve the input data for a particular connection and the connection weight from memory, multiply them, store the result, and then repeat the process for every input. That requires a lot of data to be moved around, expending a lot of energy.

The new MIT chip does away with that, instead computing all the inputs in parallel within the memory using analog circuits. That significantly reduces the amount of data that needs to be shoved around and results in major energy savings.

The approach requires the weights of the connections to be binary rather than a range of values, but previous theoretical work had suggested this wouldn’t dramatically impact accuracy, and the researchers found the chip’s results were generally within two to three percent of the conventional non-binary neural net running on a standard computer.

This isn’t the first time researchers have created chips that carry out processing in memory to reduce the power consumption of neural nets, but it’s the first time the approach has been used to run powerful convolutional neural networks popular for image-based AI applications.

“The results show impressive specifications for the energy-efficient implementation of convolution operations with memory arrays,” Dario Gil, vice president of artificial intelligence at IBM, said in a statement.

“It certainly will open the possibility to employ more complex convolutional neural networks for image and video classifications in IoT [the internet of things] in the future.”

It’s not just research groups working on this, though. The desire to get AI smarts into devices like smartphones, household appliances, and all kinds of IoT devices is driving the who’s who of Silicon Valley to pile into low-power AI chips.

Apple has already integrated its Neural Engine into the iPhone X to power things like its facial recognition technology, and Amazon is rumored to be developing its own custom AI chips for the next generation of its Echo digital assistant.

The big chip companies are also increasingly pivoting towards supporting advanced capabilities like machine learning, which has forced them to make their devices ever more energy-efficient. Earlier this year ARM unveiled two new chips: the Arm Machine Learning processor, aimed at general AI tasks from translation to facial recognition, and the Arm Object Detection processor for detecting things like faces in images.

Qualcomm’s latest mobile chip, the Snapdragon 845, features a GPU and is heavily focused on AI. The company has also released the Snapdragon 820E, which is aimed at drones, robots, and industrial devices.

Going a step further, IBM and Intel are developing neuromorphic chips whose architectures are inspired by the human brain and its incredible energy efficiency. That could theoretically allow IBM’s TrueNorth and Intel’s Loihi to run powerful machine learning on a fraction of the power of conventional chips, though they are both still highly experimental at this stage.

Getting these chips to run neural nets as powerful as those found in cloud services without burning through batteries too quickly will be a big challenge. But at the current pace of innovation, it doesn’t look like it will be too long before you’ll be packing some serious AI power in your pocket.

Image Credit: Blue Planet Studio / Shutterstock.com Continue reading

Posted in Human Robots