Tag Archives: interact

#435681 Video Friday: This NASA Robot Uses ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

ICRES 2019 – July 29-30, 2019 – London, U.K.
DARPA SubT Tunnel Circuit – August 15-22, 2019 – Pittsburgh, Pa., USA
IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Let us know if you have suggestions for next week, and enjoy today’s videos.

Robots can land on the Moon and drive on Mars, but what about the places they can’t reach? Designed by engineers as NASA’s Jet Propulsion Laboratory in Pasadena, California, a four-limbed robot named LEMUR (Limbed Excursion Mechanical Utility Robot) can scale rock walls, gripping with hundreds of tiny fishhooks in each of its 16 fingers and using artificial intelligence to find its way around obstacles. In its last field test in Death Valley, California, in early 2019, LEMUR chose a route up a cliff, scanning the rock for ancient fossils from the sea that once filled the area.

The LEMUR project has since concluded, but it helped lead to a new generation of walking, climbing and crawling robots. In future missions to Mars or icy moons, robots with AI and climbing technology derived from LEMUR could discover similar signs of life. Those robots are being developed now, honing technology that may one day be part of future missions to distant worlds.

[ NASA ]

This video demonstrates the autonomous footstep planning developed by IHMC. Robots in this video are the Atlas humanoid robot (DRC version) and the NASA Valkyrie. The operator specifies a goal location in the world, which is modeled as planar regions using the robot’s perception sensors. The planner then automatically computes the necessary steps to reach the goal using a Weighted A* algorithm. The algorithm does not reject footholds that have a certain amount of support, but instead modifies them after the plan is found to try and increase that support area.

Currently, narrow terrain has a success rate of about 50%, rough terrain is about 90%, whereas flat ground is near 100%. We plan on increasing planner speed and the ability to plan through mazes and to unseen goals by including a body-path planner as the first step. Control, Perception, and Planning algorithms by IHMC Robotics.

[ IHMC ]

I’ve never really been able to get into watching people play poker, but throw an AI from CMU and Facebook into a game of no-limit Texas hold’em with five humans, and I’m there.

[ Facebook ]

In this video, Cassie Blue is navigating autonomously. Right now, her world is very small, the Wavefield at the University of Michigan, where she is told to turn left at intersections. You’re right, that is not a lot of independence, but it’s a first step away from a human and an RC controller!

Using a RealSense RGBD Camera, an IMU, and our version of an InEKF with contact factors, Cassie Blue is building a 3D semantic map in real time that identifies sidewalks, grass, poles, bicycles, and buildings. From the semantic map, occupancy and cost maps are built with the sidewalk identified as walk-able area and everything else considered as an obstacle. A planner then sets a goal to stay approximately 50 cm to the right of the sidewalk’s left edge and plans a path around obstacles and corners using D*. The path is translated into way-points that are achieved via Cassie Blue’s gait controller.

[ University of Michigan ]

Thanks Jesse!

Dave from HEBI Robotics wrote in to share some new actuators that are designed to get all kinds of dirty: “The R-Series takes HEBI’s X-Series to the next level, providing a sealed robotics solution for rugged, industrial applications and laying the groundwork for industrial users to address challenges that are not well met by traditional robotics. To prove it, we shot some video right in the Allegheny River here in Pittsburgh. Not a bad way to spend an afternoon :-)”

The R-Series Actuator is a full-featured robotic component as opposed to a simple servo motor. The output rotates continuously, requires no calibration or homing on boot-up, and contains a thru-bore for easy daisy-chaining of wiring. Modular in nature, R-Series Actuators can be used in everything from wheeled robots to collaborative robotic arms. They are sealed to IP67 and designed with a lightweight form factor for challenging field applications, and they’re packed with sensors that enable simultaneous control of position, velocity, and torque.

[ HEBI Robotics ]

Thanks Dave!

If your robot hands out karate chops on purpose, that’s great. If it hands out karate chops accidentally, maybe you should fix that.

COVR is short for “being safe around collaborative and versatile robots in shared spaces”. Our mission is to significantly reduce the complexity in safety certifying cobots. Increasing safety for collaborative robots enables new innovative applications, thus increasing production and job creation for companies utilizing the technology. Whether you’re an established company seeking to deploy cobots or an innovative startup with a prototype of a cobot related product, COVR will help you analyze, test and validate the safety for that application.

[ COVR ]

Thanks Anna!

EPFL startup Flybotix has developed a novel drone with just two propellers and an advanced stabilization system that allow it to fly for twice as long as conventional models. That fact, together with its small size, makes it perfect for inspecting hard-to-reach parts of industrial facilities such as ducts.

[ Flybotix ]

SpaceBok is a quadruped robot designed and built by a Swiss student team from ETH Zurich and ZHAW Zurich, currently being tested using Automation and Robotics Laboratories (ARL) facilities at our technical centre in the Netherlands. The robot is being used to investigate the potential of ‘dynamic walking’ and jumping to get around in low gravity environments.

SpaceBok could potentially go up to 2 m high in lunar gravity, although such a height poses new challenges. Once it comes off the ground the legged robot needs to stabilise itself to come down again safely – like a mini-spacecraft. So, like a spacecraft. SpaceBok uses a reaction wheel to control its orientation.

[ ESA ]

A new video from GITAI showing progress on their immersive telepresence robot for space.

[ GITAI ]

Tech United’s HERO robot (a Toyota HSR) competed in the RoboCup@Home competition, and it had a couple of garbage-related hiccups.

[ Tech United ]

Even small drones are getting better at autonomous obstacle avoidance in cluttered environments at useful speeds, as this work from the HKUST Aerial Robotics Group shows.

[ HKUST ]

DelFly Nimbles now come in swarms.

[ DelFly Nimble ]

This is a very short video, but it’s a fairly impressive look at a Baxter robot collaboratively helping someone put a shirt on, a useful task for folks with disabilities.

[ Shibata Lab ]

ANYmal can inspect the concrete in sewers for deterioration by sliding its feet along the ground.

[ ETH Zurich ]

HUG is a haptic user interface for teleoperating advanced robotic systems as the humanoid robot Justin or the assistive robotic system EDAN. With its lightweight robot arms, HUG can measure human movements and simultaneously display forces from the distant environment. In addition to such teleoperation applications, HUG serves as a research platform for virtual assembly simulations, rehabilitation, and training.

[ DLR ]

This video about “image understanding” from CMU in 1979 (!) is amazing, and even though it’s long, you won’t regret watching until 3:30. Or maybe you will.

[ ARGOS (pdf) ]

Will Burrard-Lucas’ BeetleCam turned 10 this month, and in this video, he recounts the history of his little robotic camera.

[ BeetleCam ]

In this week’s episode of Robots in Depth, Per speaks with Gabriel Skantze from Furhat Robotics.

Gabriel Skantze is co-founder and Chief Scientist at Furhat Robotics and Professor in speech technology at KTH with a specialization in conversational systems. He has a background in research into how humans use spoken communication to interact.

In this interview, Gabriel talks about how the social robot revolution makes it necessary to communicate with humans in a human ways through speech and facial expressions. This is necessary as we expand the number of people that interact with robots as well as the types of interaction. Gabriel gives us more insight into the many challenges of implementing spoken communication for co-bots, where robots and humans work closely together. They need to communicate about the world, the objects in it and how to handle them. We also get to hear how having an embodied system using the Furhat robot head helps the interaction between humans and the system.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435648 Surprisingly Speedy Soft Robot Survives ...

Soft robots are getting more and more popular for some very good reasons. Their relative simplicity is one. Their relative low cost is another. And for their simplicity and low cost, they’re generally able to perform very impressively, leveraging the unique features inherent to their design and construction to move themselves and interact with their environment. The other significant reason why soft robots are so appealing is that they’re durable. Without the constraints of rigid parts, they can withstand the sort of abuse that would make any roboticist cringe.

In the current issue of Science Robotics, a group of researchers from Tsinghua University in China and University of California, Berkeley, present a new kind of soft robot that’s both higher performance and much more robust than just about anything we’ve seen before. The deceptively simple robot looks like a bent strip of paper, but it’s able to move at 20 body lengths per second and survive being stomped on by a human wearing tennis shoes. Take that, cockroaches.

This prototype robot measures just 3 centimeters by 1.5 cm. It takes a scanning electron microscope to actually see what the robot is made of—a thermoplastic layer is sandwiched by palladium-gold electrodes, bonded with adhesive silicone to a structural plastic at the bottom. When an AC voltage (as low as 8 volts but typically about 60 volts) is run through the electrodes, the thermoplastic extends and contracts, causing the robot’s back to flex and the little “foot” to shuffle. A complete step cycle takes just 50 milliseconds, yielding a 200 hertz gait. And technically, the robot “runs,” since it does have a brief aerial phase.

Image: Science Robotics

Photos from a high-speed camera show the robot’s gait (A to D) as it contracts and expands its body.

To put the robot’s top speed of 20 body lengths per second in perspective, have a look at this nifty chart, which shows where other animals relative running speeds of some animals and robots versus body mass:

Image: Science Robotics

This chart shows the relative running speeds of some mammals (purple area), arthropods (orange area), and soft robots (blue area) versus body mass. For both mammals and arthropods, relative speeds show a strong negative scaling law with respect to the body mass: speeds increase as body masses decrease. However, for soft robots, the relationship appears to be the opposite: speeds decrease as the body mass decrease. For the little soft robots created by the researchers from Tsinghua University and UC Berkeley (red stars), the scaling law is similar to that of living animals: Higher speed was attained as the body mass decreased.

If you were wondering, like we were, just what that number 39 is on that chart (top left corner), it’s a species of tiny mite that was discovered underneath a rock in California in 1916. The mite is just under 1 mm in size, but it can run at 0.8 kilometer per hour, which is 322 body lengths per second, making it by far (like, by a factor of two at least) the fastest land animal on Earth relative to size. If a human was to run that fast relative to our size, we’d be traveling at a little bit over 2,000 kilometers per hour. It’s not a coincidence that pretty much everything in the upper left of the chart is an insect—speed scales favorably with decreasing mass, since actuators have a proportionally larger effect.

Other notable robots on the chart with impressive speed to mass ratios are number 27, which is this magnetically driven quadruped robot from UMD, and number 86, UC Berkeley’s X2-VelociRoACH.

Anyway, back to this robot. Some other cool things about it:

You can step on it, squishing it flat with a load about 1 million times its own body weight, and it’ll keep on crawling, albeit only half as fast.
Even climbing a slope of 15 degrees, it can still manage to move at 1 body length per second.
It carries peanuts! With a payload of six times its own weight, it moves a sixth as fast, but still, it’s not like you need your peanuts delivered all that quickly anyway, do you?

Image: Science Robotics

The researchers also put together a prototype with two legs instead of one, which was able to demonstrate a potentially faster galloping gait by spending more time in the air. They suggest that robots like these could be used for “environmental exploration, structural inspection, information reconnaissance, and disaster relief,” which are the sorts of things that you suggest that your robot could be used for when you really have no idea what it could be used for. But this work is certainly impressive, with speed and robustness that are largely unmatched by other soft robots. An untethered version seems possible due to the relatively low voltages required to drive the robot, and if they can put some peanut-sized sensors on there as well, practical applications might actually be forthcoming sometime soon.

“Insect-scale Fast Moving and Ultrarobust Soft Robot,” by Yichuan Wu, Justin K. Yim, Jiaming Liang, Zhichun Shao, Mingjing Qi, Junwen Zhong, Zihao Luo, Xiaojun Yan, Min Zhang, Xiaohao Wang, Ronald S. Fearing, Robert J. Full, and Liwei Lin from Tsinghua University and UC Berkeley, is published in Science Robotics. Continue reading

Posted in Human Robots

#435619 Video Friday: Watch This Robot Dog ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here’s what we have so far (send us your events!):

IEEE Africon 2019 – September 25-27, 2019 – Accra, Ghana
RoboBusiness 2019 – October 1-3, 2019 – Santa Clara, CA, USA
ISRR 2019 – October 6-10, 2019 – Hanoi, Vietnam
Ro-Man 2019 – October 14-18, 2019 – New Delhi, India
Humanoids 2019 – October 15-17, 2019 – Toronto, Canada
ARSO 2019 – October 31-1, 2019 – Beijing, China
ROSCon 2019 – October 31-1, 2019 – Macau
IROS 2019 – November 4-8, 2019 – Macau
Let us know if you have suggestions for next week, and enjoy today’s videos.

Team PLUTO (University of Pennsylvania, Ghost Robotics, and Exyn Technologies) put together this video giving us a robot’s-eye-view (or whatever they happen to be using for eyes) of the DARPA Subterranean Challenge tunnel circuits.

[ PLUTO ]

Zhifeng Huang has been improving his jet-stepping humanoid robot, which features new hardware and the ability to take larger and more complex steps.

This video reported the last progress of an ongoing project utilizing ducted-fan propulsion system to improve humanoid robot’s ability in stepping over large ditches. The landing point of the robot’s swing foot can be not only forward but also side direction. With keeping quasi-static balance, the robot was able to step over a ditch with 450mm in width (up to 97% of the robot’s leg’s length) in 3D stepping.

[ Paper ]

Thanks Zhifeng!

These underacuated hands from Matei Ciocarlie’s lab at Columbia are magically able to reconfigure themselves to grasp different object types with just one or two motors.

[ Paper ] via [ ROAM Lab ]

This is one reason we should pursue not “autonomous cars” but “fully autonomous cars” that never require humans to take over. We can’t be trusted.

During our early days as the Google self-driving car project, we invited some employees to test our vehicles on their commutes and weekend trips. What we were testing at the time was similar to the highway driver assist features that are now available on cars today, where the car takes over the boring parts of the driving, but if something outside its ability occurs, the driver has to take over immediately.

What we saw was that our testers put too much trust in that technology. They were doing things like texting, applying makeup, and even falling asleep that made it clear they would not be ready to take over driving if the vehicle asked them to. This is why we believe that nothing short of full autonomy will do.

[ Waymo ]

Buddy is a DIY and fetchingly minimalist social robot (of sorts) that will be coming to Kickstarter this month.

We have created a new arduino kit. His name is Buddy. He is a DIY social robot to serve as a replacement for Jibo, Cozmo, or any of the other bots that are no longer available. Fully 3D printed and supported he adds much more to our series of Arduino STEM robotics kits.

Buddy is able to look around and map his surroundings and react to changes within them. He can be surprised and he will always have a unique reaction to changes. The kit can be built very easily in less than an hour. It is even robust enough to take the abuse that kids can give it in a classroom.

[ Littlebots ]

The android Mindar, based on the Buddhist deity of mercy, preaches sermons at Kodaiji temple in Kyoto, and its human colleagues predict that with artificial intelligence it could one day acquire unlimited wisdom. Developed at a cost of almost $1 million (¥106 million) in a joint project between the Zen temple and robotics professor Hiroshi Ishiguro, the robot teaches about compassion and the dangers of desire, anger and ego.

[ Japan Times ]

I’m not sure whether it’s the sound or what, but this thing scares me for some reason.

[ BIRL ]

This gripper uses magnets as a sort of adjustable spring for dynamic stiffness control, which seems pretty clever.

[ Buffalo ]

What a package of medicine sees while being flown by drone from a hospital to a remote clinic in the Dominican Republic. The drone flew 11 km horizontally and 800 meters vertically, and I can’t even imagine what it would take to make that drive.

[ WeRobotics ]

My first ride in a fully autonomous car was at Stanford in 2009. I vividly remember getting in the back seat of a descendant of Junior, and watching the steering wheel turn by itself as the car executed a perfect parking maneuver. Ten years later, it’s still fun to watch other people have that experience.

[ Waymo ]

Flirtey, the pioneer of the commercial drone delivery industry, has unveiled the much-anticipated first video of its next-generation delivery drone, the Flirtey Eagle. The aircraft designer and manufacturer also unveiled the Flirtey Portal, a sophisticated take off and landing platform that enables scalable store-to-door operations; and an autonomous software platform that enables drones to deliver safely to homes.

[ Flirtey ]

EPFL scientists are developing new approaches for improved control of robotic hands – in particular for amputees – that combines individual finger control and automation for improved grasping and manipulation. This interdisciplinary proof-of-concept between neuroengineering and robotics was successfully tested on three amputees and seven healthy subjects.

[ EPFL ]

This video is a few years old, but we’ll take any excuse to watch the majestic sage-grouse be majestic in all their majesticness.

[ UC Davis ]

I like the idea of a game of soccer (or, football to you weirdos in the rest of the world) where the ball has a mind of its own.

[ Sphero ]

Looks like the whole delivery glider idea is really taking off! Or, you know, not taking off.

Weird that they didn’t show the landing, because it sure looked like it was going to plow into the side of the hill at full speed.

[ Yates ] via [ sUAS News ]

This video is from a 2018 paper, but it’s not like we ever get tired of seeing quadrupeds do stuff, right?

[ MIT ]

Founder and Head of Product, Ian Bernstein, and Head of Engineering, Morgan Bell, have been involved in the Misty project for years and they have learned a thing or two about building robots. Hear how and why Misty evolved into a robot development platform, learn what some of the earliest prototypes did (and why they didn’t work for what we envision), and take a deep dive into the technology decisions that form the Misty II platform.

[ Misty Robotics ]

Lex Fridman interviews Vijay Kumar on the Artifiical Intelligence Podcast.

[ AI Podcast ]

This week’s CMU RI Seminar is from Ross Knepper at Cornell, on Formalizing Teamwork in Human-Robot Interaction.

Robots out in the world today work for people but not with people. Before robots can work closely with ordinary people as part of a human-robot team in a home or office setting, robots need the ability to acquire a new mix of functional and social skills. Working with people requires a shared understanding of the task, capabilities, intentions, and background knowledge. For robots to act jointly as part of a team with people, they must engage in collaborative planning, which involves forming a consensus through an exchange of information about goals, capabilities, and partial plans. Often, much of this information is conveyed through implicit communication. In this talk, I formalize components of teamwork involving collaboration, communication, and representation. I illustrate how these concepts interact in the application of social navigation, which I argue is a first-class example of teamwork. In this setting, participants must avoid collision by legibly conveying intended passing sides via nonverbal cues like path shape. A topological representation using the braid groups enables the robot to reason about a small enumerable set of passing outcomes. I show how implicit communication of topological group plans achieves rapid covergence to a group consensus, and how a robot in the group can deliberately influence the ultimate outcome to maximize joint performance, yielding pedestrian comfort with the robot.

[ CMU RI ]

In this week’s episode of Robots in Depth, Per speaks with Julien Bourgeois about Claytronics, a project from Carnegie Mellon and Intel to develop “programmable matter.”

Julien started out as a computer scientist. He was always interested in robotics privately but then had the opportunity to get into micro robots when his lab was merged into the FEMTO-ST Institute. He later worked with Seth Copen Goldstein at Carnegie Mellon on the Claytronics project.

Julien shows an enlarged mock-up of the small robots that make up programmable matter, catoms, and speaks about how they are designed. Currently he is working on a unit that is one centimeter in diameter and he shows us the very small CPU that goes into that model.

[ Robots in Depth ] Continue reading

Posted in Human Robots

#435522 Harvard’s Smart Exo-Shorts Talk to the ...

Exosuits don’t generally scream “fashionable” or “svelte.” Take the mind-controlled robotic exoskeleton that allowed a paraplegic man to kick off the World Cup back in 2014. Is it cool? Hell yeah. Is it practical? Not so much.

Yapping about wearability might seem childish when the technology already helps people with impaired mobility move around dexterously. But the lesson of the ill-fated Google Glassholes, which includes an awkward dorky head tilt and an assuming voice command, clearly shows that wearable computer assistants can’t just work technologically—they have to look natural and allow the user to behave like as usual. They have to, in a sense, disappear.

To Dr. Jose Pons at the Legs + Walking Ability Lab in Chicago, exosuits need three main selling points to make it in the real world. One, they have to physically interact with their wearer and seamlessly deliver assistance when needed. Two, they should cognitively interact with the host to guide and control the robot at all times. Finally, they need to feel like a second skin—move with the user without adding too much extra mass or reducing mobility.

This week, a US-Korean collaboration delivered the whole shebang in a Lululemon-style skin-hugging package combined with a retro waist pack. The portable exosuit, weighing only 11 pounds, looks like a pair of spandex shorts but can support the wearer’s hip movement when needed. Unlike their predecessors, the shorts are embedded with sensors that let them know when the wearer is walking versus running by analyzing gait.

Switching between the two movement modes may not seem like much, but what naturally comes to our brains doesn’t translate directly to smart exosuits. “Walking and running have fundamentally different biomechanics, which makes developing devices that assist both gaits challenging,” the team said. Their algorithm, computed in the cloud, allows the wearer to easily switch between both, with the shorts providing appropriate hip support that makes the movement experience seamless.

To Pons, who was not involved in the research but wrote a perspective piece, the study is an exciting step towards future exosuits that will eventually disappear under the skin—that is, implanted neural interfaces to control robotic assistance or activate the user’s own muscles.

“It is realistic to think that we will witness, in the next several years…robust human-robot interfaces to command wearable robotics based on…the neural code of movement in humans,” he said.

A “Smart” Exosuit Hack
There are a few ways you can hack a human body to move with an exosuit. One is using implanted electrodes inside the brain or muscles to decipher movement intent. With heavy practice, a neural implant can help paralyzed people walk again or dexterously move external robotic arms. But because the technique requires surgery, it’s not an immediate sell for people who experience low mobility because of aging or low muscle tone.

The other approach is to look to biophysics. Rather than decoding neural signals that control movement, here the idea is to measure gait and other physical positions in space to decipher intent. As you can probably guess, accurately deciphering user intent isn’t easy, especially when the wearable tries to accommodate multiple gaits. But the gains are many: there’s no surgery involved, and the wearable is low in energy consumption.

Double Trouble
The authors decided to tackle an everyday situation. You’re walking to catch the train to work, realize you’re late, and immediately start sprinting.

That seemingly easy conversion hides a complex switch in biomechanics. When you walk, your legs act like an inverted pendulum that swing towards a dedicated center in a predictable way. When you run, however, the legs move more like a spring-loaded system, and the joints involved in the motion differ from a casual stroll. Engineering an assistive wearable for each is relatively simple; making one for both is exceedingly hard.

Led by Dr. Conor Walsh at Harvard University, the team started with an intuitive idea: assisted walking and running requires specialized “actuation” profiles tailored to both. When the user is moving in a way that doesn’t require assistance, the wearable needs to be out of the way so that it doesn’t restrict mobility. A quick analysis found that assisting hip extension has the largest impact, because it’s important to both gaits and doesn’t add mass to the lower legs.

Building on that insight, the team made a waist belt connected to two thigh wraps, similar to a climbing harness. Two electrical motors embedded inside the device connect the waist belt to other components through a pulley system to help the hip joints move. The whole contraption weighed about 11 lbs and didn’t obstruct natural movement.

Next, the team programmed two separate supporting profiles for walking and running. The goal was to reduce the “metabolic cost” for both movements, so that the wearer expends as little energy as needed. To switch between the two programs, they used a cloud-based classification algorithm to measure changes in energy fluctuation to figure out what mode—running or walking—the user is in.

Smart Booster
Initial trials on treadmills were highly positive. Six male volunteers with similar age and build donned the exosuit and either ran or walked on the treadmill at varying inclines. The algorithm performed perfectly at distinguishing between the two gaits in all conditions, even at steep angles.

An outdoor test with eight volunteers also proved the algorithm nearly perfect. Even on uneven terrain, only two steps out of all test trials were misclassified. In an additional trial on mud or snow, the algorithm performed just as well.

“The system allows the wearer to use their preferred gait for each speed,” the team said.

Software excellence translated to performance. A test found that the exosuit reduced the energy for walking by over nine percent and running by four percent. It may not sound like much, but the range of improvement is meaningful in athletic performance. Putting things into perspective, the team said, the metabolic rate reduction during walking is similar to taking 16 pounds off at the waist.

The Wearable Exosuit Revolution
The study’s lightweight exoshorts are hardly the only players in town. Back in 2017, SRI International’s spin-off, Superflex, engineered an Aura suit to support mobility in the elderly. The Aura used a different mechanism: rather than a pulley system, it incorporated a type of smart material that contracts in a manner similar to human muscles when zapped with electricity.

Embedded with a myriad of sensors for motion, accelerometers and gyroscopes, Aura’s smartness came from mini-computers that measure how fast the wearer is moving and track the user’s posture. The data were integrated and processed locally inside hexagon-shaped computing pods near the thighs and upper back. The pods also acted as the control center for sending electrical zaps to give the wearer a boost when needed.

Around the same time, a collaboration between Harvard’s Wyss Institute and ReWalk Robotics introduced a fabric-based wearable robot to assist a wearer’s legs for balance and movement. Meanwhile, a Swiss team coated normal fabric with electroactive material to weave soft, pliable artificial “muscles” that move with the skin.

Although health support is the current goal, the military is obviously interested in similar technologies to enhance soldiers’ physicality. Superflex’s Aura, for example, was originally inspired by technology born from DARPA’s Warrior Web Program, which aimed to reduce a soldier’s mechanical load.

That said, military gear has had a long history of trickling down to consumer use. Similar to the way camouflage, cargo pants, and GORE-TEX trickled down into the consumer ecosphere, it’s not hard to imagine your local Target eventually stocking intelligent exowear.

Image and Video Credit: Wyss Institute at Harvard University. Continue reading

Posted in Human Robots

#435308 Brain-Machine Interfaces Are Getting ...

Elon Musk grabbed a lot of attention with his July 16 announcement that his company Neuralink plans to implant electrodes into the brains of people with paralysis by next year. Their first goal is to create assistive technology to help people who can’t move or are unable to communicate.

If you haven’t been paying attention, brain-machine interfaces (BMIs) that allow people to control robotic arms with their thoughts might sound like science fiction. But science and engineering efforts have already turned it into reality.

In a few research labs around the world, scientists and physicians have been implanting devices into the brains of people who have lost the ability to control their arms or hands for over a decade. In our own research group at the University of Pittsburgh, we’ve enabled people with paralyzed arms and hands to control robotic arms that allow them to grasp and move objects with relative ease. They can even experience touch-like sensations from their own hand when the robot grasps objects.

At its core, a BMI is pretty straightforward. In your brain, microscopic cells called neurons are sending signals back and forth to each other all the time. Everything you think, do and feel as you interact with the world around you is the result of the activity of these 80 billion or so neurons.

If you implant a tiny wire very close to one of these neurons, you can record the electrical activity it generates and send it to a computer. Record enough of these signals from the right area of the brain and it becomes possible to control computers, robots, or anything else you might want, simply by thinking about moving. But doing this comes with tremendous technical challenges, especially if you want to record from hundreds or thousands of neurons.

What Neuralink Is Bringing to the Table
Elon Musk founded Neuralink in 2017, aiming to address these challenges and raise the bar for implanted neural interfaces.

Perhaps the most impressive aspect of Neuralink’s system is the breadth and depth of their approach. Building a BMI is inherently interdisciplinary, requiring expertise in electrode design and microfabrication, implantable materials, surgical methods, electronics, packaging, neuroscience, algorithms, medicine, regulatory issues, and more. Neuralink has created a team that spans most, if not all, of these areas.

With all of this expertise, Neuralink is undoubtedly moving the field forward, and improving their technology rapidly. Individually, many of the components of their system represent significant progress along predictable paths. For example, their electrodes, that they call threads, are very small and flexible; many researchers have tried to harness those properties to minimize the chance the brain’s immune response would reject the electrodes after insertion. Neuralink has also developed high-performance miniature electronics, another focus area for labs working on BMIs.

Often overlooked in academic settings, however, is how an entire system would be efficiently implanted in a brain.

Neuralink’s BMI requires brain surgery. This is because implanted electrodes that are in intimate contact with neurons will always outperform non-invasive electrodes where neurons are far away from the electrodes sitting outside the skull. So, a critical question becomes how to minimize the surgical challenges around getting the device into a brain.

Maybe the most impressive aspect of Neuralink’s announcement was that they created a 3,000-electrode neural interface where electrodes could be implanted at a rate of between 30 and 200 per minute. Each thread of electrodes is implanted by a sophisticated surgical robot that essentially acts like a sewing machine. This all happens while specifically avoiding blood vessels that blanket the surface of the brain. The robotics and imaging that enable this feat, with tight integration to the entire device, is striking.

Neuralink has thought through the challenge of developing a clinically viable BMI from beginning to end in a way that few groups have done, though they acknowledge that many challenges remain as they work towards getting this technology into human patients in the clinic.

Figuring Out What More Electrodes Gets You
The quest for implantable devices with thousands of electrodes is not only the domain of private companies. DARPA, the NIH BRAIN Initiative, and international consortiums are working on neurotechnologies for recording and stimulating in the brain with goals of tens of thousands of electrodes. But what might scientists do with the information from 1,000, 3,000, or maybe even 100,000 neurons?

At some level, devices with more electrodes might not actually be necessary to have a meaningful impact in people’s lives. Effective control of computers for access and communication, of robotic limbs to grasp and move objects as well as of paralyzed muscles is already happening—in people. And it has been for a number of years.

Since the 1990s, the Utah Array, which has just 100 electrodes and is manufactured by Blackrock Microsystems, has been a critical device in neuroscience and clinical research. This electrode array is FDA-cleared for temporary neural recording. Several research groups, including our own, have implanted Utah Arrays in people that lasted multiple years.

Currently, the biggest constraints are related to connectors, electronics, and system-level engineering, not the implanted electrode itself—although increasing the electrodes’ lifespan to more than five years would represent a significant advance. As those technical capabilities improve, it might turn out that the ability to accurately control computers and robots is limited more by scientists’ understanding of what the neurons are saying—that is, the neural code—than by the number of electrodes on the device.

Even the most capable implanted system, and maybe the most capable devices researchers can reasonably imagine, might fall short of the goal of actually augmenting skilled human performance. Nevertheless, Neuralink’s goal of creating better BMIs has the potential to improve the lives of people who can’t move or are unable to communicate. Right now, Musk’s vision of using BMIs to meld physical brains and intelligence with artificial ones is no more than a dream.

So, what does the future look like for Neuralink and other groups creating implantable BMIs? Devices with more electrodes that last longer and are connected to smaller and more powerful wireless electronics are essential. Better devices themselves, however, are insufficient. Continued public and private investment in companies and academic research labs, as well as innovative ways for these groups to work together to share technologies and data, will be necessary to truly advance scientists’ understanding of the brain and deliver on the promise of BMIs to improve peoples’ lives.

While researchers need to keep the future societal implications of advanced neurotechnologies in mind—there’s an essential role for ethicists and regulation—BMIs could be truly transformative as they help more people overcome limitations caused by injury or disease in the brain and body.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: UPMC/Pitt Health Sciences, / CC BY-NC-ND Continue reading

Posted in Human Robots