Tag Archives: good
#439073 There’s a ‘New’ Nirvana Song Out, ...
One of the primary capabilities separating human intelligence from artificial intelligence is our ability to be creative—to use nothing but the world around us, our experiences, and our brains to create art. At present, AI needs to be extensively trained on human-made works of art in order to produce new work, so we’ve still got a leg up. That said, neural networks like OpenAI’s GPT-3 and Russian designer Nikolay Ironov have been able to create content indistinguishable from human-made work.
Now there’s another example of AI artistry that’s hard to tell apart from the real thing, and it’s sure to excite 90s alternative rock fans the world over: a brand-new, never-heard-before Nirvana song. Or, more accurately, a song written by a neural network that was trained on Nirvana’s music.
The song is called “Drowned in the Sun,” and it does have a pretty Nirvana-esque ring to it. The neural network that wrote it is Magenta, which was launched by Google in 2016 with the goal of training machines to create art—or as the tool’s website puts it, exploring the role of machine learning as a tool in the creative process. Magenta was built using TensorFlow, Google’s massive open-source software library focused on deep learning applications.
The song was written as part of an album called Lost Tapes of the 27 Club, a project carried out by a Toronto-based organization called Over the Bridge focused on mental health in the music industry.
Here’s how a computer was able to write a song in the unique style of a deceased musician. Music, 20 to 30 tracks, was fed into Magenta’s neural network in the form of MIDI files. MIDI stands for Musical Instrument Digital Interface, and the format contains the details of a song written in code that represents musical parameters like pitch and tempo. Components of each song, like vocal melody or rhythm guitar, were fed in one at a time.
The neural network found patterns in these different components, and got enough of a handle on them that when given a few notes to start from, it could use those patterns to predict what would come next; in this case, chords and melodies that sound like they could’ve been written by Kurt Cobain.
To be clear, Magenta didn’t spit out a ready-to-go song complete with lyrics. The AI wrote the music, but a different neural network wrote the lyrics (using essentially the same process as Magenta), and the team then sifted through “pages and pages” of output to find lyrics that fit the melodies Magenta created.
Eric Hogan, a singer for a Nirvana tribute band who the Over the Bridge team hired to sing “Drowned in the Sun,” felt that the lyrics were spot-on. “The song is saying, ‘I’m a weirdo, but I like it,’” he said. “That is total Kurt Cobain right there. The sentiment is exactly what he would have said.”
Cobain isn’t the only musician the Lost Tapes project tried to emulate; songs in the styles of Jimi Hendrix, Jim Morrison, and Amy Winehouse were also included. What all these artists have in common is that they died by suicide at the age of 27.
The project is meant to raise awareness around mental health, particularly among music industry professionals. It’s not hard to think of great artists of all persuasions—musicians, painters, writers, actors—whose lives are cut short due to severe depression and other mental health issues for which it can be hard to get help. These issues are sometimes romanticized, as suffering does tend to create art that’s meaningful, relatable, and timeless. But according to the Lost Tapes website, suicide attempts among music industry workers are more than double that of the general population.
How many more hit songs would these artists have written if they were still alive? We’ll never know, but hopefully Lost Tapes of the 27 Club and projects like it will raise awareness of mental health issues, both in the music industry and in general, and help people in need find the right resources. Because no matter how good computers eventually get at creating music, writing, or other art, as Lost Tapes’ website pointedly says, “Even AI will never replace the real thing.”
Image Credit: Edward Xu on Unsplash Continue reading →
#439066 Video Friday: Festo’s BionicSwift
Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):
RoboSoft 2021 – April 12-16, 2021 – [Online Conference]
ICRA 2021 – May 30-5, 2021 – Xi'an, China
DARPA SubT Finals – September 21-23, 2021 – Louisville, KY, USA
WeRobot 2021 – September 23-25, 2021 – Coral Gables, FL, USA
Let us know if you have suggestions for next week, and enjoy today's videos.
Festo's Bionic Learning Network for 2021 presents a flock of BionicSwifts.
To execute the flight maneuvers as true to life as possible, the wings are modeled on the plumage of birds. The individual lamellae are made of an ultralight, flexible but very robust foam and lie on top of each other like shingles. Connected to a carbon quill, they are attached to the actual hand and arm wings as in the natural model.
During the wing upstroke, the individual lamellae fan out so that air can flow through the wing. This means that the birds need less force to pull the wing up. During the downstroke, the lamellae close up so that the birds can generate more power to fly. Due to this close-to-nature replica of the wings, the BionicSwifts have a better flight profile than previous wing-beating drives.
[ Festo ]
While we've seen a wide variety of COVID-motivated disinfecting robots, they're usually using either ultraviolet light or a chemical fog. This isn't the way that humans clean—we wipe stuff down, which gets rid of surface dirt and disinfects at the same time. Fraunhofer has been working on a mobile manipulator that can clean in the same ways that we do.
It's quite the technical challenge, but it has the potential to be both more efficient and more effective.
[ Fraunhofer ]
In recent years, robots have gained artificial vision, touch, and even smell. “Researchers have been giving robots human-like perception,” says MIT Associate Professor Fadel Adib. In a new paper, Adib’s team is pushing the technology a step further. “We’re trying to give robots superhuman perception,” he says. The researchers have developed a robot that uses radio waves, which can pass through walls, to sense occluded objects. The robot, called RF-Grasp, combines this powerful sensing with more traditional computer vision to locate and grasp items that might otherwise be blocked from view.
[ MIT ]
Ingenuity is now scheduled to fly on April 11.
[ JPL ]
The legendary Zenta is back after a two year YouTube hiatus with “a kind of freaky furry hexapod bunny creature.”
[ Zenta ]
It is with great pride and excitement that the South Australia Police announce a new expansion to their kennel by introducing three new Police Dog (PD) recruits. These dogs have been purposely targeted to bring a whole new range of dog operational capabilities known as the ‘small area urban search and guided evacuation’ dogs. Police have been working closely with specialist vets and dog trainers to ascertain if the lightweight dogs could be transported safely by drones and released into hard-to-access areas where at the moment the larger PDs just simply cannot get in due to their size.
[ SA Police ]
SoftBank may not have Spot cheerleading robots for their baseball team anymore, but they've more than made up for it with a full century of Peppers. And one dude doing the robot.
[ SoftBank ]
MAB Robotics is a Polish company developing walking robots for inspection, and here's a prototype they've been working on.
[ MAB Robotics ]
Thanks Jakub!
DoraNose: Smell your way to a better tomorrow.
[ Dorabot ]
Our robots need to learn how to cope with their new neighbors, and we have just the solution for this, the egg detector! Using cutting-edge AI, it provides incredible precision in detecting a vast variety of eggs. We have deployed this new feature on Boston Dynamics Spot, one of our fleet's robots. It can now detect eggs with its cameras and avoid them on his autonomous missions.
[ Energy Robotics ]
When dropping a squishy robot from an airplane 1,000 feet up, make sure that you land as close to people's cars as you can.
Now do it from orbit!
[ Squishy Robotics ]
An autonomous robot that is able to physically guide humans through narrow and cluttered spaces could be a big boon to the visually-impaired. Most prior robotic guiding systems are based on wheeled platforms with large bases with actuated rigid guiding canes. The large bases and the actuated arms limit these prior approaches from operating in narrow and cluttered environments. We propose a method that introduces a quadrupedal robot with a leash to enable the robot-guiding-human system to change its intrinsic dimension (by letting the leash go slack) in order to fit into narrow spaces.
[ Hybrid Robotics ]
How to prove that your drone is waterproof.
[ UNL ]
Well this ought to be pretty good once it gets out of simulation.
[ Hybrid Robotics ]
MIDAS is Aurora’s AI-enabled, multi-rotor sUAV outfitted with optical sensors and a customized payload that can defeat multiple small UAVs per flight with low-collateral effects.
[ Aurora ]
The robots of the DFKI have the advantage of being able to reach extreme environments: they can be used for decontamination purposes in high-risk areas or inspect and maintain underwater structures, for which they are tested in the North Sea near Heligoland.
[ DFKI ]
After years of trying, 60 Minutes cameras finally get a peek inside the workshop at Boston Dynamics, where robots move in ways once only thought possible in movies. Anderson Cooper reports.
[ 60 Minutes ]
In 2007, Noel Sharky stated that “we are sleepwalking into a brave new world where robots decide who, where and when to kill.” Since then thousands of AI and robotics researchers have joined his calls to regulate “killer robots.” But sometime this year, Turkey will deploy fully autonomous home-built kamikaze drones on its border with Syria. What are the ethical choices we need to consider? Will we end up in an episode of Black Mirror? Or is the UN listening to calls and starting the process of regulating this space? Prof. Toby Walsh will discuss this important issue, consider where we are at and where we need to go.
[ ICRA 2020 ]
In the second session of HAI's spring conference, artists and technologists discussed how technology can enhance creativity, reimagine meaning, and support racial and social justice. The conference, called “Intelligence Augmentation: AI Empowering People to Solve Global Challenges,” took place on 25 March 2021.
[ Stanford HAI ]
This spring 2021 GRASP SFI comes from Monroe Kennedy III at Stanford University, on “Considerations for Human-Robot Collaboration.”
The field of robotics has evolved over the past few decades. We’ve seen robots progress from the automation of repetitive tasks in manufacturing to the autonomy of mobilizing in unstructured environments to the cooperation of swarm robots that are centralized or decentralized. These abilities have required advances in robotic hardware, modeling, and artificial intelligence. The next frontier is robots collaborating in complex tasks with human teammates, in environments traditionally configured for humans. While solutions to this challenge must utilize all the advances of robotics, the human element adds a unique aspect that must be addressed. Collaborating with a human teammate means that the robot must have a contextual understanding of the task as well as all participant’s roles. We will discuss what constitutes an effective teammate and how we can capture this behavior in a robotic collaborator.
[ UPenn ] Continue reading →
#439055 Stretch Is Boston Dynamics’ Take on a ...
Today, Boston Dynamics is announcing Stretch, a mobile robot designed to autonomously move boxes around warehouses. At first glance, you might be wondering why the heck this is a Boston Dynamics robot at all, since the dynamic mobility that we associate with most of their platforms is notably absent. The combination of strength and speed in Stretch’s arm is something we haven’t seen before in a mobile robot, and it’s what makes this a unique and potentially exciting entry into the warehouse robotics space.
Useful mobile manipulation in any environment that’s not almost entirely structured is still a significant challenge in robotics, and it requires a very difficult combination of sensing, intelligence, and dynamic motion, all of which are classic Boston Dynamics. But also classic Boston Dynamics is building really cool platforms, and only later trying to figure out a way of making them commercially viable. So why Stretch, why boxes, why now, and (the real question) why not Handle? We talk with Boston Dynamics’ Vice President of Product Engineering Kevin Blankespoor to find out.
Stretch is very explicitly a box-handling mobile robot for relatively well structured warehouses. It’s in no way designed to be a generalist that many of Boston Dynamics’ other robots are. And to be fair, this is absolutely how to make a robot that’s practical and cost effective right out of the crate: Identify a task that is dull or dirty or dangerous for humans, design a robot to do that task safely and efficiently, and deploy it with the expectation that it’ll be really good at that task but not necessarily much else. This is a very different approach than a robot like Spot, where the platform came first and the practical applications came later—with Stretch, it’s all about that specific task in a specific environment.
There are already robotic solutions for truck unloading, palletizing, and depalletizing, but Stretch seems to be uniquely capable. For truck unloading, the highest performance systems that I’m aware of are monstrous things (here’s one example from Honeywell) that use a ton of custom hardware to just sort of ingest the cargo within a trailer all at once. In a highly structured and predictable warehouse, this sort of thing may pay off over the long term, but it’s going to be extremely expensive and not very versatile at all.
Palletizing and depalletizing robots are much more common in warehouses today. They’re almost always large industrial arms surrounded by a network of custom conveyor belts and whatnot, suffering from the same sorts of constraints as a truck unloader— very capable in some situations, but generally high cost and low flexibility.
Photo: Boston Dynamics
Stretch is probably not going to be able to compete with either of these types of dedicated systems when it comes to sheer speed, but it offers lots of other critical advantages: It’s fast and easy to deploy, easy to use, and adaptable to a variety of different tasks without costly infrastructure changes. It’s also very much not Handle, which was Boston Dynamics’ earlier (although not that much earlier) attempt at a box-handling robot for warehouses, and (let’s be honest here) a much more Boston Dynamics-y thing than Stretch seems to be. To learn more about why the answer is Stretch rather than Handle, and how Stretch will fit into the warehouse of the very near future, we spoke with Kevin Blankespoor, Boston Dynamics’ VP of Product Engineering and chief engineer for both Handle and Stretch.
IEEE Spectrum: Tell me about Stretch!
Kevin Blankespoor: Stretch is the first mobile robot that we’ve designed specifically for the warehouse. It’s all about moving boxes. Stretch is a flexible robot that can move throughout the warehouse and do different tasks. During a typical day in the life of Stretch in the future, it might spend the morning on the inbound side of the warehouse unloading boxes from trucks. It might spend the afternoon in the aisles of the warehouse building up pallets to go to retailers and e-commerce facilities, and it might spend the evening on the outbound side of the warehouse loading boxes into the trucks. So, it really goes to where the work is.
There are already other robots that include truck unloading robots, palletizing and depalletizing robots, and mobile bases with arms on them. What makes Boston Dynamics the right company to introduce a new robot in this space?
We definitely thought through this, because there are already autonomous mobile robots [AMRs] out there. Most of them, though, are more like pallet movers or tote movers—they don't have an arm, and most of them are really just about moving something from point A to point B without manipulation capability. We've seen some experiments where people put arms on AMRs, but nothing that's made it very far in the market. And so when we started looking at Stretch, we realized we really needed to make a custom robot, and that it was something we could do quickly.
“We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.”
Stretch is built with pieces from Spot and Atlas and that gave us a big head start. For example, if you look at Stretch’s vision system, it's 2D cameras, depth sensors, and software that allows it to do obstacle detection, box detection, and localization. Those are all the same sensors and software that we've been using for years on our legged robots. And if you look closely at Stretch’s wrist joints, they're actually the same as Spot’s hips. They use the same electric motors, the same gearboxes, the same sensors, and they even have the same closed-loop controller controlling the joints.
If you were to buy an existing industrial robot arm with this kind of performance, it would be about four times heavier than the arm we built, and it's really hard to make that into a mobile robot. A lot of this came from our leg technology because it’s so important for our leg designs to be lightweight for the robots to balance. We took that same strength to weight advantage that we have, and built it into this arm. We're able to rapidly piece together things from our other robots to get us out of the gate quickly, so even though this looks like a totally different robot, we think we have a good head start going into this market.
At what point did you decide to go with an arm on a statically stable base on Stretch, rather than something more, you know, dynamic-y?
Stretch looks really different than the robots that Boston Dynamics has done in the past. But you'd be surprised how much similarity there is between our legged robots and Stretch under the hood. Looking back, we actually got our start on moving boxes with Atlas, and at that point it was just research and development. We were really trying to do force control for box grasping. We were picking up heavy boxes and maintaining balance and working on those fundamentals. We released a video of that as our first next-gen Atlas video, and it was interesting. We got a lot of interest from people who wanted to put Atlas to work in the warehouse, but we knew that we could build a simpler robot to do some of those same tasks.
So at this point we actually came up with Handle. The intent of Handle was to do a couple things—one was, we thought we could build a simpler robot that had Atlas’ attributes. Handle has a small footprint so it can fit in tight spaces, but it can pick up heavy boxes. And in addition to that, we had always really wanted to combine wheels and legs. We’d been talking about doing that for a decade and so Handle was a chance for us to try it.
We built a couple versions of Handle, and the first one was really just a prototype to kind of explore the morphology. But the second one was more purpose-built for warehouse tasks, and we started building pallets with that one and it looked pretty good. And then we started doing truck unloading with Handle, which was the pivotal moment. Handle could do it, but it took too long. Every time Handle grasped a box, it would have to roll back and then get to a place where it could spin itself to face forward and place the box, and trucks are very tight for a robot this size, so there's not a lot of room to maneuver. We knew the whole time that there was a robot like Stretch that was another alternative, but that's really when it became clear that Stretch would have a lot of advantages, and we started working on it about a year ago.
Stretch is certainly impressive in a practical way, but I’ll admit to really hoping that something like Handle could have turned out to be a viable warehouse robot.
I love the Handle project as well, and I’m very passionate about that robot. And there was a stage before we built Stretch where we thought, “this would be pretty standard looking compared to Handle, is it going to capture enough of the Boston Dynamics secret sauce?” But when you actually dissect all the problems within Stretch that you have to tackle, there are a lot of cool robotics problems left in there—the vision system, the planning, the manipulation, the grasping of the boxes—it's a lot harder to solve than it looks, and we're excited that we're actually getting fairly far down that road now.
What happens to Handle now?
Stretch has really taken over our team as far as warehouse products go. Handle we still use occasionally as a research robot, but it’s not actively under development. Stretch is really Handle’s descendent. Handle’s not retired, exactly, but we’re just using it for things like the dance video.
There’s still potential to do cool stuff with Handle. I do think that combining wheels with legs is very cool, and largely unexplored compared to its potential. So I still think that you're gonna see versions of robots combining wheels and legs like Handle, and maybe a version of Handle in the future that does more of that. But because we're switching this thread from research into product, Stretch is really the main focus now.
How autonomous is Stretch?
Stretch is semi-autonomous, and that means it really needs to work with people to tap into its full potential. With truck unloading, for example, a person will drive Stretch into the back of the truck and then basically point Stretch in the right direction and say go. And from that point on, everything’s autonomous. Stretch has its vision system and its mobility and it can detect all the boxes, grasp all boxes, and move them onto a conveyor all autonomously. This is something that takes people hours to do manually, and Stretch can go all the way until it gets to the last box, and the truck is empty. There are some parts of the truck unloading task that do require people, like verifying that the truck is in the right place and opening the doors. But this takes a person just a few minutes, and then the robot can spend hours or as long as it takes to do its job autonomously.
There are also other tasks in the warehouse where the autonomy will increase in the future. After truck unloading, the second thing we’ll take on is order building, which will be more in the aisles of a warehouse. For that, Stretch will be navigating around the warehouse, finding the right pallet it needs to take a box from, and loading it onto a new pallet. This will be a different model with more autonomy; you’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.
What kinds of constraints is Stretch operating under? Do the boxes all have to be stacked neatly in the back of the truck, do they have to be the same size, the same color, etc?
“This will be a different model with more autonomy. You’ll still have people involved to some degree, but the robot will have a higher percentage of the time where it can work independently.”
If you think about manufacturing, where there's been automation for decades, you can go into a modern manufacturing facility and there are robot arms and conveyors and other machines. But if you look at the actual warehouse space, 90+ percent is manually operated, and that's because of what you just asked about— things that are less structured, where there’s more variety, and it's more challenging for a robot. But this is starting to change. This is really, really early days, and you’re going to be seeing a lot more robots in the warehouse space.
The warehouse robotics industry is going to grow a lot over the next decade, and a lot of that boils down to vision—the ability for robots to navigate and to understand what they’re seeing. Actually seeing boxes in real world scenarios is challenging, especially when there's a lot of variety. We've been testing our machine learning-based box detection system on Pick for a few years now, and it's gotten far enough that we know it’s one of the technical hurdles you need to overcome to succeed in the warehouse.
Can you compare the performance of Stretch to the performance of a human in a box-unloading task?
Stretch can move cases up to 50 pounds which is the OSHA limit for how much a single person's allowed to move. The peak case rate for Stretch is 800 cases per hour. You really need to keep up with the flow of goods throughout the warehouse, and 800 cases per hour should be enough for most applications. This is similar to a really good human; most humans are probably slower, and it’s hard for a human to sustain that rate, and one of the big issues with people doing this jobs is injury rates. Imagine moving really heavy boxes all day, and having to reach up high or bend down to get them—injuries are really common in this area. Truck unloading is one of the hardest jobs in a warehouse, and that’s one of the reasons we’re starting there with Stretch.
Is Stretch safe for humans to be around?
We looked at using collaborative robot arms for Stretch, but they don’t have the combination of strength and speed and reach to do this task. That’s partially just due to the laws of physics—if you want to move a 50lb box really fast, that’s a lot of energy there. So, Stretch does need to maintain separation from humans, but it’s pretty safe when it’s operating in the back of a truck.
In the middle of a warehouse, Stretch will have a couple different modes. When it's traveling around it'll be kind of like an AMR, and use a safety-rated lidar making sure that it slows down or stops as people get closer. If it's parked and the arm is moving, it'll do the same thing, monitoring anyone getting close and either slow down or stop.
How do you see Stretch interacting with other warehouse robots?
For building pallet orders, we can do that in a couple of different ways, and we’re experimenting with partners in the AMR space. So you might have an AMR that moves the pallet around and then rendezvous with Stretch, and Stretch does the manipulation part and moves boxes onto the pallet, and then the AMR scuttles off to the next rendezvous point where maybe a different Stretch meets it. We’re developing prototypes of that behavior now with a few partners. Another way to do it is Stretch can actually pull the pallet around itself and do both tasks. There are two fundamental things that happen in the warehouse: there's movement of goods, and there's manipulation of goods, and Stretch can do both.
You’re aware that Hello Robot has a mobile manipulator called Stretch, right?
Great minds think alike! We know Aaron [Edsinger] from the Google days; we all used to be in the same company, and he’s a great guy. We’re in very different applications and spaces, though— Aaron’s robot is going into research and maybe a little bit into the consumer space, while this robot is on a much bigger scale aimed at industrial applications, so I think there’s actually a lot of space between our robots, in terms of how they’ll be used.
Editor’s Note: We did check in with Aaron Edsinger at Hello Robot, and he sees things a little bit differently. “We're disappointed they chose our name for their robot,” Edsinger told us. “We're seriously concerned about it and considering our options.” We sincerely hope that Boston Dynamics and Hello Robot can come to an amicable solution on this.
What’s the timeline for commercial deployment of Stretch?
This is a prototype of the Stretch robot, and anytime we design a new robot, we always like to build a prototype as quickly as possible so we can figure out what works and what doesn't work. We did that with our bipeds and quadrupeds as well. So, we get an early look at what we need to iterate, because any time you build the first thing, it's not the right thing, and you always need to make changes to get to the final version. We've got about six of those Stretch prototypes operating now. In parallel, our hardware team is finishing up the design of the productized version of Stretch. That version of Stretch looks a lot like the prototype, but every component has been redesigned from the ground up to be manufacturable, to be reliable, and to be higher performance.
For the productized version of Stretch, we’ll build up the first units this summer, and then it’ll go on sale next year. So this is kind of a sneak peak into what the final product will be.
How much does it cost, and will you be selling Stretch, or offering it as a service?
We’re not quite ready to talk about cost yet, but it’ll be cost effective, and similar in cost to existing systems if you were to combine an industrial robot arm, custom gripper, and mobile base. We’re considering both selling and leasing as a service, but we’re not quite ready to narrow it down yet.
Photo: Boston Dynamics
As with all mobile manipulators, what Stretch can do long-term is constrained far more by software than by hardware. With a fast and powerful arm, a mobile base, a solid perception system, and 16 hours of battery life, you can imagine how different grippers could enable all kinds of different capabilities. But we’re getting ahead of ourselves, because it’s a long, long way from getting a prototype to work pretty well to getting robots into warehouses in a way that’s commercially viable long-term, even when the use case is as clear as it seems to be for Stretch.
Stretch also could signal a significant shift in focus for Boston Dynamics. While Blankespoor’s comments about Stretch leveraging Boston Dynamics’ expertise with robots like Spot and Atlas are well taken, Stretch is arguably the most traditional robot that the company has designed, and they’ve done so specifically to be able to sell robots into industry. This is what you do if you’re a robotics company who wants to make money by selling robots commercially, which (historically) has not been what Boston Dynamics is all about. Despite its bonkers valuation, Boston Dynamics ultimately needs to make money, and robots like Stretch are a good way to do it. With that in mind, I wouldn’t be surprised to see more robots like this from Boston Dynamics—robots that leverage the company’s unique technology, but that are designed to do commercially useful tasks in a somewhat less flashy way. And if this strategy keeps Boston Dynamics around (while funding some occasional creative craziness), then I’m all for it. Continue reading →
#439040 Ready for duty: Healthcare robots get ...
Not long after the 1918 Spanish flu pandemic, Czech writer Karel Čapek first introduced the term “robot” to describe artificial people in his 1921 sci-fi play R.U.R. While we have not yet created the highly intelligent humanoid robots imagined by Čapek, the robots most commonly used today are complex systems that work alongside humans, assisting with an ever-expanding set of tasks. Continue reading →
#439000 Can AI Stop People From Believing Fake ...
Machine learning algorithms provide a way to detect misinformation based on writing style and how articles are shared.
On topics as varied as climate change and the safety of vaccines, you will find a wave of misinformation all over social media. Trust in conventional news sources may seem lower than ever, but researchers are working on ways to give people more insight on whether they can believe what they read. Researchers have been testing artificial intelligence (AI) tools that could help filter legitimate news. But how trustworthy is AI when it comes to stopping the spread of misinformation?
Researchers at the Rensselaer Polytechnic Institute (RPI) and the University of Tennessee collaborated to study the role of AI in helping people identify whether the news they’re reading is legitimate or not.
The research paper, “Tailoring Heuristics and Timing AI Interventions for Supporting News Veracity Assessments,” was published in Computers in Human Behavior Reports. It discussed how crowdsourcing marketplace Amazon Mechanical Turk (AMT) can be used to identify misinformation for fresh news and specific heuristics, which are rules of thumb used to process information and consider its veracity. In other words, heuristics are essentially “shortcuts for decisions,” explained Dorit Nevo, an associate professor at RPI’s Lally School of Management and a lead author for the paper.
The study found that AI would be successful in flagging false stories only if the reader did not already have an opinion on the topic, Nevo said. When study subjects were set in their beliefs, confirmation bias kept them from reassessing their views.
Nevo said the first part of the project focused on whether subjects could detect misinformation around climate change and vaccines like the one designed to prevent chicken pox. Then, beginning in April 2020, her team studied how people responded to news related to COVID-19.
“With COVID-19, there was a significant difference,” Nevo said. They found that about 72 percent of respondents could identify misinformation about the coronavirus without heuristic clues, and roughly 93 percent were able to be convinced by the researcher’s heuristics that the content was fake.
Examples of heuristic clues include text with too many capital letters or the use of strong language, Nevo said.
There were two types of heuristics mentioned in the team’s paper: objective heuristics and source heuristics. They put a statement at the top of each article the subjects read; it instructed them to read the article and indicate whether they believed its central thesis.
“We either put a statement that says the AI finds this article reliable and accurate based on the objective heuristics, or we said the AI finds the source reliable,” Nevo said. “So that's the source heuristic.”
In her research on heuristics, Nevo found that people’s thinking takes one of two paths: The first path is to read the article, think about it and decide if they believe it; the second is to consider the source and what others think about the news, and decide whether to believe it before reading it.
Image: Dorit Nevo/RPI/IEEE Spectrum
Researchers at RPI researched the role of heuristics and AI in detecting whether people thought news was credible
Another research paper, “Timing Matters When Correcting Fake News,” published in the Proceedings of the National Academy of Science by researchers at Harvard University, differed from the RPI researchers in its findings. While Nevo and her collaborators found that it’s easier to convince people that a story is fake news before reading it, the Harvard researchers, led by Nadia M. Brashier, a psychologist and neuroscientist, discovered that a fact-check can convince people of misinformation even after reading headlines. When study subjects read true or false labels after reading a headline, that resulted in a 25.3 percent reduction in “subsequent misclassification,” when compared to headlines with no tag, Brashier and her team found.
In the end, fighting misinformation will require both computing and human efforts such as policy changes, says Benjamin D. Horne, an assistant professor of Information Sciences at the University of Tennessee and one of Nevo’s co-authors. He says the RPI-Tennessee work was inspired by AI tools he designed previously. Horne was previously a research assistant at RPI, where he developed machine learning (ML) algorithms that can detect partial truths as well as decontextualized truths and out-of-date information.
“Our algorithms are trained on source-level behavior, both when using the textual content of an article and the network of other news sources that it draws news from,” Horne said. “We have found that these two types of features together are quite good at distinguishing between sources labeled as reliable or unreliable by external news source ratings.”
The machine learning algorithms analyze the writing style and the content-sharing behavior of news outlets, Horne said. Researchers trained a supervised ML algorithm called Random Forest, a classification algorithm that uses decision trees.
AI for Detecting Fake News
So, what’s the potential for AI to be successful in detecting misinformation?
“The tools we have developed, and other tools developed in this area, have fairly high accuracy in lab settings,” says Horne. “For example, our most recent technical work showed around 83% accuracy in predicting when the source of a news article is reliable or unreliable.”
Despite the effectiveness of algorithms, old-fashioned fact-checking by journalists will still be required to combat fake news. AI could filter the information for fact-checkers to verify, according to Horne.
“AI tools are great at dealing with high quantities of information at fast speeds but lack the nuanced analysis that a journalist or fact-checker can provide,” Horne said. “I see a future where the two work together.” Continue reading →