Tag Archives: good

#437222 China and AI: What the World Can Learn ...

China announced in 2017 its ambition to become the world leader in artificial intelligence (AI) by 2030. While the US still leads in absolute terms, China appears to be making more rapid progress than either the US or the EU, and central and local government spending on AI in China is estimated to be in the tens of billions of dollars.

The move has led—at least in the West—to warnings of a global AI arms race and concerns about the growing reach of China’s authoritarian surveillance state. But treating China as a “villain” in this way is both overly simplistic and potentially costly. While there are undoubtedly aspects of the Chinese government’s approach to AI that are highly concerning and rightly should be condemned, it’s important that this does not cloud all analysis of China’s AI innovation.

The world needs to engage seriously with China’s AI development and take a closer look at what’s really going on. The story is complex and it’s important to highlight where China is making promising advances in useful AI applications and to challenge common misconceptions, as well as to caution against problematic uses.

Nesta has explored the broad spectrum of AI activity in China—the good, the bad, and the unexpected.

The Good
China’s approach to AI development and implementation is fast-paced and pragmatic, oriented towards finding applications which can help solve real-world problems. Rapid progress is being made in the field of healthcare, for example, as China grapples with providing easy access to affordable and high-quality services for its aging population.

Applications include “AI doctor” chatbots, which help to connect communities in remote areas with experienced consultants via telemedicine; machine learning to speed up pharmaceutical research; and the use of deep learning for medical image processing, which can help with the early detection of cancer and other diseases.

Since the outbreak of Covid-19, medical AI applications have surged as Chinese researchers and tech companies have rushed to try and combat the virus by speeding up screening, diagnosis, and new drug development. AI tools used in Wuhan, China, to tackle Covid-19 by helping accelerate CT scan diagnosis are now being used in Italy and have been also offered to the NHS in the UK.

The Bad
But there are also elements of China’s use of AI that are seriously concerning. Positive advances in practical AI applications that are benefiting citizens and society don’t detract from the fact that China’s authoritarian government is also using AI and citizens’ data in ways that violate privacy and civil liberties.

Most disturbingly, reports and leaked documents have revealed the government’s use of facial recognition technologies to enable the surveillance and detention of Muslim ethnic minorities in China’s Xinjiang province.

The emergence of opaque social governance systems that lack accountability mechanisms are also a cause for concern.

In Shanghai’s “smart court” system, for example, AI-generated assessments are used to help with sentencing decisions. But it is difficult for defendants to assess the tool’s potential biases, the quality of the data, and the soundness of the algorithm, making it hard for them to challenge the decisions made.

China’s experience reminds us of the need for transparency and accountability when it comes to AI in public services. Systems must be designed and implemented in ways that are inclusive and protect citizens’ digital rights.

The Unexpected
Commentators have often interpreted the State Council’s 2017 Artificial Intelligence Development Plan as an indication that China’s AI mobilization is a top-down, centrally planned strategy.

But a closer look at the dynamics of China’s AI development reveals the importance of local government in implementing innovation policy. Municipal and provincial governments across China are establishing cross-sector partnerships with research institutions and tech companies to create local AI innovation ecosystems and drive rapid research and development.

Beyond the thriving major cities of Beijing, Shanghai, and Shenzhen, efforts to develop successful innovation hubs are also underway in other regions. A promising example is the city of Hangzhou, in Zhejiang Province, which has established an “AI Town,” clustering together the tech company Alibaba, Zhejiang University, and local businesses to work collaboratively on AI development. China’s local ecosystem approach could offer interesting insights to policymakers in the UK aiming to boost research and innovation outside the capital and tackle longstanding regional economic imbalances.

China’s accelerating AI innovation deserves the world’s full attention, but it is unhelpful to reduce all the many developments into a simplistic narrative about China as a threat or a villain. Observers outside China need to engage seriously with the debate and make more of an effort to understand—and learn from—the nuances of what’s really happening.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image Credit: Dominik Vanyi on Unsplash Continue reading

Posted in Human Robots

#437171 Scientists Tap the World’s Most ...

In The Hitchhiker’s Guide to the Galaxy by Douglas Adams, the haughty supercomputer Deep Thought is asked whether it can find the answer to the ultimate question concerning life, the universe, and everything. It replies that, yes, it can do it, but it’s tricky and it’ll have to think about it. When asked how long it will take it replies, “Seven-and-a-half million years. I told you I’d have to think about it.”

Real-life supercomputers are being asked somewhat less expansive questions but tricky ones nonetheless: how to tackle the Covid-19 pandemic. They’re being used in many facets of responding to the disease, including to predict the spread of the virus, to optimize contact tracing, to allocate resources and provide decisions for physicians, to design vaccines and rapid testing tools, and to understand sneezes. And the answers are needed in a rather shorter time frame than Deep Thought was proposing.

The largest number of Covid-19 supercomputing projects involves designing drugs. It’s likely to take several effective drugs to treat the disease. Supercomputers allow researchers to take a rational approach and aim to selectively muzzle proteins that SARS-CoV-2, the virus that causes Covid-19, needs for its life cycle.

The viral genome encodes proteins needed by the virus to infect humans and to replicate. Among these are the infamous spike protein that sniffs out and penetrates its human cellular target, but there are also enzymes and molecular machines that the virus forces its human subjects to produce for it. Finding drugs that can bind to these proteins and stop them from working is a logical way to go.

The Summit supercomputer at Oak Ridge National Laboratory has a peak performance of 200,000 trillion calculations per second—equivalent to about a million laptops. Image credit: Oak Ridge National Laboratory, U.S. Dept. of Energy, CC BY

I am a molecular biophysicist. My lab, at the Center for Molecular Biophysics at the University of Tennessee and Oak Ridge National Laboratory, uses a supercomputer to discover drugs. We build three-dimensional virtual models of biological molecules like the proteins used by cells and viruses, and simulate how various chemical compounds interact with those proteins. We test thousands of compounds to find the ones that “dock” with a target protein. Those compounds that fit, lock-and-key style, with the protein are potential therapies.

The top-ranked candidates are then tested experimentally to see if they indeed do bind to their targets and, in the case of Covid-19, stop the virus from infecting human cells. The compounds are first tested in cells, then animals, and finally humans. Computational drug discovery with high-performance computing has been important in finding antiviral drugs in the past, such as the anti-HIV drugs that revolutionized AIDS treatment in the 1990s.

World’s Most Powerful Computer
Since the 1990s the power of supercomputers has increased by a factor of a million or so. Summit at Oak Ridge National Laboratory is presently the world’s most powerful supercomputer, and has the combined power of roughly a million laptops. A laptop today has roughly the same power as a supercomputer had 20-30 years ago.

However, in order to gin up speed, supercomputer architectures have become more complicated. They used to consist of single, very powerful chips on which programs would simply run faster. Now they consist of thousands of processors performing massively parallel processing in which many calculations, such as testing the potential of drugs to dock with a pathogen or cell’s proteins, are performed at the same time. Persuading those processors to work together harmoniously is a pain in the neck but means we can quickly try out a lot of chemicals virtually.

Further, researchers use supercomputers to figure out by simulation the different shapes formed by the target binding sites and then virtually dock compounds to each shape. In my lab, that procedure has produced experimentally validated hits—chemicals that work—for each of 16 protein targets that physician-scientists and biochemists have discovered over the past few years. These targets were selected because finding compounds that dock with them could result in drugs for treating different diseases, including chronic kidney disease, prostate cancer, osteoporosis, diabetes, thrombosis and bacterial infections.

Scientists are using supercomputers to find ways to disable the various proteins—including the infamous spike protein (green protrusions)—produced by SARS-CoV-2, the virus responsible for Covid-19. Image credit: Thomas Splettstoesser scistyle.com, CC BY-ND

Billions of Possibilities
So which chemicals are being tested for Covid-19? A first approach is trying out drugs that already exist for other indications and that we have a pretty good idea are reasonably safe. That’s called “repurposing,” and if it works, regulatory approval will be quick.

But repurposing isn’t necessarily being done in the most rational way. One idea researchers are considering is that drugs that work against protein targets of some other virus, such as the flu, hepatitis or Ebola, will automatically work against Covid-19, even when the SARS-CoV-2 protein targets don’t have the same shape.

Our own work has now expanded to about 10 targets on SARS-CoV-2, and we’re also looking at human protein targets for disrupting the virus’s attack on human cells. Top-ranked compounds from our calculations are being tested experimentally for activity against the live virus. Several of these have already been found to be active.The best approach is to check if repurposed compounds will actually bind to their intended target. To that end, my lab published a preliminary report of a supercomputer-driven docking study of a repurposing compound database in mid-February. The study ranked 8,000 compounds in order of how well they bind to the viral spike protein. This paper triggered the establishment of a high-performance computing consortium against our viral enemy, announced by President Trump in March. Several of our top-ranked compounds are now in clinical trials.

Also, we and others are venturing out into the wild world of new drug discovery for Covid-19—looking for compounds that have never been tried as drugs before. Databases of billions of these compounds exist, all of which could probably be synthesized in principle but most of which have never been made. Billion-compound docking is a tailor-made task for massively parallel supercomputing.

Dawn of the Exascale Era
Work will be helped by the arrival of the next big machine at Oak Ridge, called Frontier, planned for next year. Frontier should be about 10 times more powerful than Summit. Frontier will herald the “exascale” supercomputing era, meaning machines capable of 1,000,000,000,000,000,000 calculations per second.

Although some fear supercomputers will take over the world, for the time being, at least, they are humanity’s servants, which means that they do what we tell them to. Different scientists have different ideas about how to calculate which drugs work best—some prefer artificial intelligence, for example—so there’s quite a lot of arguing going on.

Hopefully, scientists armed with the most powerful computers in the world will, sooner rather than later, find the drugs needed to tackle Covid-19. If they do, then their answers will be of more immediate benefit, if less philosophically tantalizing, than the answer to the ultimate question provided by Deep Thought, which was, maddeningly, simply 42.

This article is republished from The Conversation under a Creative Commons license. Read the original article.

Image credit: NIH/NIAID Continue reading

Posted in Human Robots

#437162 Giving soft robots feeling

One of the hottest topics in robotics is the field of soft robots, which utilizes squishy and flexible materials rather than traditional rigid materials. But soft robots have been limited due to their lack of good sensing. A good robotic gripper needs to feel what it is touching (tactile sensing), and it needs to sense the positions of its fingers (proprioception). Such sensing has been missing from most soft robots. Continue reading

Posted in Human Robots

#437109 This Week’s Awesome Tech Stories From ...

FUTURE
Why the Coronavirus Is So Confusing
Ed Yong | The Atlantic
“…beyond its vast scope and sui generis nature, there are other reasons the pandemic continues to be so befuddling—a slew of forces scientific and societal, epidemiological and epistemological. What follows is an analysis of those forces, and a guide to making sense of a problem that is now too big for any one person to fully comprehend.”

ARTIFICIAL INTELLIGENCE
Common Sense Comes Closer to Computers
John Pavlus | Quanta Magazine
“The problem of common-sense reasoning has plagued the field of artificial intelligence for over 50 years. Now a new approach, borrowing from two disparate lines of thinking, has made important progress.”

BIOTECH
Scientists Create Glowing Plants Using Bioluminescent Mushroom DNA
George Dvorsky | Gizmodo
“New research published today in Nature Biotechnology describes a new technique, in which the DNA from bioluminescent mushrooms was used to create plants that glow 10 times brighter than their bacteria-powered precursors. Botanists could eventually use this technique to study the inner workings of plants, but it also introduces the possibility of glowing ornamental plants for our homes.”

HEALTH
Old Drugs May Find a New Purpose: Fighting the Coronavirus
Carl Zimmer | The New York Times
“Driven by the pandemic’s spread, research teams have been screening thousands of drugs to see if they have this unexpected potential to fight the coronavirus. They’ve tested the drugs on dishes of cells, and a few dozen candidates have made the first cut.”

MACHINE LEARNING
OpenAI’s New Experiments in Music Generation Create an Uncanny Valley Elvis
Devin Coldewey | TechCrunch
“AI-generated music is a fascinating new field, and deep-pocketed research outfit OpenAI has hit new heights in it, creating recreations of songs in the style of Elvis, 2Pac and others. The results are convincing, but fall squarely in the unnerving ‘uncanny valley’ of audio, sounding rather like good, but drunk, karaoke heard through a haze of drugs.”

CULTURE
Neural Net-Generated Memes Are One of the Best Uses of AI on the Internet
Jay Peters | The Verge
“I’ve spent a good chunk of my workday so far creating memes thanks to this amazing website from Imgflip that automatically generates captions for memes using a neural network. …You can pick from 48 classic meme templates, including distracted boyfriend, Drake in ‘Hotline Bling,’ mocking Spongebob, surprised Pikachu, and Oprah giving things away.”

GENETICS
Can Genetic Engineering Bring Back the American Chestnut?
Gabriel Popkin | The New York Times Magazine
“The geneticists’ research forces conservationists to confront, in a new and sometimes discomfiting way, the prospect that repairing the natural world does not necessarily mean returning to an unblemished Eden. It may instead mean embracing a role that we’ve already assumed: engineers of everything, including nature.”

Image credit: Dan Gold / Unsplash Continue reading

Posted in Human Robots

#436988 This Week’s Awesome Tech Stories From ...

FUTURE
We Need to Start Modeling Alternative Futures
Andrew Marino | The Verge
“‘I’m going to be the first person to tell you if you gave me all the data in the world and all the computers in the world, at this moment in time I cannot tell you what things are going to look like in three months,’ [says quantitative futurist Amy Webb.] ‘And that’s fine because that tells us we still have some agency. …The good news is if you are willing to lean into uncertainty and to accept the fact that you can’t control everything, but also you are not helpless in whatever comes next.'”

GOVERNANCE
The Dangers of Moving All of Democracy Online
Marion Fourcade and Henry Farrell | Wired
“As we try to protect democracy from coronavirus, we must see technology as a scalpel, not a sledgehammer. …If we’re very lucky, we’ll have restrained, targeted, and temporary measures that will be effective against the pandemic. If we’re not, we’ll create an open-ended, sweeping surveillance system that will undermine democratic freedoms without doing much to stop coronavirus.”

TECHNOLOGY
Why Does It Suddenly Feel Like 1999 on the Internet?
Tanya Basu and Karen Hao | MIT Technology Review
“You see it in the renewed willingness of people to form virtual relationships. …Now casually hanging out with randos (virtually, of course) is cool again. People are joining video calls with people they’ve never met for everything from happy hours to book clubs to late-night flirting. They’re sharing in collective moments of creativity on Google Sheets, looking for new pandemic pen pals, and sending softer, less pointed emails.”

SCIENCE
Covid-19 Changed How the World Does Science, Together
Matt Apuzzo and David D. Kirkpatrick | The New York Times
“While political leaders have locked their borders, scientists have been shattering theirs, creating a global collaboration unlike any in history. Never before, researchers say, have so many experts in so many countries focused simultaneously on a single topic and with such urgency. Nearly all other research has ground to a halt.”

ARTIFICIAL INTELLIGENCE
A Debate Between AI Experts Shows a Battle Over the Technology’s Future
Karen Hao | MIT Technology Review
“The disagreements [the two experts] expressed mirror many of the clashes within the field, highlighting how powerfully the technology has been shaped by a persistent battle of ideas and how little certainty there is about where it’s headed next.”

BIOTECH
Meet the Xenobots, Virtual Creatures Brought to Life
Joshua Sokol | The New York Times
“If the last few decades of progress in artificial intelligence and in molecular biology hooked up, their love child—a class of life unlike anything that has ever lived—might resemble the dark specks doing lazy laps around a petri dish in a laboratory at Tufts University.”

ENVIRONMENT
Rivian Wants to Bring Electric Trucks to the Masses
Jon Gertner | Wired
“The pickup walks a careful line between Detroit traditionalism and EV iconoclasm. Where Tesla’s forthcoming Cybertruck looks like origami on wheels, the R1T, slim and limber, looks more like an F-150 on a gym-and-yoga regimen.”

ENERGY
The Promise and Peril of Nuclear Power
John R. Quain | Gizmodo
“To save us from the coming climate catastrophe, we need an energy hero, boasting limitless power and no greenhouse gas emissions (or nearly none). So it’s time, say some analysts, to resuscitate the nuclear energy industry. Doing so could provide carbon-free energy. But any plan to make nuclear power a big part of the energy mix also comes with serious financial risks as well as questions about if there’s enough time to enlist an army of nuclear power plants in the battle against the climate crisis.”

Image Credit: Jason Rosewell / Unsplash Continue reading

Posted in Human Robots