Tag Archives: latest

#434673 The World’s Most Valuable AI ...

It recognizes our faces. It knows the videos we might like. And it can even, perhaps, recommend the best course of action to take to maximize our personal health.

Artificial intelligence and its subset of disciplines—such as machine learning, natural language processing, and computer vision—are seemingly becoming integrated into our daily lives whether we like it or not. What was once sci-fi is now ubiquitous research and development in company and university labs around the world.

Similarly, the startups working on many of these AI technologies have seen their proverbial stock rise. More than 30 of these companies are now valued at over a billion dollars, according to data research firm CB Insights, which itself employs algorithms to provide insights into the tech business world.

Private companies with a billion-dollar valuation were so uncommon not that long ago that they were dubbed unicorns. Now there are 325 of these once-rare creatures, with a combined valuation north of a trillion dollars, as CB Insights maintains a running count of this exclusive Unicorn Club.

The subset of AI startups accounts for about 10 percent of the total membership, growing rapidly in just 4 years from 0 to 32. Last year, an unprecedented 17 AI startups broke the billion-dollar barrier, with 2018 also a record year for venture capital into private US AI companies at $9.3 billion, CB Insights reported.

What exactly is all this money funding?

AI Keeps an Eye Out for You
Let’s start with the bad news first.

Facial recognition is probably one of the most ubiquitous applications of AI today. It’s actually a decades-old technology often credited to a man named Woodrow Bledsoe, who used an instrument called a RAND tablet that could semi-autonomously match faces from a database. That was in the 1960s.

Today, most of us are familiar with facial recognition as a way to unlock our smartphones. But the technology has gained notoriety as a surveillance tool of law enforcement, particularly in China.

It’s no secret that the facial recognition algorithms developed by several of the AI unicorns from China—SenseTime, CloudWalk, and Face++ (also known as Megvii)—are used to monitor the country’s 1.3 billion citizens. Police there are even equipped with AI-powered eyeglasses for such purposes.

A fourth billion-dollar Chinese startup, Yitu Technologies, also produces a platform for facial recognition in the security realm, and develops AI systems in healthcare on top of that. For example, its CARE.AITM Intelligent 4D Imaging System for Chest CT can reputedly identify in real time a variety of lesions for the possible early detection of cancer.

The AI Doctor Is In
As Peter Diamandis recently noted, AI is rapidly augmenting healthcare and longevity. He mentioned another AI unicorn from China in this regard—iCarbonX, which plans to use machines to develop personalized health plans for every individual.

A couple of AI unicorns on the hardware side of healthcare are OrCam Technologies and Butterfly. The former, an Israeli company, has developed a wearable device for the vision impaired called MyEye that attaches to one’s eyeglasses. The device can identify people and products, as well as read text, conveying the information through discrete audio.

Butterfly Network, out of Connecticut, has completely upended the healthcare market with a handheld ultrasound machine that works with a smartphone.

“Orcam and Butterfly are amazing examples of how machine learning can be integrated into solutions that provide a step-function improvement over state of the art in ultra-competitive markets,” noted Andrew Byrnes, investment director at Comet Labs, a venture capital firm focused on AI and robotics, in an email exchange with Singularity Hub.

AI in the Driver’s Seat
Comet Labs’ portfolio includes two AI unicorns, Megvii and Pony.ai.

The latter is one of three billion-dollar startups developing the AI technology behind self-driving cars, with the other two being Momenta.ai and Zoox.

Founded in 2016 near San Francisco (with another headquarters in China), Pony.ai debuted its latest self-driving system, called PonyAlpha, last year. The platform uses multiple sensors (LiDAR, cameras, and radar) to navigate its environment, but its “sensor fusion technology” makes things simple by choosing the most reliable sensor data for any given driving scenario.

Zoox is another San Francisco area startup founded a couple of years earlier. In late 2018, it got the green light from the state of California to be the first autonomous vehicle company to transport a passenger as part of a pilot program. Meanwhile, China-based Momenta.ai is testing level four autonomy for its self-driving system. Autonomous driving levels are ranked zero to five, with level five being equal to a human behind the wheel.

The hype around autonomous driving is currently in overdrive, and Byrnes thinks regulatory roadblocks will keep most self-driving cars in idle for the foreseeable future. The exception, he said, is China, which is adopting a “systems” approach to autonomy for passenger transport.

“If [autonomous mobility] solves bigger problems like traffic that can elicit government backing, then that has the potential to go big fast,” he said. “This is why we believe Pony.ai will be a winner in the space.”

AI in the Back Office
An AI-powered technology that perhaps only fans of the cult classic Office Space might appreciate has suddenly taken the business world by storm—robotic process automation (RPA).

RPA companies take the mundane back office work, such as filling out invoices or processing insurance claims, and turn it over to bots. The intelligent part comes into play because these bots can tackle unstructured data, such as text in an email or even video and pictures, in order to accomplish an increasing variety of tasks.

Both Automation Anywhere and UiPath are older companies, founded in 2003 and 2005, respectively. However, since just 2017, they have raised nearly a combined $1 billion in disclosed capital.

Cybersecurity Embraces AI
Cybersecurity is another industry where AI is driving investment into startups. Sporting imposing names like CrowdStrike, Darktrace, and Tanium, these cybersecurity companies employ different machine-learning techniques to protect computers and other IT assets beyond the latest software update or virus scan.

Darktrace, for instance, takes its inspiration from the human immune system. Its algorithms can purportedly “learn” the unique pattern of each device and user on a network, detecting emerging problems before things spin out of control.

All three companies are used by major corporations and governments around the world. CrowdStrike itself made headlines a few years ago when it linked the hacking of the Democratic National Committee email servers to the Russian government.

Looking Forward
I could go on, and introduce you to the world’s most valuable startup, a Chinese company called Bytedance that is valued at $75 billion for news curation and an app to create 15-second viral videos. But that’s probably not where VC firms like Comet Labs are generally putting their money.

Byrnes sees real value in startups that are taking “data-driven approaches to problems specific to unique industries.” Take the example of Chicago-based unicorn Uptake Technologies, which analyzes incoming data from machines, from wind turbines to tractors, to predict problems before they occur with the machinery. A not-yet unicorn called PingThings in the Comet Labs portfolio does similar predictive analytics for the energy utilities sector.

“One question we like asking is, ‘What does the state of the art look like in your industry in three to five years?’” Byrnes said. “We ask that a lot, then we go out and find the technology-focused teams building those things.”

Image Credit: Andrey Suslov / Shutterstock.com Continue reading

Posted in Human Robots

#434648 The Pediatric AI That Outperformed ...

Training a doctor takes years of grueling work in universities and hospitals. Building a doctor may be as easy as teaching an AI how to read.

Artificial intelligence has taken another step towards becoming an integral part of 21st-century medicine. New research out of Guangzhou, China, published February 11th in Nature Medicine Letters, has demonstrated a natural-language processing AI that is capable of out-performing rookie pediatricians in diagnosing common childhood ailments.

The massive study examined the electronic health records (EHR) from nearly 600,000 patients over an 18-month period at the Guangzhou Women and Children’s Medical Center and then compared AI-generated diagnoses against new assessments from physicians with a range of experience.

The verdict? On average, the AI was noticeably more accurate than junior physicians and nearly as reliable as the more senior ones. These results are the latest demonstration that artificial intelligence is on the cusp of becoming a healthcare staple on a global scale.

Less Like a Computer, More Like a Person
To outshine human doctors, the AI first had to become more human. Like IBM’s Watson, the pediatric AI leverages natural language processing, in essence “reading” written notes from EHRs not unlike how a human doctor would review those same records. But the similarities to human doctors don’t end there. The AI is a machine learning classifier (MLC), capable of placing the information learned from the EHRs into categories to improve performance.

Like traditionally-trained pediatricians, the AI broke cases down into major organ groups and infection areas (upper/lower respiratory, gastrointestinal, etc.) before breaking them down even further into subcategories. It could then develop associations between various symptoms and organ groups and use those associations to improve its diagnoses. This hierarchical approach mimics the deductive reasoning human doctors employ.

Another key strength of the AI developed for this study was the enormous size of the dataset collected to teach it: 1,362,559 outpatient visits from 567,498 patients yielded some 101.6 million data points for the MLC to devour on its quest for pediatric dominance. This allowed the AI the depth of learning needed to distinguish and accurately select from the 55 different diagnosis codes across the various organ groups and subcategories.

When comparing against the human doctors, the study used 11,926 records from an unrelated group of children, giving both the MLC and the 20 humans it was compared against an even playing field. The results were clear: while cohorts of senior pediatricians performed better than the AI, junior pediatricians (those with 3-15 years of experience) were outclassed.

Helping, Not Replacing
While the research used a competitive analysis to measure the success of the AI, the results should be seen as anything but hostile to human doctors. The near future of artificial intelligence in medicine will see these machine learning programs augment, not replace, human physicians. The authors of the study specifically call out augmentation as the key short-term application of their work. Triaging incoming patients via intake forms, performing massive metastudies using EHRs, providing rapid ‘second opinions’—the applications for an AI doctor that is better-but-not-the-best are as varied as the healthcare industry itself.

That’s only considering how artificial intelligence could make a positive impact immediately upon implementation. It’s easy to see how long-term use of a diagnostic assistant could reshape the way modern medical institutions approach their work.

Look at how the MLC results fit snugly between the junior and senior physician groups. Essentially, it took nearly 15 years before a physician could consistently out-diagnose the machine. That’s a decade and a half wherein an AI diagnostic assistant would be an invaluable partner—both as a training tool and a safety measure. Likewise, on the other side of the experience curve you have physicians whose performance could be continuously leveraged to improve the AI’s effectiveness. This is a clear opportunity for a symbiotic relationship, with humans and machines each assisting the other as they mature.

Closer to Us, But Still Dependent on Us
No matter the ultimate application, the AI doctors of the future are drawing nearer to us step by step. This latest research is a demonstration that artificial intelligence can mimic the results of human deductive reasoning even in some of the most complex and important decision-making processes. True, the MLC required input from humans to function; both the initial data points and the cases used to evaluate the AI depended on EHRs written by physicians. While every effort was made to design a test schema that removed any indication of the eventual diagnosis, some “data leakage” is bound to occur.

In other words, when AIs use human-created data, they inherit human insight to some degree. Yet the progress made in machine imaging, chatbots, sensors, and other fields all suggest that this dependence on human input is more about where we are right now than where we could be in the near future.

Data, and More Data
That near future may also have some clear winners and losers. For now, those winners seem to be the institutions that can capture and apply the largest sets of data. With a rapidly digitized society gathering incredible amounts of data, China has a clear advantage. Combined with their relatively relaxed approach to privacy, they are likely to continue as one of the driving forces behind machine learning and its applications. So too will Google/Alphabet with their massive medical studies. Data is the uranium in this AI arms race, and everyone seems to be scrambling to collect more.

In a global community that seems increasingly aware of the potential problems arising from this need for and reliance on data, it’s nice to know there’ll be an upside as well. The technology behind AI medical assistants is looking more and more mature—even if we are still struggling to find exactly where, when, and how that technology should first become universal.

Yet wherever we see the next push to make AI a standard tool in a real-world medical setting, I have little doubt it will greatly improve the lives of human patients. Today Doctor AI is performing as well as a human colleague with more than 10 years of experience. By next year or so, it may take twice as long for humans to be competitive. And in a decade, the combined medical knowledge of all human history may be a tool as common as a stethoscope in your doctor’s hands.

Image Credit: Nadia Snopek / Shutterstock.com Continue reading

Posted in Human Robots

#434585 This Week’s Awesome Stories From ...

ARTIFICIAL INTELLIGENCE
The World’s Fastest Supercomputer Breaks an AI Record
Tom Simonite | Wired
“Summit, which occupies an area equivalent to two tennis courts, used more than 27,000 powerful graphics processors in the project. It tapped their power to train deep-learning algorithms, the technology driving AI’s frontier, chewing through the exercise at a rate of a billion billion operations per second, a pace known in supercomputing circles as an exaflop.”

ROBOTICS
iRobot Finally Announces Awesome New Terra Robotic Lawnmower
Evan Ackerman | IEEE Spectrum
“Since the first Roomba came out in 2002, it has seemed inevitable that one day iRobot would develop a robotic lawn mower. After all, a robot mower is basically just a Roomba that works outside, right? Of course, it’s not nearly that simple, as iRobot has spent the last decade or so discovering, but they’ve finally managed to pull it off.”

3D Printing
Watch This Super Speedy 3D Printer Make Objects Suddenly Appear
Erin Winick | MIT Technology Review
“The new machine—which the team nicknamed the ‘replicator’ after the machine from Star Trek—instead forms the entire item all in one go. It does this by shining light onto specific spots in a rotating resin that solidifies when exposed to a certain light level.”

GENETICS
The DIY Designer Baby Project Funded With Bitcoin
Antonio Regalado | MIT Technology Review
“i‘Is DIY bio anywhere close to making a CRISPR baby? No, not remotely,’ David Ishee says. ‘But if some rich guy pays a scientist to do the work, it’s going to happen.’ He adds: ‘What you are reporting on isn’t Bryan—it’s the unseen middle space, a layer of gray-market biotech and freelance science where people with resources can get things done.’i”

SCIENCE
The Complete Cancer Cure Story Is Both Bogus and Tragic
Megan Molteni | Wired
“You’d think creators and consumers of news would have learned their lesson by now. But the latest version of the fake cancer cure story is even more flagrantly flawed than usual. The public’s cancer cure–shaped amnesia, and media outlets’ willingness to exploit it for clicks, are as bottomless as ever. Hope, it would seem, trumps history.”

BOOKS
An AI Reading List—From Practical Primers to Sci-Fi Short Stories
James Vincent | The Verge
“The Verge has assembled a reading list: a brief but diverse compendium of books, short stories, and blogs, all chosen by leading figures in the AI world to help you better understand artificial intelligence.”

Image Credit: Katya Havok / Shutterstock.com Continue reading

Posted in Human Robots

#434569 From Parkour to Surgery, Here Are the ...

The robot revolution may not be here quite yet, but our mechanical cousins have made some serious strides. And now some of the leading experts in the field have provided a rundown of what they see as the 10 most exciting recent developments.

Compiled by the editors of the journal Science Robotics, the list includes some of the most impressive original research and innovative commercial products to make a splash in 2018, as well as a couple from 2017 that really changed the game.

1. Boston Dynamics’ Atlas doing parkour

It seems like barely a few months go by without Boston Dynamics rewriting the book on what a robot can and can’t do. Last year they really outdid themselves when they got their Atlas humanoid robot to do parkour, leaping over logs and jumping between wooden crates.

Atlas’s creators have admitted that the videos we see are cherry-picked from multiple attempts, many of which don’t go so well. But they say they’re meant to be inspirational and aspirational rather than an accurate picture of where robotics is today. And combined with the company’s dog-like Spot robot, they are certainly pushing boundaries.

2. Intuitive Surgical’s da Vinci SP platform
Robotic surgery isn’t new, but the technology is improving rapidly. Market leader Intuitive’s da Vinci surgical robot was first cleared by the FDA in 2000, but since then it’s come a long way, with the company now producing three separate systems.

The latest addition is the da Vinci SP (single port) system, which is able to insert three instruments into the body through a single 2.5cm cannula (tube) bringing a whole new meaning to minimally invasive surgery. The system was granted FDA clearance for urological procedures last year, and the company has now started shipping the new system to customers.

3. Soft robot that navigates through growth

Roboticists have long borrowed principles from the animal kingdom, but a new robot design that mimics the way plant tendrils and fungi mycelium move by growing at the tip has really broken the mold on robot navigation.

The editors point out that this is the perfect example of bio-inspired design; the researchers didn’t simply copy nature, they took a general principle and expanded on it. The tube-like robot unfolds from the front as pneumatic pressure is applied, but unlike a plant, it can grow at the speed of an animal walking and can navigate using visual feedback from a camera.

4. 3D printed liquid crystal elastomers for soft robotics
Soft robotics is one of the fastest-growing sub-disciplines in the field, but powering these devices without rigid motors or pumps is an ongoing challenge. A variety of shape-shifting materials have been proposed as potential artificial muscles, including liquid crystal elastomeric actuators.

Harvard engineers have now demonstrated that these materials can be 3D printed using a special ink that allows the designer to easily program in all kinds of unusual shape-shifting abilities. What’s more, their technique produces actuators capable of lifting significantly more weight than previous approaches.

5. Muscle-mimetic, self-healing, and hydraulically amplified actuators
In another effort to find a way to power soft robots, last year researchers at the University of Colorado Boulder designed a series of super low-cost artificial muscles that can lift 200 times their own weight and even heal themselves.

The devices rely on pouches filled with a liquid that makes them contract with the force and speed of mammalian skeletal muscles when a voltage is applied. The most promising for robotics applications is the so-called Peano-HASEL, which features multiple rectangular pouches connected in series that contract linearly, just like real muscle.

6. Self-assembled nanoscale robot from DNA

While you may think of robots as hulking metallic machines, a substantial number of scientists are working on making nanoscale robots out of DNA. And last year German researchers built the first remote-controlled DNA robotic arm.

They created a length of tightly-bound DNA molecules to act as the arm and attached it to a DNA base plate via a flexible joint. Because DNA carries a charge, they were able to get the arm to swivel around like the hand of a clock by applying a voltage and switch direction by reversing that voltage. The hope is that this arm could eventually be used to build materials piece by piece at the nanoscale.

7. DelFly nimble bioinspired robotic flapper

Robotics doesn’t only borrow from biology—sometimes it gives back to it, too. And a new flapping-winged robot designed by Dutch engineers that mimics the humble fruit fly has done just that, by revealing how the animals that inspired it carry out predator-dodging maneuvers.

The lab has been building flapping robots for years, but this time they ditched the airplane-like tail used to control previous incarnations. Instead, they used insect-inspired adjustments to the motions of its twin pairs of flapping wings to hover, pitch, and roll with the agility of a fruit fly. That has provided a useful platform for investigating insect flight dynamics, as well as more practical applications.

8. Soft exosuit wearable robot

Exoskeletons could prevent workplace injuries, help people walk again, and even boost soldiers’ endurance. Strapping on bulky equipment isn’t ideal, though, so researchers at Harvard are working on a soft exoskeleton that combines specially-designed textiles, sensors, and lightweight actuators.

And last year the team made an important breakthrough by combining their novel exoskeleton with a machine-learning algorithm that automatically tunes the device to the user’s particular walking style. Using physiological data, it is able to adjust when and where the device needs to deliver a boost to the user’s natural movements to improve walking efficiency.

9. Universal Robots (UR) e-Series Cobots
Robots in factories are nothing new. The enormous mechanical arms you see in car factories normally have to be kept in cages to prevent them from accidentally crushing people. In recent years there’s been growing interest in “co-bots,” collaborative robots designed to work side-by-side with their human colleagues and even learn from them.

Earlier this year saw the demise of ReThink robotics, the pioneer of the approach. But the simple single arm devices made by Danish firm Universal Robotics are becoming ubiquitous in workshops and warehouses around the world, accounting for about half of global co-bot sales. Last year they released their latest e-Series, with enhanced safety features and force/torque sensing.

10. Sony’s aibo
After a nearly 20-year hiatus, Sony’s robotic dog aibo is back, and it’s had some serious upgrades. As well as a revamp to its appearance, the new robotic pet takes advantage of advances in AI, with improved environmental and command awareness and the ability to develop a unique character based on interactions with its owner.

The editors note that this new context awareness mark the device out as a significant evolution in social robots, which many hope could aid in childhood learning or provide companionship for the elderly.

Image Credit: DelFly Nimble / CC BY – SA 4.0 Continue reading

Posted in Human Robots

#434336 These Smart Seafaring Robots Have a ...

Drones. Self-driving cars. Flying robo taxis. If the headlines of the last few years are to be believed, terrestrial transportation in the future will someday be filled with robotic conveyances and contraptions that will require little input from a human other than to download an app.

But what about the other 70 percent of the planet’s surface—the part that’s made up of water?

Sure, there are underwater drones that can capture 4K video for the next BBC documentary. Remotely operated vehicles (ROVs) are capable of diving down thousands of meters to investigate ocean vents or repair industrial infrastructure.

Yet most of the robots on or below the water today still lean heavily on the human element to operate. That’s not surprising given the unstructured environment of the seas and the poor communication capabilities for anything moving below the waves. Autonomous underwater vehicles (AUVs) are probably the closest thing today to smart cars in the ocean, but they generally follow pre-programmed instructions.

A new generation of seafaring robots—leveraging artificial intelligence, machine vision, and advanced sensors, among other technologies—are beginning to plunge into the ocean depths. Here are some of the latest and most exciting ones.

The Transformer of the Sea
Nic Radford, chief technology officer of Houston Mechatronics Inc. (HMI), is hesitant about throwing around the word “autonomy” when talking about his startup’s star creation, Aquanaut. He prefers the term “shared control.”

Whatever you want to call it, Aquanaut seems like something out of the script of a Transformers movie. The underwater robot begins each mission in a submarine-like shape, capable of autonomously traveling up to 200 kilometers on battery power, depending on the assignment.

When Aquanaut reaches its destination—oil and gas is the primary industry HMI hopes to disrupt to start—its four specially-designed and built linear actuators go to work. Aquanaut then unfolds into a robot with a head, upper torso, and two manipulator arms, all while maintaining proper buoyancy to get its job done.

The lightbulb moment of how to engineer this transformation from submarine to robot came one day while Aquanaut’s engineers were watching the office’s stand-up desks bob up and down. The answer to the engineering challenge of the hull suddenly seemed obvious.

“We’re just gonna build a big, gigantic, underwater stand-up desk,” Radford told Singularity Hub.

Hardware wasn’t the only problem the team, comprised of veteran NASA roboticists like Radford, had to solve. In order to ditch the expensive support vessels and large teams of humans required to operate traditional ROVs, Aquanaut would have to be able to sense its environment in great detail and relay that information back to headquarters using an underwater acoustics communications system that harkens back to the days of dial-up internet connections.

To tackle that problem of low bandwidth, HMI equipped Aquanaut with a machine vision system comprised of acoustic, optical, and laser-based sensors. All of that dense data is compressed using in-house designed technology and transmitted to a single human operator who controls Aquanaut with a few clicks of a mouse. In other words, no joystick required.

“I don’t know of anyone trying to do this level of autonomy as it relates to interacting with the environment,” Radford said.

HMI got $20 million earlier this year in Series B funding co-led by Transocean, one of the world’s largest offshore drilling contractors. That should be enough money to finish the Aquanaut prototype, which Radford said is about 99.8 percent complete. Some “high-profile” demonstrations are planned for early next year, with commercial deployments as early as 2020.

“What just gives us an incredible advantage here is that we have been born and bred on doing robotic systems for remote locations,” Radford noted. “This is my life, and I’ve bet the farm on it, and it takes this kind of fortitude and passion to see these things through, because these are not easy problems to solve.”

On Cruise Control
Meanwhile, a Boston-based startup is trying to solve the problem of making ships at sea autonomous. Sea Machines is backed by about $12.5 million in capital venture funding, with Toyota AI joining the list of investors in a $10 million Series A earlier this month.

Sea Machines is looking to the self-driving industry for inspiration, developing what it calls “vessel intelligence” systems that can be retrofitted on existing commercial vessels or installed on newly-built working ships.

For instance, the startup announced a deal earlier this year with Maersk, the world’s largest container shipping company, to deploy a system of artificial intelligence, computer vision, and LiDAR on the Danish company’s new ice-class container ship. The technology works similar to advanced driver-assistance systems found in automobiles to avoid hazards. The proof of concept will lay the foundation for a future autonomous collision avoidance system.

It’s not just startups making a splash in autonomous shipping. Radford noted that Rolls Royce—yes, that Rolls Royce—is leading the way in the development of autonomous ships. Its Intelligence Awareness system pulls in nearly every type of hyped technology on the market today: neural networks, augmented reality, virtual reality, and LiDAR.

In augmented reality mode, for example, a live feed video from the ship’s sensors can detect both static and moving objects, overlaying the scene with details about the types of vessels in the area, as well as their distance, heading, and other pertinent data.

While safety is a primary motivation for vessel automation—more than 1,100 ships have been lost over the past decade—these new technologies could make ships more efficient and less expensive to operate, according to a story in Wired about the Rolls Royce Intelligence Awareness system.

Sea Hunt Meets Science
As Singularity Hub noted in a previous article, ocean robots can also play a critical role in saving the seas from environmental threats. One poster child that has emerged—or, invaded—is the spindly lionfish.

A venomous critter endemic to the Indo-Pacific region, the lionfish is now found up and down the east coast of North America and beyond. And it is voracious, eating up to 30 times its own stomach volume and reducing juvenile reef fish populations by nearly 90 percent in as little as five weeks, according to the Ocean Support Foundation.

That has made the colorful but deadly fish Public Enemy No. 1 for many marine conservationists. Both researchers and startups are developing autonomous robots to hunt down the invasive predator.

At the Worcester Polytechnic Institute, for example, students are building a spear-carrying robot that uses machine learning and computer vision to distinguish lionfish from other aquatic species. The students trained the algorithms on thousands of different images of lionfish. The result: a lionfish-killing machine that boasts an accuracy of greater than 95 percent.

Meanwhile, a small startup called the American Marine Research Corporation out of Pensacola, Florida is applying similar technology to seek and destroy lionfish. Rather than spearfishing, the AMRC drone would stun and capture the lionfish, turning a profit by selling the creatures to local seafood restaurants.

Lionfish: It’s what’s for dinner.

Water Bots
A new wave of smart, independent robots are diving, swimming, and cruising across the ocean and its deepest depths. These autonomous systems aren’t necessarily designed to replace humans, but to venture where we can’t go or to improve safety at sea. And, perhaps, these latest innovations may inspire the robots that will someday plumb the depths of watery planets far from Earth.

Image Credit: Houston Mechatronics, Inc. Continue reading

Posted in Human Robots