Tag Archives: interact

#437171 Scientists Tap the World’s Most ...

In The Hitchhiker’s Guide to the Galaxy by Douglas Adams, the haughty supercomputer Deep Thought is asked whether it can find the answer to the ultimate question concerning life, the universe, and everything. It replies that, yes, it can do it, but it’s tricky and it’ll have to think about it. When asked how long it will take it replies, “Seven-and-a-half million years. I told you I’d have to think about it.”

Real-life supercomputers are being asked somewhat less expansive questions but tricky ones nonetheless: how to tackle the Covid-19 pandemic. They’re being used in many facets of responding to the disease, including to predict the spread of the virus, to optimize contact tracing, to allocate resources and provide decisions for physicians, to design vaccines and rapid testing tools, and to understand sneezes. And the answers are needed in a rather shorter time frame than Deep Thought was proposing.

The largest number of Covid-19 supercomputing projects involves designing drugs. It’s likely to take several effective drugs to treat the disease. Supercomputers allow researchers to take a rational approach and aim to selectively muzzle proteins that SARS-CoV-2, the virus that causes Covid-19, needs for its life cycle.

The viral genome encodes proteins needed by the virus to infect humans and to replicate. Among these are the infamous spike protein that sniffs out and penetrates its human cellular target, but there are also enzymes and molecular machines that the virus forces its human subjects to produce for it. Finding drugs that can bind to these proteins and stop them from working is a logical way to go.

The Summit supercomputer at Oak Ridge National Laboratory has a peak performance of 200,000 trillion calculations per second—equivalent to about a million laptops. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy, CC BY

I am a molecular biophysicist. My lab, at the Center for Molecular Biophysics at the University of Tennessee and Oak Ridge National Laboratory, uses a supercomputer to discover drugs. We build three-dimensional virtual models of biological molecules like the proteins used by cells and viruses, and simulate how various chemical compounds interact with those proteins. We test thousands of compounds to find the ones that “dock” with a target protein. Those compounds that fit, lock-and-key style, with the protein are potential therapies.

The top-ranked candidates are then tested experimentally to see if they indeed do bind to their targets and, in the case of Covid-19, stop the virus from infecting human cells. The compounds are first tested in cells, then animals, and finally humans. Computational drug discovery with high-performance computing has been important in finding antiviral drugs in the past, such as the anti-HIV drugs that revolutionized AIDS treatment in the 1990s.

World’s Most Powerful Computer
Since the 1990s the power of supercomputers has increased by a factor of a million or so. Summit at Oak Ridge National Laboratory is presently the world’s most powerful supercomputer, and has the combined power of roughly a million laptops. A laptop today has roughly the same power as a supercomputer had 20-30 years ago.

However, in order to gin up speed, supercomputer architectures have become more complicated. They used to consist of single, very powerful chips on which programs would simply run faster. Now they consist of thousands of processors performing massively parallel processing in which many calculations, such as testing the potential of drugs to dock with a pathogen or cell’s proteins, are performed at the same time. Persuading those processors to work together harmoniously is a pain in the neck but means we can quickly try out a lot of chemicals virtually.

Further, researchers use supercomputers to figure out by simulation the different shapes formed by the target binding sites and then virtually dock compounds to each shape. In my lab, that procedure has produced experimentally validated hits—chemicals that work—for each of 16 protein targets that physician-scientists and biochemists have discovered over the past few years. These targets were selected because finding compounds that dock with them could result in drugs for treating different diseases, including chronic kidney disease, prostate cancer, osteoporosis, diabetes, thrombosis and bacterial infections.

Scientists are using supercomputers to find ways to disable the various proteins—including the infamous spike protein (green protrusions)—produced by SARS-CoV-2, the virus responsible for Covid-19. Image credit: Thomas Splettstoesser scistyle.com, CC BY-ND

Billions of Possibilities
So which chemicals are being tested for Covid-19? A first approach is trying out drugs that already exist for other indications and that we have a pretty good idea are reasonably safe. That’s called “repurposing,” and if it works, regulatory approval will be quick.

But repurposing isn’t necessarily being done in the most rational way. One idea researchers are considering is that drugs that work against protein targets of some other virus, such as the flu, hepatitis or Ebola, will automatically work against Covid-19, even when the SARS-CoV-2 protein targets don’t have the same shape.

Our own work has now expanded to about 10 targets on SARS-CoV-2, and we’re also looking at human protein targets for disrupting the virus’s attack on human cells. Top-ranked compounds from our calculations are being tested experimentally for activity against the live virus. Several of these have already been found to be active.The best approach is to check if repurposed compounds will actually bind to their intended target. To that end, my lab published a preliminary report of a supercomputer-driven docking study of a repurposing compound database in mid-February. The study ranked 8,000 compounds in order of how well they bind to the viral spike protein. This paper triggered the establishment of a high-performance computing consortium against our viral enemy, announced by President Trump in March. Several of our top-ranked compounds are now in clinical trials.

Also, we and others are venturing out into the wild world of new drug discovery for Covid-19—looking for compounds that have never been tried as drugs before. Databases of billions of these compounds exist, all of which could probably be synthesized in principle but most of which have never been made. Billion-compound docking is a tailor-made task for massively parallel supercomputing.

Dawn of the Exascale Era
Work will be helped by the arrival of the next big machine at Oak Ridge, called Frontier, planned for next year. Frontier should be about 10 times more powerful than Summit. Frontier will herald the “exascale” supercomputing era, meaning machines capable of 1,000,000,000,000,000,000 calculations per second.

Although some fear supercomputers will take over the world, for the time being, at least, they are humanity’s servants, which means that they do what we tell them to. Different scientists have different ideas about how to calculate which drugs work best—some prefer artificial intelligence, for example—so there’s quite a lot of arguing going on.

Hopefully, scientists armed with the most powerful computers in the world will, sooner rather than later, find the drugs needed to tackle Covid-19. If they do, then their answers will be of more immediate benefit, if less philosophically tantalizing, than the answer to the ultimate question provided by Deep Thought, which was, maddeningly, simply 42.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image credit: NIH/NIAID Continue reading

Posted in Human Robots

#437128 Smarter, lighter exoskeletons to provide ...

In health technology, wearable robots are programmable devices designed to mechanically interact with the body of the wearer. Sometimes referred to as exoskeletons, their purpose is to support motor function for people with severe mobility impairments. But market adoption of exoskeletons has been limited due to factors such as the weight of the equipment and the sometimes inaccurate predictions of wearer's movements when walking on uneven ground or approaching an obstacle. However, recent advances in robotics, materials science and artificial intelligence could make these mobility assistance and rehabilitation tools more compact, lightweight and effective for the wearer. Continue reading

Posted in Human Robots

#436944 Is Digital Learning Still Second Best?

As Covid-19 continues to spread, the world has gone digital on an unprecedented scale. Tens of thousands of employees are working from home, and huge conferences, like the Google I/O and Apple WWDC software extravaganzas, plan to experiment with digital events.

Universities too are sending students home. This might have meant an extended break from school not too long ago. But no more. As lecture halls go empty, an experiment into digital learning at scale is ramping up. In the US alone, over 100 universities, from Harvard to Duke, are offering online classes to students to keep the semester going.

While digital learning has been improving for some time, Covid-19 may not only tip us further into a more digitally connected reality, but also help us better appreciate its benefits. This is important because historically, digital learning has been viewed as inferior to traditional learning. But that may be changing.

The Inversion
We often think about digital technologies as ways to reach people without access to traditional services—online learning for children who don’t have schools nearby or telemedicine for patients with no access to doctors. And while these solutions have helped millions of people, they’re often viewed as “second best” and “better than nothing.” Even in more resource-rich environments, there’s an assumption one should pay more to attend an event in person—a concert, a football game, an exercise class—while digital equivalents are extremely cheap or free. Why is this? And is the situation about to change?

Take the case of Dr. Sanjeev Arora, a professor of medicine at the University of New Mexico. Arora started Project Echo because he was frustrated by how many late-stage cases of hepatitis C he encountered in rural New Mexico. He realized that if he had reached patients sooner, he could have prevented needless deaths. The solution? Digital learning for local health workers.

Project Echo connects rural healthcare practitioners to specialists at top health centers by video. The approach is collaborative: Specialists share best practices and work through cases with participants to apply them in the real world and learn from edge cases. Added to expert presentations, there are lots of opportunities to ask questions and interact with specialists.

The method forms a digital loop of learning, practice, assessment, and adjustment.

Since 2003, Project Echo has scaled to 800 locations in 39 countries and trained over 90,000 healthcare providers. Most notably, a study in The New England Journal of Medicine found that the outcomes of hepatitis C treatment given by Project Echo trained healthcare workers in rural and underserved areas were similar to outcomes at university medical centers. That is, digital learning in this context was equivalent to high quality in-person learning.

If that is possible today, with simple tools, will they surpass traditional medical centers and schools in the future? Can digital learning more generally follow suit and have the same success? Perhaps. Going digital brings its own special toolset to the table too.

The Benefits of Digital
If you’re training people online, you can record the session to better understand their engagement levels—or even add artificial intelligence to analyze it in real time. Ahura AI, for example, founded by Bryan Talebi, aims to upskill workers through online training. Early study of their method suggests they can significantly speed up learning by analyzing users’ real-time emotions—like frustration or distraction—and adjusting the lesson plan or difficulty on the fly.

Other benefits of digital learning include the near-instantaneous download of course materials—rather than printing and shipping books—and being able to more easily report grades and other results, a requirement for many schools and social services organizations. And of course, as other digitized industries show, digital learning can grow and scale further at much lower costs.

To that last point, 360ed, a digital learning startup founded in 2016 by Hla Hla Win, now serves millions of children in Myanmar with augmented reality lesson plans. And Global Startup Ecosystem, founded by Christine Souffrant Ntim and Einstein Kofi Ntim in 2015, is the world’s first and largest digital accelerator program. Their entirely online programs support over 1,000 companies in 90 countries. It’s astonishing how fast both of these organizations have grown.

Notably, both examples include offline experiences too. Many of the 360ed lesson plans come with paper flashcards children use with their smartphones because the online-offline interaction improves learning. The Global Startup Ecosystem also hosts about 10 additional in-person tech summits around the world on various topics through a related initiative.

Looking further ahead, probably the most important benefit of online learning will be its potential to integrate with other digital systems in the workplace.

Imagine a medical center that has perfect information about every patient and treatment in real time and that this information is (anonymously and privately) centralized, analyzed, and shared with medical centers, research labs, pharmaceutical companies, clinical trials, policy makers, and medical students around the world. Just as self-driving cars can learn to drive better by having access to the experiences of other self-driving cars, so too can any group working to solve complex, time-sensitive challenges learn from and build on each other’s experiences.

Why This Matters
While in the long term the world will likely end up combining the best aspects of traditional and digital learning, it’s important in the near term to be more aware of the assumptions we make about digital technologies. Some of the most pioneering work in education, healthcare, and other industries may not be highly visible right now because it is in a virtual setting. Most people are unaware, for example, that the busiest emergency room in rural America is already virtual.

Once they start converging with other digital technologies, these innovations will likely become the mainstream system for all of us. Which raises more questions: What is the best business model for these virtual services? If they start delivering better healthcare and educational outcomes than traditional institutions, should they charge more? Hopefully, we will see an even bigger shift occurring, in which technology allows us to provide high quality education, healthcare, and other services to everyone at more affordable prices than today.

These are some of the topics we can consider as Covid-19 forces us into uncharted territory.

Image Credit: Andras Vas / Unsplash Continue reading

Posted in Human Robots

#436774 AI Is an Energy-Guzzler. We Need to ...

There is a saying that has emerged among the tech set in recent years: AI is the new electricity. The platitude refers to the disruptive power of artificial intelligence for driving advances in everything from transportation to predicting the weather.

Of course, the computers and data centers that support AI’s complex algorithms are very much dependent on electricity. While that may seem pretty obvious, it may be surprising to learn that AI can be extremely power-hungry, especially when it comes to training the models that enable machines to recognize your face in a photo or for Alexa to understand a voice command.

The scale of the problem is difficult to measure, but there have been some attempts to put hard numbers on the environmental cost.

For instance, one paper published on the open-access repository arXiv claimed that the carbon emissions for training a basic natural language processing (NLP) model—algorithms that process and understand language-based data—are equal to the CO2 produced by the average American lifestyle over two years. A more robust model required the equivalent of about 17 years’ worth of emissions.

The authors noted that about a decade ago, NLP models could do the job on a regular commercial laptop. Today, much more sophisticated AI models use specialized hardware like graphics processing units, or GPUs, a chip technology popularized by Nvidia for gaming that also proved capable of supporting computing tasks for AI.

OpenAI, a nonprofit research organization co-founded by tech prophet and profiteer Elon Musk, said that the computing power “used in the largest AI training runs has been increasing exponentially with a 3.4-month doubling time” since 2012. That’s about the time that GPUs started making their way into AI computing systems.

Getting Smarter About AI Chip Design
While GPUs from Nvidia remain the gold standard in AI hardware today, a number of startups have emerged to challenge the company’s industry dominance. Many are building chipsets designed to work more like the human brain, an area that’s been dubbed neuromorphic computing.

One of the leading companies in this arena is Graphcore, a UK startup that has raised more than $450 million and boasts a valuation of $1.95 billion. The company’s version of the GPU is an IPU, which stands for intelligence processing unit.

To build a computer brain more akin to a human one, the big brains at Graphcore are bypassing the precise but time-consuming number-crunching typical of a conventional microprocessor with one that’s content to get by on less precise arithmetic.

The results are essentially the same, but IPUs get the job done much quicker. Graphcore claimed it was able to train the popular BERT NLP model in just 56 hours, while tripling throughput and reducing latency by 20 percent.

An article in Bloomberg compared the approach to the “human brain shifting from calculating the exact GPS coordinates of a restaurant to just remembering its name and neighborhood.”

Graphcore’s hardware architecture also features more built-in memory processing, boosting efficiency because there’s less need to send as much data back and forth between chips. That’s similar to an approach adopted by a team of researchers in Italy that recently published a paper about a new computing circuit.

The novel circuit uses a device called a memristor that can execute a mathematical function known as a regression in just one operation. The approach attempts to mimic the human brain by processing data directly within the memory.

Daniele Ielmini at Politecnico di Milano, co-author of the Science Advances paper, told Singularity Hub that the main advantage of in-memory computing is the lack of any data movement, which is the main bottleneck of conventional digital computers, as well as the parallel processing of data that enables the intimate interactions among various currents and voltages within the memory array.

Ielmini explained that in-memory computing can have a “tremendous impact on energy efficiency of AI, as it can accelerate very advanced tasks by physical computation within the memory circuit.” He added that such “radical ideas” in hardware design will be needed in order to make a quantum leap in energy efficiency and time.

It’s Not Just a Hardware Problem
The emphasis on designing more efficient chip architecture might suggest that AI’s power hunger is essentially a hardware problem. That’s not the case, Ielmini noted.

“We believe that significant progress could be made by similar breakthroughs at the algorithm and dataset levels,” he said.

He’s not the only one.

One of the key research areas at Qualcomm’s AI research lab is energy efficiency. Max Welling, vice president of Qualcomm Technology R&D division, has written about the need for more power-efficient algorithms. He has gone so far as to suggest that AI algorithms will be measured by the amount of intelligence they provide per joule.

One emerging area being studied, Welling wrote, is the use of Bayesian deep learning for deep neural networks.

It’s all pretty heady stuff and easily the subject of a PhD thesis. The main thing to understand in this context is that Bayesian deep learning is another attempt to mimic how the brain processes information by introducing random values into the neural network. A benefit of Bayesian deep learning is that it compresses and quantifies data in order to reduce the complexity of a neural network. In turn, that reduces the number of “steps” required to recognize a dog as a dog—and the energy required to get the right result.

A team at Oak Ridge National Laboratory has previously demonstrated another way to improve AI energy efficiency by converting deep learning neural networks into what’s called a spiking neural network. The researchers spiked their deep spiking neural network (DSNN) by introducing a stochastic process that adds random values like Bayesian deep learning.

The DSNN actually imitates the way neurons interact with synapses, which send signals between brain cells. Individual “spikes” in the network indicate where to perform computations, lowering energy consumption because it disregards unnecessary computations.

The system is being used by cancer researchers to scan millions of clinical reports to unearth insights on causes and treatments of the disease.

Helping battle cancer is only one of many rewards we may reap from artificial intelligence in the future, as long as the benefits of those algorithms outweigh the costs of using them.

“Making AI more energy-efficient is an overarching objective that spans the fields of algorithms, systems, architecture, circuits, and devices,” Ielmini said.

Image Credit: analogicus from Pixabay Continue reading

Posted in Human Robots

#436488 Tech’s Biggest Leaps From the Last 10 ...

As we enter our third decade in the 21st century, it seems appropriate to reflect on the ways technology developed and note the breakthroughs that were achieved in the last 10 years.

The 2010s saw IBM’s Watson win a game of Jeopardy, ushering in mainstream awareness of machine learning, along with DeepMind’s AlphaGO becoming the world’s Go champion. It was the decade that industrial tools like drones, 3D printers, genetic sequencing, and virtual reality (VR) all became consumer products. And it was a decade in which some alarming trends related to surveillance, targeted misinformation, and deepfakes came online.

For better or worse, the past decade was a breathtaking era in human history in which the idea of exponential growth in information technologies powered by computation became a mainstream concept.

As I did last year for 2018 only, I’ve asked a collection of experts across the Singularity University faculty to help frame the biggest breakthroughs and moments that gave shape to the past 10 years. I asked them what, in their opinion, was the most important breakthrough in their respective fields over the past decade.

My own answer to this question, focused in the space of augmented and virtual reality, would be the stunning announcement in March of 2014 that Facebook acquired Oculus VR for $2 billion. Although VR technology had been around for a while, it was at this precise moment that VR arrived as a consumer technology platform. Facebook, largely fueled by the singular interest of CEO Mark Zuckerberg, has funded the development of this industry, keeping alive the hope that consumer VR can become a sustainable business. In the meantime, VR has continued to grow in sophistication and usefulness, though it has yet to truly take off as a mainstream concept. That will hopefully be a development for the 2020s.

Below is a decade in review across the technology areas that are giving shape to our modern world, as described by the SU community of experts.

Digital Biology
Dr. Tiffany Vora | Faculty Director and Vice Chair, Digital Biology and Medicine, Singularity University

In my mind, this decade of astounding breakthroughs in the life sciences and medicine rests on the achievement of the $1,000 human genome in 2016. More-than-exponentially falling costs of DNA sequencing have driven advances in medicine, agriculture, ecology, genome editing, synthetic biology, the battle against climate change, and our fundamental understanding of life and its breathtaking connections. The “digital” revolution in DNA constituted an important model for harnessing other types of biological information, from personalized bio data to massive datasets spanning populations and species.

Crucially, by aggressively driving down the cost of such analyses, researchers and entrepreneurs democratized access to the source code of life—with attendant financial, cultural, and ethical consequences. Exciting, but take heed: Veritas Genetics spearheaded a $600 genome in 2019, only to have to shutter USA operations due to a money trail tangled with the trade war with China. Stay tuned through the early 2020s to see the pricing of DNA sequencing fall even further … and to experience the many ways that cheaper, faster harvesting of biological data will enrich your daily life.

Cryptocurrency
Alex Gladstein | Chief Strategy Officer, Human Rights Foundation

The past decade has seen Bitcoin go from just an idea on an obscure online message board to a global financial network carrying more than 100 billion dollars in value. And we’re just getting started. One recent defining moment in the cryptocurrency space has been a stunning trend underway in Venezuela, where today, the daily dollar-denominated value of Bitcoin traded now far exceeds the daily dollar-denominated value traded on the Caracas Stock Exchange. It’s just one country, but it’s a significant country, and a paradigm shift.

Governments and corporations are following Bitcoin’s success too, and are looking to launch their own digital currencies. China will launch its “DC/EP” project in the coming months, and Facebook is trying to kickstart its Libra project. There are technical and regulatory uncertainties for both, but one thing is for certain: the era of digital currency has arrived.

Business Strategy and Entrepreneurship
Pascal Finnette | Chair, Entrepreneurship and Open Innovation, Singularity University

For me, without a doubt, the most interesting and quite possibly ground-shifting development in the fields of entrepreneurship and corporate innovation in the last ten years is the rapid maturing of customer-driven product development frameworks such as Lean Startup, and its subsequent adoption by corporates for their own innovation purposes.

Tools and frameworks like the Business Model Canvas, agile (software) development and the aforementioned Lean Startup methodology fundamentally shifted the way we think and go about building products, services, and companies, with many of these tools bursting onto the startup scene in the late 2000s and early 2010s.

As these tools matured they found mass adoption not only in startups around the world, but incumbent companies who eagerly adopted them to increase their own innovation velocity and success.

Energy
Ramez Naam | Co-Chair, Energy and Environment, Singularity University

The 2010s were the decade that saw clean electricity, energy storage, and electric vehicles break through price and performance barriers around the world. Solar, wind, batteries, and EVs started this decade as technologies that had to be subsidized. That was the first phase of their existence. Now they’re entering their third, most disruptive phase, where shifting to clean energy and mobility is cheaper than continuing to use existing coal, gas, or oil infrastructure.

Consider that at the start of 2010, there was no place on earth where building new solar or wind was cheaper than building new coal or gas power generation. By 2015, in some of the sunniest and windiest places on earth, solar and wind had entered their second phase, where they were cost-competitive for new power. And then, in 2018 and 2019, we started to see the edge of the third phase, as building new solar and wind, in some parts of the world, was cheaper than operating existing coal or gas power plants.

Food Technology
Liz Specht, Ph. D | Associate Director of Science & Technology, The Good Food Institute

The arrival of mainstream plant-based meat is easily the food tech advance of the decade. Meat analogs have, of course, been around forever. But only in the last decade have companies like Beyond Meat and Impossible Foods decided to cut animals out of the process and build no-compromise meat directly from plants.

Plant-based meat is already transforming the fast-food industry. For example, the introduction of the Impossible Whopper led Burger King to their most profitable quarter in many years. But the global food industry as a whole is shifting as well. Tyson, JBS, Nestle, Cargill, and many others are all embracing plant-based meat.

Augmented and Virtual Reality
Jody Medich | CEO, Superhuman-x

The breakthrough moment for augmented and virtual reality came in 2013 when Palmer Lucky took apart an Android smartphone and added optic lenses to make the first version of the Oculus Rift. Prior to that moment, we struggled with miniaturizing the components needed to develop low-latency head-worn devices. But thanks to the smartphone race started in 2006 with the iPhone, we finally had a suite of sensors, chips, displays, and computing power small enough to put on the head.

What will the next 10 years bring? Look for AR/VR to explode in a big way. We are right on the cusp of that tipping point when the tech is finally “good enough” for our linear expectations. Given all it can do today, we can’t even picture what’s possible. Just as today we can’t function without our phones, by 2029 we’ll feel lost without some AR/VR product. It will be the way we interact with computing, smart objects, and AI. Tim Cook, Apple CEO, predicts it will replace all of today’s computing devices. I can’t wait.

Philosophy of Technology
Alix Rübsaam | Faculty Fellow, Singularity University, Philosophy of Technology/Ethics of AI

The last decade has seen a significant shift in our general attitude towards the algorithms that we now know dictate much of our surroundings. Looking back at the beginning of the decade, it seems we were blissfully unaware of how the data we freely and willingly surrendered would feed the algorithms that would come to shape every aspect of our daily lives: the news we consume, the products we purchase, the opinions we hold, etc.

If I were to isolate a single publication that contributed greatly to the shift in public discourse on algorithms, it would have to be Cathy O’Neil’s Weapons of Math Destruction from 2016. It remains a comprehensive, readable, and highly informative insight into how algorithms dictate our finances, our jobs, where we go to school, or if we can get health insurance. Its publication represents a pivotal moment when the general public started to question whether we should be OK with outsourcing decision making to these opaque systems.

The ubiquity of ethical guidelines for AI and algorithms published just in the last year (perhaps most comprehensively by the AI Now Institute) fully demonstrates the shift in public opinion of this decade.

Data Science
Ola Kowalewski | Faculty Fellow, Singularity University, Data Innovation

In the last decade we entered the era of internet and smartphone ubiquity. The number of internet users doubled, with nearly 60 percent of the global population connected online and now over 35 percent of the globe owns a smartphone. With billions of people in a state of constant connectedness and therefore in a state of constant surveillance, the companies that have built the tech infrastructure and information pipelines have dominated the global economy. This shift from tech companies being the underdogs to arguably the world’s major powers sets the landscape we enter for the next decade.

Global Grand Challenges
Darlene Damm | Vice Chair, Faculty, Global Grand Challenges, Singularity University

The biggest breakthrough over the last decade in social impact and technology is that the social impact sector switched from seeing technology as something problematic to avoid, to one of the most effective ways to create social change. We now see people using exponential technologies to solve all sorts of social challenges in areas ranging from disaster response to hunger to shelter.

The world’s leading social organizations, such as UNICEF and the World Food Programme, have launched their own venture funds and accelerators, and the United Nations recently declared that digitization is revolutionizing global development.

Digital Biology
Raymond McCauley | Chair, Digital Biology, Singularity University, Co-Founder & Chief Architect, BioCurious; Principal, Exponential Biosciences

CRISPR is bringing about a revolution in genetic engineering. It’s obvious, and it’s huge. What may not be so obvious is the widespread adoption of genetic testing. And this may have an even longer-lasting effect. It’s used to test new babies, to solve medical mysteries, and to catch serial killers. Thanks to holiday ads from 23andMe and Ancestry.com, it’s everywhere. Testing your DNA is now a common over-the-counter product. People are using it to set their diet, to pick drugs, and even for dating (or at least picking healthy mates).

And we’re just in the early stages. Further down the line, doing large-scale studies on more people, with more data, will lead to the use of polygenic risk scores to help us rank our genetic potential for everything from getting cancer to being a genius. Can you imagine what it would be like for parents to pick new babies, GATTACA-style, to get the smartest kids? You don’t have to; it’s already happening.

Artificial Intelligence
Neil Jacobstein | Chair, Artificial Intelligence and Robotics, Singularity University

The convergence of exponentially improved computing power, the deep learning algorithm, and access to massive data resulted in a series of AI breakthroughs over the past decade. These included: vastly improved accuracy in identifying images, making self driving cars practical, beating several world champions in Go, and identifying gender, smoking status, and age from retinal fundus photographs.

Combined, these breakthroughs convinced researchers and investors that after 50+ years of research and development, AI was ready for prime-time applications. Now, virtually every field of human endeavor is being revolutionized by machine learning. We still have a long way to go to achieve human-level intelligence and beyond, but the pace of worldwide improvement is blistering.

Hod Lipson | Professor of Engineering and Data Science, Columbia University

The biggest moment in AI in the past decade (and in its entire history, in my humble opinion) was midnight, Pacific time, September 30, 2012: the moment when machines finally opened their eyes. It was the moment when deep learning took off, breaking stagnant decades of machine blindness, when AI couldn’t reliably tell apart even a cat from a dog. That seemingly trivial accomplishment—a task any one-year-old child can do—has had a ripple effect on AI applications from driverless cars to health diagnostics. And this is just the beginning of what is sure to be a Cambrian explosion of AI.

Neuroscience
Divya Chander | Chair, Neuroscience, Singularity University

If the 2000s were the decade of brain mapping, then the 2010s were the decade of brain writing. Optogenetics, a technique for precisely mapping and controlling neurons and neural circuits using genetically-directed light, saw incredible growth in the 2010s.

Also in the last 10 years, neuromodulation, or the ability to rewire the brain using both invasive and non-invasive interfaces and energy, has exploded in use and form. For instance, the Braingate consortium showed us how electrode arrays implanted into the motor cortex could be used by paralyzed people to use their thoughts to direct a robotic arm. These technologies, alone or in combination with robotics, exoskeletons, and flexible, implantable, electronics also make possible a future of human augmentation.

Image Credit: Image by Jorge Guillen from Pixabay Continue reading

Posted in Human Robots