Tag Archives: engineering
#431862 Want Self-Healing Robots and Tires? ...
We all have scars, and each one tells a story. Tales of tomfoolery, tales of haphazardness, or in my case, tales of stupidity.
Whether the cause of your scar was a push-bike accident, a lack of concentration while cutting onions, or simply the byproduct of an active lifestyle, the experience was likely extremely painful and distressing. Not to mention the long and vexatious recovery period, stretching out for weeks and months after the actual event!
Cast your minds back to that time. How you longed for instant relief from your discomfort! How you longed to have your capabilities restored in an instant!
Well, materials that can heal themselves in an instant may not be far from becoming a reality—and a family of them known as elastomers holds the key.
“Elastomer” is essentially a big, fancy word for rubber. However, elastomers have one unique property—they are capable of returning to their original form after being vigorously stretched and deformed.
This unique property of elastomers has caught the eye of many scientists around the world, particularly those working in the field of robotics. The reason? Elastomer can be encouraged to return to its original shape, in many cases by simply applying heat. The implication of this is the quick and cost-effective repair of “wounds”—cuts, tears, and punctures to the soft, elastomer-based appendages of a robot’s exoskeleton.
Researchers from Vrije University in Brussels, Belgium have been toying with the technique, and with remarkable success. The team built a robotic hand with fingers made of a type of elastomer. They found that cuts and punctures were indeed able to repair themselves simply by applying heat to the affected area.
How long does the healing process take? In this instance, about a day. Now that’s a lot shorter than the weeks and months of recovery time we typically need for a flesh wound, during which we are unable to write, play the guitar, or do the dishes. If you consider the latter to be a bad thing…
However, it’s not the first time scientists have played around with elastomers and examined their self-healing properties. Another team of scientists, headed up by Cheng-Hui Li and Chao Wang, discovered another type of elastomer that exhibited autonomous self-healing properties. Just to help you picture this stuff, the material closely resembles animal muscle— strong, flexible, and elastic. With autogenetic restorative powers to boot.
Advancements in the world of self-healing elastomers, or rubbers, may also affect the lives of everyday motorists. Researchers from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a self-healing rubber material that could be used to make tires that repair their own punctures.
This time the mechanism of self-healing doesn’t involve heat. Rather, it is related to a physical phenomenon associated with the rubber’s unique structure. Normally, when a large enough stress is applied to a typical rubber, there is catastrophic failure at the focal point of that stress. The self-healing rubber the researchers created, on the other hand, distributes that same stress evenly over a network of “crazes”—which are like cracks connected by strands of fiber.
Here’s the interesting part. Not only does this unique physical characteristic of the rubber prevent catastrophic failure, it facilitates self-repair. According to Harvard researchers, when the stress is released, the material snaps back to its original form and the crazes heal.
This wonder material could be used in any number of rubber-based products.
Professor Jinrong Wu, of Sichuan University, China, and co-author of the study, happened to single out tires: “Imagine that we could use this material as one of the components to make a rubber tire… If you have a cut through the tire, this tire wouldn’t have to be replaced right away. Instead, it would self-heal while driving, enough to give you leeway to avoid dramatic damage,” said Wu.
So where to from here? Well, self-healing elastomers could have a number of different applications. According to the article published by Quartz, cited earlier, the material could be used on artificial limbs. Perhaps it will provide some measure of structural integrity without looking like a tattered mess after years of regular use.
Or perhaps a sort of elastomer-based hybrid skin is on the horizon. A skin in which wounds heal instantly. And recovery time, unlike your regular old human skin of yesteryear, is significantly slashed. Furthermore, this future skin might eliminate those little reminders we call scars.
For those with poor judgment skills, this spells an end to disquieting reminders of our own stupidity.
Image Credit: Vrije Universiteit Brussel / Prof. Dr. ir. Bram Vanderborght Continue reading
#431733 Why Humanoid Robots Are Still So Hard to ...
Picture a robot. In all likelihood, you just pictured a sleek metallic or chrome-white humanoid. Yet the vast majority of robots in the world around us are nothing like this; instead, they’re specialized for specific tasks. Our cultural conception of what robots are dates back to the coining of the term robots in the Czech play, Rossum’s Universal Robots, which originally envisioned them as essentially synthetic humans.
The vision of a humanoid robot is tantalizing. There are constant efforts to create something that looks like the robots of science fiction. Recently, an old competitor in this field returned with a new model: Toyota has released what they call the T-HR3. As humanoid robots go, it appears to be pretty dexterous and have a decent grip, with a number of degrees of freedom making the movements pleasantly human.
This humanoid robot operates mostly via a remote-controlled system that allows the user to control the robot’s limbs by exerting different amounts of pressure on a framework. A VR headset completes the picture, allowing the user to control the robot’s body and teleoperate the machine. There’s no word on a price tag, but one imagines a machine with a control system this complicated won’t exactly be on your Christmas list, unless you’re a billionaire.
Toyota is no stranger to robotics. They released a series of “Partner Robots” that had a bizarre affinity for instrument-playing but weren’t often seen doing much else. Given that they didn’t seem to have much capability beyond the automaton that Leonardo da Vinci made hundreds of years ago, they promptly vanished. If, as the name suggests, the T-HR3 is a sequel to these robots, which came out shortly after ASIMO back in 2003, it’s substantially better.
Slightly less humanoid (and perhaps the more useful for it), Toyota’s HSR-2 is a robot base on wheels with a simple mechanical arm. It brings to mind earlier machines produced by dream-factory startup Willow Garage like the PR-2. The idea of an affordable robot that could simply move around on wheels and pick up and fetch objects, and didn’t harbor too-lofty ambitions to do anything else, was quite successful.
So much so that when Robocup, the international robotics competition, looked for a platform for their robot-butler competition @Home, they chose HSR-2 for its ability to handle objects. HSR-2 has been deployed in trial runs to care for the elderly and injured, but has yet to be widely adopted for these purposes five years after its initial release. It’s telling that arguably the most successful multi-purpose humanoid robot isn’t really humanoid at all—and it’s curious that Toyota now seems to want to return to a more humanoid model a decade after they gave up on the project.
What’s unclear, as is often the case with humanoid robots, is what, precisely, the T-HR3 is actually for. The teleoperation gets around the complex problem of control by simply having the machine controlled remotely by a human. That human then handles all the sensory perception, decision-making, planning, and manipulation; essentially, the hardest problems in robotics.
There may not be a great deal of autonomy for the T-HR3, but by sacrificing autonomy, you drastically cut down the uses of the robot. Since it can’t act alone, you need a convincing scenario where you need a teleoperated humanoid robot that’s less precise and vastly more expensive than just getting a person to do the same job. Perhaps someday more autonomy will be developed for the robot, and the master maneuvering system that allows humans to control it will only be used in emergencies to control the robot if it gets stuck.
Toyota’s press release says it is “a platform with capabilities that can safely assist humans in a variety of settings, such as the home, medical facilities, construction sites, disaster-stricken areas and even outer space.” In reality, it’s difficult to see such a robot being affordable or even that useful in the home or in medical facilities (unless it’s substantially stronger than humans). Equally, it certainly doesn’t seem robust enough to be deployed in disaster zones or outer space. These tasks have been mooted for robots for a very long time and few have proved up to the challenge.
Toyota’s third generation humanoid robot, the T-HR3. Image Credit: Toyota
Instead, the robot seems designed to work alongside humans. Its design, standing 1.5 meters tall, weighing 75 kilograms, and possessing 32 degrees of freedom in its body, suggests it is built to closely mimic a person, rather than a robot like ATLAS which is robust enough that you can imagine it being useful in a war zone. In this case, it might be closer to the model of the collaborative robots or co-bots developed by Rethink Robotics, whose tons of safety features, including force-sensitive feedback for the user, reduce the risk of terrible PR surrounding killer robots.
Instead the emphasis is on graceful precision engineering: in the promo video, the robot can be seen balancing on one leg before showing off a few poised, yoga-like poses. This perhaps suggests that an application in elderly care, which Toyota has ventured into before and which was the stated aim of their simple HSR-2, might be more likely than deployment to a disaster zone.
The reason humanoid robots remain so elusive and so tempting is probably because of a simple cognitive mistake. We make two bad assumptions. First, we assume that if you build a humanoid robot, give its joints enough flexibility, throw in a little AI and perhaps some pre-programmed behaviors, then presto, it will be able to do everything humans can. When you see a robot that moves well and looks humanoid, it seems like the hardest part is done; surely this robot could do anything. The reality is never so simple.
We also make the reverse assumption: we assume that when we are finally replaced, it will be by perfect replicas of our own bodies and brains that can fulfill all the functions we used to fulfill. Perhaps, in reality, the future of robots and AI is more like its present: piecemeal, with specialized algorithms and specialized machines gradually learning to outperform humans at every conceivable task without ever looking convincingly human.
It may well be that the T-HR3 is angling towards this concept of machine learning as a platform for future research. Rather than trying to program an omni-capable robot out of the box, it will gradually learn from its human controllers. In this way, you could see the platform being used to explore the limits of what humans can teach robots to do simply by having them mimic sequences of our bodies’ motion, in the same way the exploitation of neural networks is testing the limits of training algorithms on data. No one machine will be able to perform everything a human can, but collectively, they will vastly outperform us at anything you’d want one to do.
So when you see a new android like Toyota’s, feel free to marvel at its technical abilities and indulge in the speculation about whether it’s a PR gimmick or a revolutionary step forward along the road to human replacement. Just remember that, human-level bots or not, we’re already strolling down that road.
Image Credit: Toyota Continue reading
#431412 3 Dangerous Ideas From Ray Kurzweil
Recently, I interviewed my friend Ray Kurzweil at the Googleplex for a 90-minute webinar on disruptive and dangerous ideas, a prelude to my fireside chat with Ray at Abundance 360 this January.
Ray is my friend and cofounder and chancellor of Singularity University. He is also an XPRIZE trustee, a director of engineering at Google, and one of the best predictors of our exponential future.
It’s my pleasure to share with you three compelling ideas that came from our conversation.
1. The nation-state will soon be irrelevant.
Historically, we humans don’t like change. We like waking up in the morning and knowing that the world is the same as the night before.
That’s one reason why government institutions exist: to stabilize society.
But how will this change in 20 or 30 years? What role will stabilizing institutions play in a world of continuous, accelerating change?
“Institutions stick around, but they change their role in our lives,” Ray explained. “They already have. The nation-state is not as profound as it was. Religion used to direct every aspect of your life, minute to minute. It’s still important in some ways, but it’s much less important, much less pervasive. [It] plays a much smaller role in most people’s lives than it did, and the same is true for governments.”
Ray continues: “We are fantastically interconnected already. Nation-states are not islands anymore. So we’re already much more of a global community. The generation growing up today really feels like world citizens much more than ever before, because they’re talking to people all over the world, and it’s not a novelty.”
I’ve previously shared my belief that national borders have become extremely porous, with ideas, people, capital, and technology rapidly flowing between nations. In decades past, your cultural identity was tied to your birthplace. In the decades ahead, your identify is more a function of many other external factors. If you love space, you’ll be connected with fellow space-cadets around the globe more than you’ll be tied to someone born next door.
2. We’ll hit longevity escape velocity before we realize we’ve hit it.
Ray and I share a passion for extending the healthy human lifespan.
I frequently discuss Ray’s concept of “longevity escape velocity”—the point at which, for every year that you’re alive, science is able to extend your life for more than a year.
Scientists are continually extending the human lifespan, helping us cure heart disease, cancer, and eventually, neurodegenerative disease. This will keep accelerating as technology improves.
During my discussion with Ray, I asked him when he expects we’ll reach “escape velocity…”
His answer? “I predict it’s likely just another 10 to 12 years before the general public will hit longevity escape velocity.”
“At that point, biotechnology is going to have taken over medicine,” Ray added. “The next decade is going to be a profound revolution.”
From there, Ray predicts that nanorobots will “basically finish the job of the immune system,” with the ability to seek and destroy cancerous cells and repair damaged organs.
As we head into this sci-fi-like future, your most important job for the next 15 years is to stay alive. “Wear your seatbelt until we get the self-driving cars going,” Ray jokes.
The implications to society will be profound. While the scarcity-minded in government will react saying, “Social Security will be destroyed,” the more abundance-minded will realize that extending a person’s productive earning life space from 65 to 75 or 85 years old would be a massive boon to GDP.
3. Technology will help us define and actualize human freedoms.
The third dangerous idea from my conversation with Ray is about how technology will enhance our humanity, not detract from it.
You may have heard critics complain that technology is making us less human and increasingly disconnected.
Ray and I share a slightly different viewpoint: that technology enables us to tap into the very essence of what it means to be human.
“I don’t think humans even have to be biological,” explained Ray. “I think humans are the species that changes who we are.”
Ray argues that this began when humans developed the earliest technologies—fire and stone tools. These tools gave people new capabilities and became extensions of our physical bodies.
At its base level, technology is the means by which we change our environment and change ourselves. This will continue, even as the technologies themselves evolve.
“People say, ‘Well, do I really want to become part machine?’ You’re not even going to notice it,” Ray says, “because it’s going to be a sensible thing to do at each point.”
Today, we take medicine to fight disease and maintain good health and would likely consider it irresponsible if someone refused to take a proven, life-saving medicine.
In the future, this will still happen—except the medicine might have nanobots that can target disease or will also improve your memory so you can recall things more easily.
And because this new medicine works so well for so many, public perception will change. Eventually, it will become the norm… as ubiquitous as penicillin and ibuprofen are today.
In this way, ingesting nanorobots, uploading your brain to the cloud, and using devices like smart contact lenses can help humans become, well, better at being human.
Ray sums it up: “We are the species that changes who we are to become smarter and more profound, more beautiful, more creative, more musical, funnier, sexier.”
Speaking of sexuality and beauty, Ray also sees technology expanding these concepts. “In virtual reality, you can be someone else. Right now, actually changing your gender in real reality is a pretty significant, profound process, but you could do it in virtual reality much more easily and you can be someone else. A couple could become each other and discover their relationship from the other’s perspective.”
In the 2030s, when Ray predicts sensor-laden nanorobots will be able to go inside the nervous system, virtual or augmented reality will become exceptionally realistic, enabling us to “be someone else and have other kinds of experiences.”
Why Dangerous Ideas Matter
Why is it so important to discuss dangerous ideas?
I often say that the day before something is a breakthrough, it’s a crazy idea.
By consuming and considering a steady diet of “crazy ideas,” you train yourself to think bigger and bolder, a critical requirement for making impact.
As humans, we are linear and scarcity-minded.
As entrepreneurs, we must think exponentially and abundantly.
At the end of the day, the formula for a true breakthrough is equal to “having a crazy idea” you believe in, plus the passion to pursue that idea against all naysayers and obstacles.
Image Credit: Tithi Luadthong / Shutterstock.com Continue reading
#431377 The Farms of the Future Will Be ...
Swarms of drones buzz overhead, while robotic vehicles crawl across the landscape. Orbiting satellites snap high-resolution images of the scene far below. Not one human being can be seen in the pre-dawn glow spreading across the land.
This isn’t some post-apocalyptic vision of the future à la The Terminator. This is a snapshot of the farm of the future. Every phase of the operation—from seed to harvest—may someday be automated, without the need to ever get one’s fingernails dirty.
In fact, it’s science fiction already being engineered into reality. Today, robots empowered with artificial intelligence can zap weeds with preternatural precision, while autonomous tractors move with tireless efficiency across the farmland. Satellites can assess crop health from outer space, providing gobs of data to help produce the sort of business intelligence once accessible only to Fortune 500 companies.
“Precision agriculture is on the brink of a new phase of development involving smart machines that can operate by themselves, which will allow production agriculture to become significantly more efficient. Precision agriculture is becoming robotic agriculture,” said professor Simon Blackmore last year during a conference in Asia on the latest developments in robotic agriculture. Blackmore is head of engineering at Harper Adams University and head of the National Centre for Precision Farming in the UK.
It’s Blackmore’s university that recently showcased what may someday be possible. The project, dubbed Hands Free Hectare and led by researchers from Harper Adams and private industry, farmed one hectare (about 2.5 acres) of spring barley without one person ever setting foot in the field.
The team re-purposed, re-wired and roboticized farm equipment ranging from a Japanese tractor to a 25-year-old combine. Drones served as scouts to survey the operation and collect samples to help the team monitor the progress of the barley. At the end of the season, the robo farmers harvested about 4.5 tons of barley at a price tag of £200,000.
“This project aimed to prove that there’s no technological reason why a field can’t be farmed without humans working the land directly now, and we’ve done that,” said Martin Abell, mechatronics researcher for Precision Decisions, which partnered with Harper Adams, in a press release.
I, Robot Farmer
The Harper Adams experiment is the latest example of how machines are disrupting the agricultural industry. Around the same time that the Hands Free Hectare combine was harvesting barley, Deere & Company announced it would acquire a startup called Blue River Technology for a reported $305 million.
Blue River has developed a “see-and-spray” system that combines computer vision and artificial intelligence to discriminate between crops and weeds. It hits the former with fertilizer and blasts the latter with herbicides with such precision that it can eliminate 90 percent of the chemicals used in conventional agriculture.
It’s not just farmland that’s getting a helping hand from robots. A California company called Abundant Robotics, spun out of the nonprofit research institute SRI International, is developing robots capable of picking apples with vacuum-like arms that suck the fruit straight off the trees in the orchards.
“Traditional robots were designed to perform very specific tasks over and over again. But the robots that will be used in food and agricultural applications will have to be much more flexible than what we’ve seen in automotive manufacturing plants in order to deal with natural variation in food products or the outdoor environment,” Dan Harburg, an associate at venture capital firm Anterra Capital who previously worked at a Massachusetts-based startup making a robotic arm capable of grabbing fruit, told AgFunder News.
“This means ag-focused robotics startups have to design systems from the ground up, which can take time and money, and their robots have to be able to complete multiple tasks to avoid sitting on the shelf for a significant portion of the year,” he noted.
Eyes in the Sky
It will take more than an army of robotic tractors to grow a successful crop. The farm of the future will rely on drones, satellites, and other airborne instruments to provide data about their crops on the ground.
Companies like Descartes Labs, for instance, employ machine learning to analyze satellite imagery to forecast soy and corn yields. The Los Alamos, New Mexico startup collects five terabytes of data every day from multiple satellite constellations, including NASA and the European Space Agency. Combined with weather readings and other real-time inputs, Descartes Labs can predict cornfield yields with 99 percent accuracy. Its AI platform can even assess crop health from infrared readings.
The US agency DARPA recently granted Descartes Labs $1.5 million to monitor and analyze wheat yields in the Middle East and Africa. The idea is that accurate forecasts may help identify regions at risk of crop failure, which could lead to famine and political unrest. Another company called TellusLabs out of Somerville, Massachusetts also employs machine learning algorithms to predict corn and soy yields with similar accuracy from satellite imagery.
Farmers don’t have to reach orbit to get insights on their cropland. A startup in Oakland, Ceres Imaging, produces high-resolution imagery from multispectral cameras flown across fields aboard small planes. The snapshots capture the landscape at different wavelengths, identifying insights into problems like water stress, as well as providing estimates of chlorophyll and nitrogen levels. The geo-tagged images mean farmers can easily locate areas that need to be addressed.
Growing From the Inside
Even the best intelligence—whether from drones, satellites, or machine learning algorithms—will be challenged to predict the unpredictable issues posed by climate change. That’s one reason more and more companies are betting the farm on what’s called controlled environment agriculture. Today, that doesn’t just mean fancy greenhouses, but everything from warehouse-sized, automated vertical farms to grow rooms run by robots, located not in the emptiness of Kansas or Nebraska but smack dab in the middle of the main streets of America.
Proponents of these new concepts argue these high-tech indoor farms can produce much higher yields while drastically reducing water usage and synthetic inputs like fertilizer and herbicides.
Iron Ox, out of San Francisco, is developing one-acre urban greenhouses that will be operated by robots and reportedly capable of producing the equivalent of 30 acres of farmland. Powered by artificial intelligence, a team of three robots will run the entire operation of planting, nurturing, and harvesting the crops.
Vertical farming startup Plenty, also based in San Francisco, uses AI to automate its operations, and got a $200 million vote of confidence from the SoftBank Vision Fund earlier this year. The company claims its system uses only 1 percent of the water consumed in conventional agriculture while producing 350 times as much produce. Plenty is part of a new crop of urban-oriented farms, including Bowery Farming and AeroFarms.
“What I can envision is locating a larger scale indoor farm in the economically disadvantaged food desert, in order to stimulate a broader economic impact that could create jobs and generate income for that area,” said Dr. Gary Stutte, an expert in space agriculture and controlled environment agriculture, in an interview with AgFunder News. “The indoor agriculture model is adaptable to becoming an engine for economic growth and food security in both rural and urban food deserts.”
Still, the model is not without its own challenges and criticisms. Most of what these farms can produce falls into the “leafy greens” category and often comes with a premium price, which seems antithetical to the proposed mission of creating oases in the food deserts of cities. While water usage may be minimized, the electricity required to power the operation, especially the LEDs (which played a huge part in revolutionizing indoor agriculture), are not cheap.
Still, all of these advances, from robo farmers to automated greenhouses, may need to be part of a future where nearly 10 billion people will inhabit the planet by 2050. An oft-quoted statistic from the Food and Agriculture Organization of the United Nations says the world must boost food production by 70 percent to meet the needs of the population. Technology may not save the world, but it will help feed it.
Image Credit: Valentin Valkov / Shutterstock.com Continue reading
#431371 Amazon Is Quietly Building the Robots of ...
Science fiction is the siren song of hard science. How many innocent young students have been lured into complex, abstract science, technology, engineering, or mathematics because of a reckless and irresponsible exposure to Arthur C. Clarke at a tender age? Yet Arthur C. Clarke has a very famous quote: “Any sufficiently advanced technology is indistinguishable from magic.”
It’s the prospect of making that… ahem… magic leap that entices so many people into STEM in the first place. A magic leap that would change the world. How about, for example, having humanoid robots? They could match us in dexterity and speed, perceive the world around them as we do, and be programmed to do, well, more or less anything we can do.
Such a technology would change the world forever.
But how will it arrive? While true sci-fi robots won’t get here right away—the pieces are coming together, and the company best developing them at the moment is Amazon. Where others have struggled to succeed, Amazon has been quietly progressing. Notably, Amazon has more than just a dream, it has the most practical of reasons driving it into robotics.
This practicality matters. Technological development rarely proceeds by magic; it’s a process filled with twists, turns, dead-ends, and financial constraints. New technologies often have to answer questions like “What is this good for, are you being realistic?” A good strategy, then, can be to build something more limited than your initial ambition, but useful for a niche market. That way, you can produce a prototype, have a reasonable business plan, and turn a profit within a decade. You might call these “stepping stone” applications that allow for new technologies to be developed in an economically viable way.
You need something you can sell to someone, soon: that’s how you get investment in your idea. It’s this model that iRobot, developers of the Roomba, used: migrating from military prototypes to robotic vacuum cleaners to become the “boring, successful robot company.” Compare this to Willow Garage, a genius factory if ever there was one: they clearly had ambitions towards a general-purpose, multi-functional robot. They built an impressive device—PR2—and programmed the operating system, ROS, that is still the industry and academic standard to this day.
But since they were unable to sell their robot for much less than $250,000, it was never likely to be a profitable business. This is why Willow Garage is no more, and many workers at the company went into telepresence robotics. Telepresence is essentially videoconferencing with a fancy robot attached to move the camera around. It uses some of the same software (for example, navigation and mapping) without requiring you to solve difficult problems of full autonomy for the robot, or manipulating its environment. It’s certainly one of the stepping-stone areas that various companies are investigating.
Another approach is to go to the people with very high research budgets: the military.
This was the Boston Dynamics approach, and their incredible achievements in bipedal locomotion saw them getting snapped up by Google. There was a great deal of excitement and speculation about Google’s “nightmare factory” whenever a new slick video of a futuristic militarized robot surfaced. But Google broadly backed away from Replicant, their robotics program, and Boston Dynamics was sold. This was partly due to PR concerns over the Terminator-esque designs, but partly because they didn’t see the robotics division turning a profit. They hadn’t found their stepping stones.
This is where Amazon comes in. Why Amazon? First off, they just announced that their profits are up by 30 percent, and yet the company is well-known for their constantly-moving Day One philosophy where a great deal of the profits are reinvested back into the business. But lots of companies have ambition.
One thing Amazon has that few other corporations have, as well as big financial resources, is viable stepping stones for developing the technologies needed for this sort of robotics to become a reality. They already employ 100,000 robots: these are of the “pragmatic, boring, useful” kind that we’ve profiled, which move around the shelves in warehouses. These robots are allowing Amazon to develop localization and mapping software for robots that can autonomously navigate in the simple warehouse environment.
But their ambitions don’t end there. The Amazon Robotics Challenge is a multi-million dollar competition, open to university teams, to produce a robot that can pick and package items in warehouses. The problem of grasping and manipulating a range of objects is not a solved one in robotics, so this work is still done by humans—yet it’s absolutely fundamental for any sci-fi dream robot.
Google, for example, attempted to solve this problem by hooking up 14 robot hands to machine learning algorithms and having them grasp thousands of objects. Although results were promising, the 10 to 20 percent failure rate for grasps is too high for warehouse use. This is a perfect stepping stone for Amazon; should they crack the problem, they will likely save millions in logistics.
Another area where humanoid robotics—especially bipedal locomotion, or walking, has been seriously suggested—is in the last mile delivery problem. Amazon has shown willingness to be creative in this department with their notorious drone delivery service. In other words, it’s all very well to have your self-driving car or van deliver packages to people’s doors, but who puts the package on the doorstep? It’s difficult for wheeled robots to navigate the full range of built environments that exist. That’s why bipedal robots like CASSIE, developed by Oregon State, may one day be used to deliver parcels.
Again: no one more than Amazon stands to profit from cracking this technology. The line from robotics research to profit is very clear.
So, perhaps one day Amazon will have robots that can move around and manipulate their environments. But they’re also working on intelligence that will guide those robots and make them truly useful for a variety of tasks. Amazon has an AI, or at least the framework for an AI: it’s called Alexa, and it’s in tens of millions of homes. The Alexa Prize, another multi-million-dollar competition, is attempting to make Alexa more social.
To develop a conversational AI, at least using the current methods of machine learning, you need data on tens of millions of conversations. You need to understand how people will try to interact with the AI. Amazon has access to this in Alexa, and they’re using it. As owners of the leading voice-activated personal assistant, they have an ecosystem of developers creating apps for Alexa. It will be integrated with the smart home and the Internet of Things. It is a very marketable product, a stepping stone for robot intelligence.
What’s more, the company can benefit from its huge sales infrastructure. For Amazon, having an AI in your home is ideal, because it can persuade you to buy more products through its website. Unlike companies like Google, Amazon has an easy way to make a direct profit from IoT devices, which could fuel funding.
For a humanoid robot to be truly useful, though, it will need vision and intelligence. It will have to understand and interpret its environment, and react accordingly. The way humans learn about our environment is by getting out and seeing it. This is something that, for example, an Alexa coupled to smart glasses would be very capable of doing. There are rumors that Alexa’s AI will soon be used in security cameras, which is an ideal stepping stone task to train an AI to process images from its environment, truly perceiving the world and any threats it might contain.
It’s a slight exaggeration to say that Amazon is in the process of building a secret robot army. The gulf between our sci-fi vision of robots that can intelligently serve us, rather than mindlessly assemble cars, is still vast. But in quietly assembling many of the technologies needed for intelligent, multi-purpose robotics—and with the unique stepping stones they have along the way—Amazon might just be poised to leap that gulf. As if by magic.
Image Credit: Denis Starostin / Shutterstock.com Continue reading