Tag Archives: good

#438014 Meet Blueswarm, a Smart School of ...

Anyone who’s seen an undersea nature documentary has marveled at the complex choreography that schooling fish display, a darting, synchronized ballet with a cast of thousands.

Those instinctive movements have inspired researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and the Wyss Institute for Biologically Inspired Engineering. The results could improve the performance and dependability of not just underwater robots, but other vehicles that require decentralized locomotion and organization, such as self-driving cars and robotic space exploration.

The fish collective called Blueswarm was created by a team led by Radhika Nagpal, whose lab is a pioneer in self-organizing systems. The oddly adorable robots can sync their movements like biological fish, taking cues from their plastic-bodied neighbors with no external controls required. Nagpal told IEEE Spectrum that this marks a milestone, demonstrating complex 3D behaviors with implicit coordination in underwater robots.

“Insights from this research will help us develop future miniature underwater swarms that can perform environmental monitoring and search in visually-rich but fragile environments like coral reefs,” Nagpal said. “This research also paves a way to better understand fish schools, by synthetically recreating their behavior.”

The research is published in Science Robotics, with Florian Berlinger as first author. Berlinger said the “Bluedot” robots integrate a trio of blue LED lights, a lithium-polymer battery, a pair of cameras, a Raspberry Pi computer and four controllable fins within a 3D-printed hull. The fish-lens cameras detect LED’s of their fellow swimmers, and apply a custom algorithm to calculate distance, direction and heading.

Based on that simple production and detection of LED light, the team proved that Blueswarm could self-organize behaviors, including aggregation, dispersal and circle formation—basically, swimming in a clockwise synchronization. Researchers also simulated a successful search mission, an autonomous Finding Nemo. Using their dispersion algorithm, the robot school spread out until one could detect a red light in the tank. Its blue LEDs then flashed, triggering the aggregation algorithm to gather the school around it. Such a robot swarm might prove valuable in search-and-rescue missions at sea, covering miles of open water and reporting back to its mates.

“Each Bluebot implicitly reacts to its neighbors’ positions,” Berlinger said. The fish—RoboCod, perhaps?—also integrate a Wifi module to allow uploading new behaviors remotely. The lab’s previous efforts include a 1,000-strong army of “Kilobots,” and a robotic construction crew inspired by termites. Both projects operated in two-dimensional space. But a 3D environment like air or water posed a tougher challenge for sensing and movement.

In nature, Berlinger notes, there’s no scaly CEO to direct the school’s movements. Nor do fish communicate their intentions. Instead, so-called “implicit coordination” guides the school’s collective behavior, with individual members executing high-speed moves based on what they see their neighbors doing. That decentralized, autonomous organization has long fascinated scientists, including in robotics.

“In these situations, it really benefits you to have a highly autonomous robot swarm that is self-sufficient. By using implicit rules and 3D visual perception, we were able to create a system with a high degree of autonomy and flexibility underwater where things like GPS and WiFi are not accessible.”

Berlinger adds the research could one day translate to anything that requires decentralized robots, from self-driving cars and Amazon warehouse vehicles to exploration of faraway planets, where poor latency makes it impossible to transmit commands quickly. Today’s semi-autonomous cars face their own technical hurdles in reliably sensing and responding to their complex environments, including when foul weather obscures onboard sensors or road markers, or when they can’t fix position via GPS. An entire subset of autonomous-car research involves vehicle-to-vehicle (V2V) communications that could give cars a hive mind to guide individual or collective decisions— avoiding snarled traffic, driving safely in tight convoys, or taking group evasive action during a crash that’s beyond their sensory range.

“Once we have millions of cars on the road, there can’t be one computer orchestrating all the traffic, making decisions that work for all the cars,” Berlinger said.

The miniature robots could also work long hours in places that are inaccessible to humans and divers, or even large tethered robots. Nagpal said the synthetic swimmers could monitor and collect data on reefs or underwater infrastructure 24/7, and work into tiny places without disturbing fragile equipment or ecosystems.

“If we could be as good as fish in that environment, we could collect information and be non-invasive, in cluttered environments where everything is an obstacle,” Nagpal said. Continue reading

Posted in Human Robots

#438006 Smellicopter Drone Uses Live Moth ...

Research into robotic sensing has, understandably I guess, been very human-centric. Most of us navigate and experience the world visually and in 3D, so robots tend to get covered with things like cameras and lidar. Touch is important to us, as is sound, so robots are getting pretty good with understanding tactile and auditory information, too. Smell, though? In most cases, smell doesn’t convey nearly as much information for us, so while it hasn’t exactly been ignored in robotics, it certainly isn’t the sensing modality of choice in most cases.

Part of the problem with smell sensing is that we just don’t have a good way of doing it, from a technical perspective. This has been a challenge for a long time, and it’s why we either bribe or trick animals like dogs, rats, vultures, and other animals to be our sensing systems for airborne chemicals. If only they’d do exactly what we wanted them to do all the time, this would be fine, but they don’t, so it’s not.

Until we get better at making chemical sensors, leveraging biology is the best we can do, and what would be ideal would be some sort of robot-animal hybrid cyborg thing. We’ve seen some attempts at remote controlled insects, but as it turns out, you can simplify things if you don’t use the entire insect, but instead just find a way to use its sensing system. Enter the Smellicopter.

There’s honestly not too much to say about the drone itself. It’s an open-source drone project called Crazyflie 2.0, with some additional off the shelf sensors for obstacle avoidance and stabilization. The interesting bits are a couple of passive fins that keep the drone pointed into the wind, and then the sensor, called an electroantennogram.

Image: UW

The drone’s sensor, called an electroantennogram, consists of a “single excised antenna” from a Manduca sexta hawkmoth and a custom signal processing circuit.

To make one of these sensors, you just, uh, “harvest” an antenna from a live hawkmoth. Obligingly, the moth antenna is hollow, meaning that you can stick electrodes up it. Whenever the olfactory neurons in the antenna (which is still technically alive even though it’s not attached to the moth anymore) encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up. Plug the other ends of the electrodes into a voltage amplifier and filter, run it through an analog to digital converter, and you’ve got a chemical sensor that weighs just 1.5 gram and consumes only 2.7 mW of power. It’s significantly more sensitive than a conventional metal-oxide odor sensor, in a much smaller and more efficient form factor, making it ideal for drones.

To localize an odor, the Smellicopter uses a simple bioinspired approach called crosswind casting, which involves moving laterally left and right and then forward when an odor is detected. Here’s how it works:

The vehicle takes off to a height of 40 cm and then hovers for ten seconds to allow it time to orient upwind. The smellicopter starts casting left and right crosswind. When a volatile chemical is detected, the smellicopter will surge 25 cm upwind, and then resume casting. As long as the wind direction is fairly consistent, this strategy will bring the insect or robot increasingly closer to a singular source with each surge.

Since odors are airborne, they need a bit of a breeze to spread very far, and the Smellicopter won’t be able to detect them unless it’s downwind of the source. But, that’s just how odors work— even if you’re right next to the source, if the wind is blowing from you towards the source rather than the other way around, you might not catch a whiff of it.

Whenever the olfactory neurons in the antenna encounter an odor that they’re looking for, they produce an electrical signal that the electrodes pick up

There are a few other constraints to keep in mind with this sensor as well. First, rather than detecting something useful (like explosives), it’s going to detect the smells of pretty flowers, because moths like pretty flowers. Second, the antenna will literally go dead on you within a couple hours, since it only functions while its tissues are alive and metaphorically kicking. Interestingly, it may be possible to use CRISPR-based genetic modification to breed moths with antennae that do respond to useful smells, which would be a neat trick, and we asked the researchers—Melanie Anderson, a doctoral student of mechanical engineering at the University of Washington, in Seattle; Thomas Daniel, a UW professor of biology; and Sawyer Fuller, a UW assistant professor of mechanical engineering—about this, along with some other burning questions, via email.

IEEE Spectrum, asking the important questions first: So who came up with “Smellicopter”?

Melanie Anderson: Tom Daniel coined the term “Smellicopter”. Another runner up was “OdorRotor”!

In general, how much better are moths at odor localization than robots?

Melanie Anderson: Moths are excellent at odor detection and odor localization and need to be in order to find mates and food. Their antennae are much more sensitive and specialized than any portable man-made odor sensor. We can't ask the moths how exactly they search for odors so well, but being able to have the odor sensitivity of a moth on a flying platform is a big step in that direction.

Tom Daniel: Our best estimate is that they outperform robotic sensing by at least three orders of magnitude.

How does the localization behavior of the Smellicopter compare to that of a real moth?

Anderson: The cast-and-surge odor search strategy is a simplified version of what we believe the moth (and many other odor searching animals) are doing. It is a reactive strategy that relies on the knowledge that if you detect odor, you can assume that the source is somewhere up-wind of you. When you detect odor, you simply move upwind, and when you lose the odor signal you cast in a cross-wind direction until you regain the signal.

Can you elaborate on the potential for CRISPR to be able to engineer moths for the detection of specific chemicals?

Anderson: CRISPR is already currently being used to modify the odor detection pathways in moth species. It is one of our future efforts to specifically use this to make the antennae sensitive to other chemicals of interest, such as the chemical scent of explosives.

Sawyer Fuller: We think that one of the strengths of using a moth's antenna, in addition to its speed, is that it may provide a path to both high chemical specificity as well as high sensitivity. By expressing a preponderance of only one or a few chemosensors, we are anticipating that a moth antenna will give a strong response only to that chemical. There are several efforts underway in other research groups to make such specific, sensitive chemical detectors. Chemical sensing is an area where biology exceeds man-made systems in terms of efficiency, small size, and sensitivity. So that's why we think that the approach of trying to leverage biological machinery that already exists has some merit.

You mention that the antennae lifespan can be extended for a few days with ice- how feasible do you think this technology is outside of a research context?

Anderson: The antennae can be stored in tiny vials in a standard refrigerator or just with an ice pack to extend their life to about a week. Additionally, the process for attaching the antenna to the electrical circuit is a teachable skill. It is definitely feasible outside of a research context.

Considering the trajectory that sensor development is on, how long do you think that this biological sensor system will outperform conventional alternatives?

Anderson: It's hard to speak toward what will happen in the future, but currently, the moth antenna still stands out among any commercially-available portable sensors.

There have been some experiments with cybernetic insects; what are the advantages and disadvantages of your approach, as opposed to (say) putting some sort of tracking system on a live moth?

Daniel: I was part of a cyber insect team a number of years ago. The challenge of such research is that the animal has natural reactions to attempts to steer or control it.

Anderson: While moths are better at odor tracking than robots currently, the advantage of the drone platform is that we have control over it. We can tell it to constrain the search to a certain area, and return after it finishes searching.

What can you tell us about the health, happiness, and overall wellfare of the moths in your experiments?

Anderson: The moths are cold anesthetized before the antennae are removed. They are then frozen so that they can be used for teaching purposes or in other research efforts.

What are you working on next?

Daniel: The four big efforts are (1) CRISPR modification, (2) experiments aimed at improving the longevity of the antennal preparation, (3) improved measurements of antennal electrical responses to odors combined with machine learning to see if we can classify different odors, and (4) flight in outdoor environments.

Fuller: The moth's antenna sensor gives us a new ability to sense with a much shorter latency than was previously possible with similarly-sized sensors (e.g. semiconductor sensors). What exactly a robot agent should do to best take advantage of this is an open question. In particular, I think the speed may help it to zero in on plume sources in complex environments much more quickly. Think of places like indoor settings with flow down hallways that splits out at doorways, and in industrial settings festooned with pipes and equipment. We know that it is possible to search out and find odors in such scenarios, as anybody who has had to contend with an outbreak of fruit flies can attest. It is also known that these animals respond very quickly to sudden changes in odor that is present in such turbulent, patchy plumes. Since it is hard to reduce such plumes to a simple model, we think that machine learning may provide insights into how to best take advantage of the improved temporal plume information we now have available.

Tom Daniel also points out that the relative simplicity of this project (now that the UW researchers have it all figured out, that is) means that even high school students could potentially get involved in it, even if it’s on a ground robot rather than a drone. All the details are in the paper that was just published in Bioinspiration & Biomimetics. Continue reading

Posted in Human Robots

#437982 Superintelligent AI May Be Impossible to ...

It may be theoretically impossible for humans to control a superintelligent AI, a new study finds. Worse still, the research also quashes any hope for detecting such an unstoppable AI when it’s on the verge of being created.

Slightly less grim is the timetable. By at least one estimate, many decades lie ahead before any such existential computational reckoning could be in the cards for humanity.

Alongside news of AI besting humans at games such as chess, Go and Jeopardy have come fears that superintelligent machines smarter than the best human minds might one day run amok. “The question about whether superintelligence could be controlled if created is quite old,” says study lead author Manuel Alfonseca, a computer scientist at the Autonomous University of Madrid. “It goes back at least to Asimov’s First Law of Robotics, in the 1940s.”

The Three Laws of Robotics, first introduced in Isaac Asimov's 1942 short story “Runaround,” are as follows:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

In 2014, philosopher Nick Bostrom, director of the Future of Humanity Institute at the University of Oxford, not only explored ways in which a superintelligent AI could destroy us but also investigated potential control strategies for such a machine—and the reasons they might not work.

Bostrom outlined two possible types of solutions of this “control problem.” One is to control what the AI can do, such as keeping it from connecting to the Internet, and the other is to control what it wants to do, such as teaching it rules and values so it would act in the best interests of humanity. The problem with the former is that Bostrom thought a supersmart machine could probably break free from any bonds we could make. With the latter, he essentially feared that humans might not be smart enough to train a superintelligent AI.

Now Alfonseca and his colleagues suggest it may be impossible to control a superintelligent AI, due to fundamental limits inherent to computing itself. They detailed their findings this month in the Journal of Artificial Intelligence Research.

The researchers suggested that any algorithm that sought to ensure a superintelligent AI cannot harm people had to first simulate the machine’s behavior to predict the potential consequences of its actions. This containment algorithm then would need to halt the supersmart machine if it might indeed do harm.

However, the scientists said it was impossible for any containment algorithm to simulate the AI’s behavior and predict with absolute certainty whether its actions might lead to harm. The algorithm could fail to correctly simulate the AI’s behavior or accurately predict the consequences of the AI’s actions and not recognize such failures.

“Asimov’s first law of robotics has been proved to be incomputable,” Alfonseca says, “and therefore unfeasible.”

We may not even know if we have created a superintelligent machine, the researchers say. This is a consequence of Rice’s theorem, which essentially states that one cannot in general figure anything out about what a computer program might output just by looking at the program, Alfonseca explains.

On the other hand, there’s no need to spruce up the guest room for our future robot overlords quite yet. Three important caveats to the research still leave plenty of uncertainty to the group’s predictions.

First, Alfonseca estimates AI’s moment of truth remains, he says, “At least two centuries in the future.”

Second, he says researchers do not know if so-called artificial general intelligence, also known as strong AI, is theoretically even feasible. “That is, a machine as intelligent as we are in an ample variety of fields,” Alfonseca explains.

Last, Alfonseca says, “We have not proved that superintelligences can never be controlled—only that they can’t always be controlled.”

Although it may not be possible to control a superintelligent artificial general intelligence, it should be possible to control a superintelligent narrow AI—one specialized for certain functions instead of being capable of a broad range of tasks like humans. “We already have superintelligences of this type,” Alfonseca says. “For instance, we have machines that can compute mathematics much faster than we can. This is [narrow] superintelligence, isn’t it?” Continue reading

Posted in Human Robots

#437974 China Wants to Be the World’s AI ...

China’s star has been steadily rising for decades. Besides slashing extreme poverty rates from 88 percent to under 2 percent in just 30 years, the country has become a global powerhouse in manufacturing and technology. Its pace of growth may slow due to an aging population, but China is nonetheless one of the world’s biggest players in multiple cutting-edge tech fields.

One of these fields, and perhaps the most significant, is artificial intelligence. The Chinese government announced a plan in 2017 to become the world leader in AI by 2030, and has since poured billions of dollars into AI projects and research across academia, government, and private industry. The government’s venture capital fund is investing over $30 billion in AI; the northeastern city of Tianjin budgeted $16 billion for advancing AI; and a $2 billion AI research park is being built in Beijing.

On top of these huge investments, the government and private companies in China have access to an unprecedented quantity of data, on everything from citizens’ health to their smartphone use. WeChat, a multi-functional app where people can chat, date, send payments, hail rides, read news, and more, gives the CCP full access to user data upon request; as one BBC journalist put it, WeChat “was ahead of the game on the global stage and it has found its way into all corners of people’s existence. It could deliver to the Communist Party a life map of pretty much everybody in this country, citizens and foreigners alike.” And that’s just one (albeit big) source of data.

Many believe these factors are giving China a serious leg up in AI development, even providing enough of a boost that its progress will surpass that of the US.

But there’s more to AI than data, and there’s more to progress than investing billions of dollars. Analyzing China’s potential to become a world leader in AI—or in any technology that requires consistent innovation—from multiple angles provides a more nuanced picture of its strengths and limitations. In a June 2020 article in Foreign Affairs, Oxford fellows Carl Benedikt Frey and Michael Osborne argued that China’s big advantages may not actually be that advantageous in the long run—and its limitations may be very limiting.

Moving the AI Needle
To get an idea of who’s likely to take the lead in AI, it could help to first consider how the technology will advance beyond its current state.

To put it plainly, AI is somewhat stuck at the moment. Algorithms and neural networks continue to achieve new and impressive feats—like DeepMind’s AlphaFold accurately predicting protein structures or OpenAI’s GPT-3 writing convincing articles based on short prompts—but for the most part these systems’ capabilities are still defined as narrow intelligence: completing a specific task for which the system was painstakingly trained on loads of data.

(It’s worth noting here that some have speculated OpenAI’s GPT-3 may be an exception, the first example of machine intelligence that, while not “general,” has surpassed the definition of “narrow”; the algorithm was trained to write text, but ended up being able to translate between languages, write code, autocomplete images, do math, and perform other language-related tasks it wasn’t specifically trained for. However, all of GPT-3’s capabilities are limited to skills it learned in the language domain, whether spoken, written, or programming language).

Both AlphaFold’s and GPT-3’s success was due largely to the massive datasets they were trained on; no revolutionary new training methods or architectures were involved. If all it was going to take to advance AI was a continuation or scaling-up of this paradigm—more input data yields increased capability—China could well have an advantage.

But one of the biggest hurdles AI needs to clear to advance in leaps and bounds rather than baby steps is precisely this reliance on extensive, task-specific data. Other significant challenges include the technology’s fast approach to the limits of current computing power and its immense energy consumption.

Thus, while China’s trove of data may give it an advantage now, it may not be much of a long-term foothold on the climb to AI dominance. It’s useful for building products that incorporate or rely on today’s AI, but not for pushing the needle on how artificially intelligent systems learn. WeChat data on users’ spending habits, for example, would be valuable in building an AI that helps people save money or suggests items they might want to purchase. It will enable (and already has enabled) highly tailored products that will earn their creators and the companies that use them a lot of money.

But data quantity isn’t what’s going to advance AI. As Frey and Osborne put it, “Data efficiency is the holy grail of further progress in artificial intelligence.”

To that end, research teams in academia and private industry are working on ways to make AI less data-hungry. New training methods like one-shot learning and less-than-one-shot learning have begun to emerge, along with myriad efforts to make AI that learns more like the human brain.

While not insignificant, these advancements still fall into the “baby steps” category. No one knows how AI is going to progress beyond these small steps—and that uncertainty, in Frey and Osborne’s opinion, is a major speed bump on China’s fast-track to AI dominance.

How Innovation Happens
A lot of great inventions have happened by accident, and some of the world’s most successful companies started in garages, dorm rooms, or similarly low-budget, nondescript circumstances (including Google, Facebook, Amazon, and Apple, to name a few). Innovation, the authors point out, often happens “through serendipity and recombination, as inventors and entrepreneurs interact and exchange ideas.”

Frey and Osborne argue that although China has great reserves of talent and a history of building on technologies conceived elsewhere, it doesn’t yet have a glowing track record in terms of innovation. They note that of the 100 most-cited patents from 2003 to present, none came from China. Giants Tencent, Alibaba, and Baidu are all wildly successful in the Chinese market, but they’re rooted in technologies or business models that came out of the US and were tweaked for the Chinese population.

“The most innovative societies have always been those that allowed people to pursue controversial ideas,” Frey and Osborne write. China’s heavy censorship of the internet and surveillance of citizens don’t quite encourage the pursuit of controversial ideas. The country’s social credit system rewards people who follow the rules and punishes those who step out of line. Frey adds that top-down execution of problem-solving is effective when the problem at hand is clearly defined—and the next big leaps in AI are not.

It’s debatable how strongly a culture of social conformism can impact technological innovation, and of course there can be exceptions. But a relevant historical example is the Soviet Union, which, despite heavy investment in science and technology that briefly rivaled the US in fields like nuclear energy and space exploration, ended up lagging far behind primarily due to political and cultural factors.

Similarly, China’s focus on computer science in its education system could give it an edge—but, as Frey told me in an email, “The best students are not necessarily the best researchers. Being a good researcher also requires coming up with new ideas.”

Winner Take All?
Beyond the question of whether China will achieve AI dominance is the issue of how it will use the powerful technology. Several of the ways China has already implemented AI could be considered morally questionable, from facial recognition systems used aggressively against ethnic minorities to smart glasses for policemen that can pull up information about whoever the wearer looks at.

This isn’t to say the US would use AI for purely ethical purposes. The military’s Project Maven, for example, used artificially intelligent algorithms to identify insurgent targets in Iraq and Syria, and American law enforcement agencies are also using (mostly unregulated) facial recognition systems.

It’s conceivable that “dominance” in AI won’t go to one country; each nation could meet milestones in different ways, or meet different milestones. Researchers from both countries, at least in the academic sphere, could (and likely will) continue to collaborate and share their work, as they’ve done on many projects to date.

If one country does take the lead, it will certainly see some major advantages as a result. Brookings Institute fellow Indermit Gill goes so far as to say that whoever leads in AI in 2030 will “rule the world” until 2100. But Gill points out that in addition to considering each country’s strengths, we should consider how willing they are to improve upon their weaknesses.

While China leads in investment and the US in innovation, both nations are grappling with huge economic inequalities that could negatively impact technological uptake. “Attitudes toward the social change that accompanies new technologies matter as much as the technologies, pointing to the need for complementary policies that shape the economy and society,” Gill writes.

Will China’s leadership be willing to relax its grip to foster innovation? Will the US business environment be enough to compete with China’s data, investment, and education advantages? And can both countries find a way to distribute technology’s economic benefits more equitably?

Time will tell, but it seems we’ve got our work cut out for us—and China does too.

Image Credit: Adam Birkett on Unsplash Continue reading

Posted in Human Robots

#437946 Video Friday: These Robots Are Ready for ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

HRI 2021 – March 8-11, 2021 – [Online]
RoboSoft 2021 – April 12-16, 2021 – [Online]
Let us know if you have suggestions for next week, and enjoy today’s videos.

Is it too late to say, “Happy Holidays”? Yes! Is it too late for a post packed with holiday robot videos? Never!

The Autonomous Systems Lab at ETH Zurich wishes everyone a Merry Christmas and a Happy 2021!

Now you know the best kept secret in robotics- the ETH Zurich Autonomous Systems Lab is a shack in the woods. With an elevator.

[ ASL ]

We have had to do things differently this year, and the holiday season is no exception. But through it all, we still found ways to be together. From all of us at NATO, Happy Holidays. After training in the snow and mountains of Iceland, an EOD team returns to base. Passing signs reminding them to ‘Keep your distance’ due to COVID-19, they return to their office a little dejected, unsure how they can safely enjoy the holidays. But the EOD robot saves the day and finds a unique way to spread the holiday cheer – socially distanced, of course.

[ EATA ]

Season's Greetings from Voliro!

[ Voliro ]

Thanks Daniel!

Even if you don't have a robot at home, you can still make Halodi Robotics's gingerbread cookies the old fashioned way.

[ Halodi Robotics ]

Thanks Jesper!

We wish you all a Merry Christmas in this very different 2020. This year has truly changed the world and our way of living. We, Energy Robotics, like to say thank you to all our customers, partners, supporters, friends and family.

An Aibo ERS-7? Sweet!

[ Energy Robotics ]

Thanks Stefan!

The nickname for this drone should be “The Grinch.”

As it turns out, in real life taking samples of trees to determine how healthy they are is best done from the top.

[ DeLeaves ]

Thanks Alexis!

ETH Zurich would like to wish you happy holidays and a successful 2021 full of energy and health!

[ ETH Zurich ]

The QBrobotics Team wishes you all a Merry Christmas and a Happy New Year!

[ QBrobotics ]

Extend Robotics avatar twin got so excited opening a Christmas gift, using two arms coordinating, showing the dexterity and speed.

[ Extend Robotics ]

HEBI Robotics wishes everyone a great holiday season! Onto 2021!

[ HEBI Robotics ]

Christmas at the Mobile Robots Lab at Poznan Polytechnic.

[ Poznan ]

SWarm Holiday Wishes from the Hauert Lab!

[ Hauert Lab ]

Brubotics-VUB SMART and SHERO team wishes you a Merry Christmas and Happy 2021!

[ SMART ]

Success is all about teamwork! Thank you for supporting PAL Robotics. This festive season enjoy and stay safe!

[ PAL Robotics ]

Our robots wish you Happy Holidays! Starring world's first robot slackliner (Leonardo)!

[ Caltech ]

Happy Holidays and a Prosperous New Year from ZenRobotics!

[ ZenRobotics ]

Our Highly Dexterous Manipulation System (HDMS) dual-arm robot is ringing in the new year with good cheer!

[ RE2 Robotics ]

Happy Holidays 2020 from NAO!

[ SoftBank Robotics ]

Happy Holidays from DENSO Robotics!

[ DENSO ] Continue reading

Posted in Human Robots