Tag Archives: experiment
#435046 The Challenge of Abundance: Boredom, ...
As technology continues to progress, the possibility of an abundant future seems more likely. Artificial intelligence is expected to drive down the cost of labor, infrastructure, and transport. Alternative energy systems are reducing the cost of a wide variety of goods. Poverty rates are falling around the world as more people are able to make a living, and resources that were once inaccessible to millions are becoming widely available.
But such a life presents fuel for the most common complaint against abundance: if robots take all the jobs, basic income provides us livable welfare for doing nothing, and healthcare is a guarantee free of charge, then what is the point of our lives? What would motivate us to work and excel if there are no real risks or rewards? If everything is simply given to us, how would we feel like we’ve ever earned anything?
Time has proven that humans inherently yearn to overcome challenges—in fact, this very desire likely exists as the root of most technological innovation. And the idea that struggling makes us stronger isn’t just anecdotal, it’s scientifically validated.
For instance, kids who use anti-bacterial soaps and sanitizers too often tend to develop weak immune systems, causing them to get sick more frequently and more severely. People who work out purposely suffer through torn muscles so that after a few days of healing their muscles are stronger. And when patients visit a psychologist to handle a fear that is derailing their lives, one of the most common treatments is exposure therapy: a slow increase of exposure to the suffering so that the patient gets stronger and braver each time, able to take on an incrementally more potent manifestation of their fears.
Different Kinds of Struggle
It’s not hard to understand why people might fear an abundant future as a terribly mundane one. But there is one crucial mistake made in this assumption, and it was well summarized by Indian mystic and author Sadhguru, who said during a recent talk at Google:
Stomach empty, only one problem. Stomach full—one hundred problems; because what we refer to as human really begins only after survival is taken care of.
This idea is backed up by Maslow’s hierarchy of needs, which was first presented in his 1943 paper “A Theory of Human Motivation.” Maslow shows the steps required to build to higher and higher levels of the human experience. Not surprisingly, the first two levels deal with physiological needs and the need for safety—in other words, with the body. You need to have food, water, and sleep, or you die. After that, you need to be protected from threats, from the elements, from dangerous people, and from disease and pain.
Maslow’s Hierarchy of Needs. Photo by Wikimedia User:Factoryjoe / CC BY-SA 3.0
The beauty of these first two levels is that they’re clear-cut problems with clear-cut solutions: if you’re hungry, then you eat; if you’re thirsty, then you drink; if you’re tired, then you sleep.
But what about the next tiers of the hierarchy? What of love and belonging, of self-esteem and self-actualization? If we’re lonely, can we just summon up an authentic friend or lover? If we feel neglected by society, can we demand it validate us? If we feel discouraged and disappointed in ourselves, can we simply dial up some confidence and self-esteem?
Of course not, and that’s because these psychological needs are nebulous; they don’t contain clear problems with clear solutions. They involve the external world and other people, and are complicated by the infinite flavors of nuance and compromise that are required to navigate human relationships and personal meaning.
These psychological difficulties are where we grow our personalities, outlooks, and beliefs. The truly defining characteristics of a person are dictated not by the physical situations they were forced into—like birth, socioeconomic class, or physical ailment—but instead by the things they choose. So a future of abundance helps to free us from the physical limitations so that we can truly commit to a life of purpose and meaning, rather than just feel like survival is our purpose.
The Greatest Challenge
And that’s the plot twist. This challenge to come to grips with our own individuality and freedom could actually be the greatest challenge our species has ever faced. Can you imagine waking up every day with infinite possibility? Every choice you make says no to the rest of reality, and so every decision carries with it truly life-defining purpose and meaning. That sounds overwhelming. And that’s probably because in our current socio-economic systems, it is.
Studies have shown that people in wealthier nations tend to experience more anxiety and depression. Ron Kessler, professor of health care policy at Harvard and World Health Organization (WHO) researcher, summarized his findings of global mental health by saying, “When you’re literally trying to survive, who has time for depression? Americans, on the other hand, many of whom lead relatively comfortable lives, blow other nations away in the depression factor, leading some to suggest that depression is a ‘luxury disorder.’”
This might explain why America scores in the top rankings for the most depressed and anxious country on the planet. We surpassed our survival needs, and instead became depressed because our jobs and relationships don’t fulfill our expectations for the next three levels of Maslow’s hierarchy (belonging, esteem, and self-actualization).
But a future of abundance would mean we’d have to deal with these levels. This is the challenge for the future; this is what keeps things from being mundane.
As a society, we would be forced to come to grips with our emotional intelligence, to reckon with philosophy rather than simply contemplate it. Nearly every person you meet will be passionately on their own customized life journey, not following a routine simply because of financial limitations. Such a world seems far more vibrant and interesting than one where most wander sleep-deprived and numb while attempting to survive the rat race.
We can already see the forceful hand of this paradigm shift as self-driving cars become ubiquitous. For example, consider the famous psychological and philosophical “trolley problem.” In this thought experiment, a person sees a trolley car heading towards five people on the train tracks; they see a lever that will allow them to switch the trolley car to a track that instead only has one person on it. Do you switch the lever and have a hand in killing one person, or do you let fate continue and kill five people instead?
For the longest time, this was just an interesting quandary to consider. But now, massive corporations have to have an answer, so they can program their self-driving cars with the ability to choose between hitting a kid who runs into the road or swerving into an oncoming car carrying a family of five. When companies need philosophers to make business decisions, it’s a good sign of what’s to come.
Luckily, it’s possible this forceful reckoning with philosophy and our own consciousness may be exactly what humanity needs. Perhaps our great failure as a species has been a result of advanced cognition still trapped in the first two levels of Maslow’s hierarchy due to a long history of scarcity.
As suggested in the opening scenes in 2001: A Space Odyssey, our ape-like proclivity for violence has long stayed the same while the technology we fight with and live amongst has progressed. So while well-off Americans may have comfortable lives, they still know they live in a system where there is no safety net, where a single tragic failure could still mean hunger and homelessness. And because of this, that evolutionarily hard-wired neurotic part of our brain that fears for our survival has never been able to fully relax, and so that anxiety and depression that come with too much freedom but not enough security stays ever present.
Not only might this shift in consciousness help liberate humanity, but it may be vital if we’re to survive our future creations as well. Whatever values we hold dear as a species are the ones we will imbue into the sentient robots we create. If machine learning is going to take its guidance from humanity, we need to level up humanity’s emotional maturity.
While the physical struggles of the future may indeed fall to the wayside amongst abundance, it’s unlikely to become a mundane world; instead, it will become a vibrant culture where each individual is striving against the most important struggle that affects all of us: the challenge to find inner peace, to find fulfillment, to build meaningful relationships, and ultimately, the challenge to find ourselves.
Image Credit: goffkein.pro / Shutterstock.com Continue reading
#434786 AI Performed Like a Human on a Gestalt ...
Dr. Been Kim wants to rip open the black box of deep learning.
A senior researcher at Google Brain, Kim specializes in a sort of AI psychology. Like cognitive psychologists before her, she develops various ways to probe the alien minds of artificial neural networks (ANNs), digging into their gory details to better understand the models and their responses to inputs.
The more interpretable ANNs are, the reasoning goes, the easier it is to reveal potential flaws in their reasoning. And if we understand when or why our systems choke, we’ll know when not to use them—a foundation for building responsible AI.
There are already several ways to tap into ANN reasoning, but Kim’s inspiration for unraveling the AI black box came from an entirely different field: cognitive psychology. The field aims to discover fundamental rules of how the human mind—essentially also a tantalizing black box—operates, Kim wrote with her colleagues.
In a new paper uploaded to the pre-publication server arXiv, the team described a way to essentially perform a human cognitive test on ANNs. The test probes how we automatically complete gaps in what we see, so that they form entire objects—for example, perceiving a circle from a bunch of loose dots arranged along a clock face. Psychologist dub this the “law of completion,” a highly influential idea that led to explanations of how our minds generalize data into concepts.
Because deep neural networks in machine vision loosely mimic the structure and connections of the visual cortex, the authors naturally asked: do ANNs also exhibit the law of completion? And what does that tell us about how an AI thinks?
Enter the Germans
The law of completion is part of a series of ideas from Gestalt psychology. Back in the 1920s, long before the advent of modern neuroscience, a group of German experimental psychologists asked: in this chaotic, flashy, unpredictable world, how do we piece together input in a way that leads to meaningful perceptions?
The result is a group of principles known together as the Gestalt effect: that the mind self-organizes to form a global whole. In the more famous words of Gestalt psychologist Kurt Koffka, our perception forms a whole that’s “something else than the sum of its parts.” Not greater than; just different.
Although the theory has its critics, subsequent studies in humans and animals suggest that the law of completion happens on both the cognitive and neuroanatomical level.
Take a look at the drawing below. You immediately “see” a shape that’s actually the negative: a triangle or a square (A and B). Or you further perceive a 3D ball (C), or a snake-like squiggle (D). Your mind fills in blank spots, so that the final perception is more than just the black shapes you’re explicitly given.
Image Credit: Wikimedia Commons contributors, the free media repository.
Neuroscientists now think that the effect comes from how our visual system processes information. Arranged in multiple layers and columns, lower-level neurons—those first to wrangle the data—tend to extract simpler features such as lines or angles. In Gestalt speak, they “see” the parts.
Then, layer by layer, perception becomes more abstract, until higher levels of the visual system directly interpret faces or objects—or things that don’t really exist. That is, the “whole” emerges.
The Experiment Setup
Inspired by these classical experiments, Kim and team developed a protocol to test the Gestalt effect on feed-forward ANNs: one simple, the other, dubbed the “Inception V3,” far more complex and widely used in the machine vision community.
The main idea is similar to the triangle drawings above. First, the team generated three datasets: one set shows complete, ordinary triangles. The second—the “Illusory” set, shows triangles with the edges removed but the corners intact. Thanks to the Gestalt effect, to us humans these generally still look like triangles. The third set also only shows incomplete triangle corners. But here, the corners are randomly rotated so that we can no longer imagine a line connecting them—hence, no more triangle.
To generate a dataset large enough to tease out small effects, the authors changed the background color, image rotation, and other aspects of the dataset. In all, they produced nearly 1,000 images to test their ANNs on.
“At a high level, we compare an ANN’s activation similarities between the three sets of stimuli,” the authors explained. The process is two steps: first, train the AI on complete triangles. Second, test them on the datasets. If the response is more similar between the illusory set and the complete triangle—rather than the randomly rotated set—it should suggest a sort of Gestalt closure effect in the network.
Machine Gestalt
Right off the bat, the team got their answer: yes, ANNs do seem to exhibit the law of closure.
When trained on natural images, the networks better classified the illusory set as triangles than those with randomized connection weights or networks trained on white noise.
When the team dug into the “why,” things got more interesting. The ability to complete an image correlated with the network’s ability to generalize.
Humans subconsciously do this constantly: anything with a handle made out of ceramic, regardless of shape, could easily be a mug. ANNs still struggle to grasp common features—clues that immediately tells us “hey, that’s a mug!” But when they do, it sometimes allows the networks to better generalize.
“What we observe here is that a network that is able to generalize exhibits…more of the closure effect [emphasis theirs], hinting that the closure effect reflects something beyond simply learning features,” the team wrote.
What’s more, remarkably similar to the visual cortex, “higher” levels of the ANNs showed more of the closure effect than lower layers, and—perhaps unsurprisingly—the more layers a network had, the more it exhibited the closure effect.
As the networks learned, their ability to map out objects from fragments also improved. When the team messed around with the brightness and contrast of the images, the AI still learned to see the forest from the trees.
“Our findings suggest that neural networks trained with natural images do exhibit closure,” the team concluded.
AI Psychology
That’s not to say that ANNs recapitulate the human brain. As Google’s Deep Dream, an effort to coax AIs into spilling what they’re perceiving, clearly demonstrates, machine vision sees some truly weird stuff.
In contrast, because they’re modeled after the human visual cortex, perhaps it’s not all that surprising that these networks also exhibit higher-level properties inherent to how we process information.
But to Kim and her colleagues, that’s exactly the point.
“The field of psychology has developed useful tools and insights to study human brains– tools that we may be able to borrow to analyze artificial neural networks,” they wrote.
By tweaking these tools to better analyze machine minds, the authors were able to gain insight on how similarly or differently they see the world from us. And that’s the crux: the point isn’t to say that ANNs perceive the world sort of, kind of, maybe similar to humans. It’s to tap into a wealth of cognitive psychology tools, established over decades using human minds, to probe that of ANNs.
“The work here is just one step along a much longer path,” the authors conclude.
“Understanding where humans and neural networks differ will be helpful for research on interpretability by enlightening the fundamental differences between the two interesting species.”
Image Credit: Popova Alena / Shutterstock.com Continue reading
#434643 Sensors and Machine Learning Are Giving ...
According to some scientists, humans really do have a sixth sense. There’s nothing supernatural about it: the sense of proprioception tells you about the relative positions of your limbs and the rest of your body. Close your eyes, block out all sound, and you can still use this internal “map” of your external body to locate your muscles and body parts – you have an innate sense of the distances between them, and the perception of how they’re moving, above and beyond your sense of touch.
This sense is invaluable for allowing us to coordinate our movements. In humans, the brain integrates senses including touch, heat, and the tension in muscle spindles to allow us to build up this map.
Replicating this complex sense has posed a great challenge for roboticists. We can imagine simulating the sense of sight with cameras, sound with microphones, or touch with pressure-pads. Robots with chemical sensors could be far more accurate than us in smell and taste, but building in proprioception, the robot’s sense of itself and its body, is far more difficult, and is a large part of why humanoid robots are so tricky to get right.
Simultaneous localization and mapping (SLAM) software allows robots to use their own senses to build up a picture of their surroundings and environment, but they’d need a keen sense of the position of their own bodies to interact with it. If something unexpected happens, or in dark environments where primary senses are not available, robots can struggle to keep track of their own position and orientation. For human-robot interaction, wearable robotics, and delicate applications like surgery, tiny differences can be extremely important.
Piecemeal Solutions
In the case of hard robotics, this is generally solved by using a series of strain and pressure sensors in each joint, which allow the robot to determine how its limbs are positioned. That works fine for rigid robots with a limited number of joints, but for softer, more flexible robots, this information is limited. Roboticists are faced with a dilemma: a vast, complex array of sensors for every degree of freedom in the robot’s movement, or limited skill in proprioception?
New techniques, often involving new arrays of sensory material and machine-learning algorithms to fill in the gaps, are starting to tackle this problem. Take the work of Thomas George Thuruthel and colleagues in Pisa and San Diego, who draw inspiration from the proprioception of humans. In a new paper in Science Robotics, they describe the use of soft sensors distributed through a robotic finger at random. This placement is much like the constant adaptation of sensors in humans and animals, rather than relying on feedback from a limited number of positions.
The sensors allow the soft robot to react to touch and pressure in many different locations, forming a map of itself as it contorts into complicated positions. The machine-learning algorithm serves to interpret the signals from the randomly-distributed sensors: as the finger moves around, it’s observed by a motion capture system. After training the robot’s neural network, it can associate the feedback from the sensors with the position of the finger detected in the motion-capture system, which can then be discarded. The robot observes its own motions to understand the shapes that its soft body can take, and translate them into the language of these soft sensors.
“The advantages of our approach are the ability to predict complex motions and forces that the soft robot experiences (which is difficult with traditional methods) and the fact that it can be applied to multiple types of actuators and sensors,” said Michael Tolley of the University of California San Diego. “Our method also includes redundant sensors, which improves the overall robustness of our predictions.”
The use of machine learning lets the roboticists come up with a reliable model for this complex, non-linear system of motions for the actuators, something difficult to do by directly calculating the expected motion of the soft-bot. It also resembles the human system of proprioception, built on redundant sensors that change and shift in position as we age.
In Search of a Perfect Arm
Another approach to training robots in using their bodies comes from Robert Kwiatkowski and Hod Lipson of Columbia University in New York. In their paper “Task-agnostic self-modeling machines,” also recently published in Science Robotics, they describe a new type of robotic arm.
Robotic arms and hands are getting increasingly dexterous, but training them to grasp a large array of objects and perform many different tasks can be an arduous process. It’s also an extremely valuable skill to get right: Amazon is highly interested in the perfect robot arm. Google hooked together an array of over a dozen robot arms so that they could share information about grasping new objects, in part to cut down on training time.
Individually training a robot arm to perform every individual task takes time and reduces the adaptability of your robot: either you need an ML algorithm with a huge dataset of experiences, or, even worse, you need to hard-code thousands of different motions. Kwiatkowski and Lipson attempt to overcome this by developing a robotic system that has a “strong sense of self”: a model of its own size, shape, and motions.
They do this using deep machine learning. The robot begins with no prior knowledge of its own shape or the underlying physics of its motion. It then repeats a series of a thousand random trajectories, recording the motion of its arm. Kwiatkowski and Lipson compare this to a baby in the first year of life observing the motions of its own hands and limbs, fascinated by picking up and manipulating objects.
Again, once the robot has trained itself to interpret these signals and build up a robust model of its own body, it’s ready for the next stage. Using that deep-learning algorithm, the researchers then ask the robot to design strategies to accomplish simple pick-up and place and handwriting tasks. Rather than laboriously and narrowly training itself for each individual task, limiting its abilities to a very narrow set of circumstances, the robot can now strategize how to use its arm for a much wider range of situations, with no additional task-specific training.
Damage Control
In a further experiment, the researchers replaced part of the arm with a “deformed” component, intended to simulate what might happen if the robot was damaged. The robot can then detect that something’s up and “reconfigure” itself, reconstructing its self-model by going through the training exercises once again; it was then able to perform the same tasks with only a small reduction in accuracy.
Machine learning techniques are opening up the field of robotics in ways we’ve never seen before. Combining them with our understanding of how humans and other animals are able to sense and interact with the world around us is bringing robotics closer and closer to becoming truly flexible and adaptable, and, eventually, omnipresent.
But before they can get out and shape the world, as these studies show, they will need to understand themselves.
Image Credit: jumbojan / Shutterstock.com Continue reading