Tag Archives: engineering

#430658 Why Every Leader Needs a Healthy ...

This article is part of a series exploring the skills leaders must learn to make the most of rapid change in an increasingly disruptive world. The first article in the series, “How the Most Successful Leaders Will Thrive in an Exponential World,” broadly outlines four critical leadership skills—futurist, technologist, innovator, and humanitarian—and how they work together.
Today’s post, part five in the series, takes a more detailed look at leaders as technologists. Be sure to check out part two of the series, “How Leaders Dream Boldly to Bring New Futures to Life,” part three of the series, “How All Leaders Can Make the World a Better Place,” and part four of the series, “How Leaders Can Make Innovation Everyone’s Day Job”.
In the 1990s, Tower Records was the place to get new music. Successful and popular, the California chain spread far and wide, and in 1998, they took on $110 million in debt to fund aggressive further expansion. This wasn’t, as it turns out, the best of timing.
The first portable digital music player went on sale the same year. The following year brought Napster, a file sharing service allowing users to freely share music online. By 2000, Napster hosted 20 million users swapping songs. Then in 2001, Apple’s iPod and iTunes arrived, and when the iTunes Music Store opened in 2003, Apple sold over a million songs the first week.
As music was digitized, hard copies began to go out of style, and sales and revenue declined.
Tower first filed for bankruptcy in 2004 and again (for the last time) in 2006. The internet wasn’t the only reason for Tower’s demise. Mismanagement and price competition from electronics retailers like Best Buy also played a part. Still, today, the vast majority of music is purchased or streamed entirely online, and record stores are for the most part a niche market.
The writing was on the wall, but those impacted most had trouble reading it.
Why is it difficult for leaders to see technological change coming and right the ship before it’s too late? Why did Tower go all out on expansion just as the next big thing took the stage?
This is one story of many. Digitization has moved beyond music and entertainment, and now many big retailers operating physical stores are struggling to stay relevant. Meanwhile, the pace of change is accelerating, and new potentially disruptive technologies are on the horizon.
More than ever, leaders need to develop a strong understanding of and perspective on technology. They need to survey new innovations, forecast their pace, gauge the implications, and adopt new tools and strategy to change course as an industry shifts, not after it’s shifted.
Simply, leaders need to adopt the mindset of a technologist. Here’s what that means.
Survey the Landscape
Nurturing curiosity is the first step to understanding technological change. To know how technology might disrupt your industry, you have to know what’s in the pipeline and identify which new inventions are directly or indirectly related to your industry.
Becoming more technologically minded takes discipline and focus as well as unstructured time to explore the non-obvious connections between what is right in front of us and what might be. It requires a commitment to ongoing learning and discovery.
Read outside your industry and comfort zone, not just Fast Company and Wired, but Science and Nature to expand your horizons. Identify experts with the ability to demystify specific technology areas—many have a solid following on Twitter or a frequently cited blog.
But it isn’t all about reading. Consider going where the change is happening too.
Visit one of the technology hubs around the world or a local university research lab in your own back yard. Or bring the innovation to you by building an internal exploration lab stocked with the latest technologies, creating a technology advisory board, hosting an internal innovation challenge, or a local pitch night where aspiring entrepreneurs can share their newest ideas.
You might even ask the crowd by inviting anyone to suggest what innovation is most likely to disrupt your product, service, or sector. And don’t hesitate to engage younger folks—the digital natives all around you—by asking questions about what technology they are using or excited about. Consider going on a field trip with them to see how they use technology in different aspects of their lives. Invite the seasoned executives on your team to explore long-term “reverse mentoring” with someone who can expose them to the latest technology and teach them to use it.
Whatever your strategy, the goal should be to develop a healthy obsession with technology.
By exploring fresh perspectives outside traditional work environments and then giving ourselves permission to see how these new ideas might influence existing products and strategies, we have a chance to be ready for what we’re not ready for—but is likely right around the corner.
Estimate the Pace of Progress
The next step is forecasting when a technology will mature.
One of the most challenging aspects of the changes underway is that in many technology arenas, we are quickly moving from a linear to an exponential pace. It is hard enough to envision what is needed in an industry buffeted by progress that is changing 10% per year, but what happens when technological progress doubles annually? That is another world altogether.
This kind of change can be deceiving. For example, machine learning and big data are finally reaching critical momentum after more than twenty years of being right around the corner. The advances in applications like speech and image recognition that we’ve seen in recent years dwarf what came before and many believe we’ve just begun to understand the implications.
Even as we begin to embrace disruptive change in one technology arena, far more exciting possibilities unfold when we explore how multiple arenas are converging.
Artificial intelligence and big data are great examples. As Hod Lipson, professor of Mechanical Engineering and Data Science at Columbia University and co-author of Driverless: Intelligent Cars and the Road Ahead, says, “AI is the engine, but big data is the fuel. They need each other.”
This convergence paired with an accelerating pace makes for surprising applications.
To keep his research lab agile and open to new uses of advancing technologies, Lipson routinely asks his PhD students, “How might AI disrupt this industry?” to prompt development of applications across a wide spectrum of sectors from healthcare to agriculture to food delivery.
Explore the Consequences
New technology inevitably gives rise to new ethical, social, and moral questions that we have never faced before. Rather than bury our heads in the sand, as leaders we must explore the full range of potential consequences of whatever is underway or still to come.
We can add AI to kids’ toys, like Mattel’s Hello Barbie or use cutting-edge gene editing technology like CRISPR-Cas9 to select for preferred gene sequences beyond basic health. But just because we can do something doesn’t mean we should.
Take time to listen to skeptics and understand the risks posed by technology.
Elon Musk, Stephen Hawking, Steve Wozniak, Bill Gates, and other well-known names in science and technology have expressed concern in the media and via open letters about the risks posed by AI. Microsoft’s CEO, Satya Nadella, has even argued tech companies shouldn’t build artificial intelligence systems that will replace people rather than making them more productive.
Exploring unintended consequences goes beyond having a Plan B for when something goes wrong. It requires broadening our view of what we’re responsible for. Beyond customers, shareholders, and the bottom line, we should understand how our decisions may impact employees, communities, the environment, our broader industry, and even our competitors.
The minor inconvenience of mitigating these risks now is far better than the alternative. Create forums to listen to and value voices outside of the board room and C-Suite. Seek out naysayers, ethicists, community leaders, wise elders, and even neophytes—those who may not share our preconceived notions of right and wrong or our narrow view of our role in the larger world.
The question isn’t: If we build it, will they come? It’s now: If we can build it, should we?
Adopt New Technologies and Shift Course
The last step is hardest. Once you’ve identified a technology (or technologies) as a potential disruptor and understand the implications, you need to figure out how to evolve your organization to make the most of the opportunity. Simply recognizing disruption isn’t enough.
Take today’s struggling brick-and-mortar retail business. Online shopping isn’t new. Amazon isn’t a plucky startup. Both have been changing how we buy stuff for years. And yet many who still own and operate physical stores—perhaps most prominently, Sears—are now on the brink of bankruptcy.
There’s hope though. Netflix began as a DVD delivery service in the 90s, but quickly realized its core business didn’t have staying power. It would have been laughable to stream movies when Netflix was founded. Still, computers and bandwidth were advancing fast. In 2007, the company added streaming to its subscription. Even then it wasn’t a totally compelling product.
But Netflix clearly saw a streaming future would likely end their DVD business.
In recent years, faster connection speeds, a growing content library, and the company’s entrance into original programming have given Netflix streaming the upper hand over DVDs. Since 2011, DVD subscriptions have steadily declined. Yet the company itself is doing fine. Why? It anticipated the shift to streaming and acted on it.
Never Stop Looking for the Next Big Thing
Technology is and will increasingly be a driver of disruption, destabilizing entrenched businesses and entire industries while also creating new markets and value not yet imagined.
When faced with the rapidly accelerating pace of change, many companies still default to old models and established practices. Leading like a technologist requires vigilant understanding of potential sources of disruption—what might make your company’s offering obsolete? The answers may not always be perfectly clear. What’s most important is relentlessly seeking them.
Stock Media provided by MJTierney / Pond5 Continue reading

Posted in Human Robots

#428433 UK Robotics Week To Return – 24th June ...

Today marks official launch of the second UK Robotics Week; entries now open in Surgical Robot, Autonomous Driving and School Robot Challenges
London, UK, 7th November 2016. – UK Robotics Week 2017 officially launches today, with a range of robotics activities and challenges open to schools, academic institutions and industry sectors. These activities culminate in a national week of celebration being held 24th – 30th June 2017. The second annual UK Robotics Week is set to be even bigger and better, building on the huge success of the inaugural event. Any institutions or organisations planning to hold their own robotics events – either in the run-up to and during the UK Robotics Week – can also apply now to be included in the official Programme of Activities (please visit www.roboticsweek.uk for details of how to register).
The first ever UK Robotics Week proved a huge success, encompassing a host of events up and down the UK, including public lectures, open labs, hackathons, tech weekends, conferences, and a state-of-the-art robotics showcase held on the last day. The UK Robotics Week initiative is jointly spearheaded by founding supporters, the Engineering and Physical Sciences Research Council (EPSRC), The Royal Academy of Engineering, the Institution of Engineering and Technology, the Institution of Mechanical Engineers and the UK-RAS Special Interest Group, and is being coordinated by the EPSRC UK-RAS network.
As part of the official launch, this year’s School Robot Challenge is now open for entries to all schools nationwide. The competition offers schoolchildren the opportunity to design their own virtual robot bug and teach it to move, with the option of printing their bug in 3D. The challenge aims to develop children’s interest and skills in digital technology, design, science, engineering and biology. This year’s competition has been split into two age group categories – 4-12 years and 13-18 years – with top prizes to be awarded in each. School are actively encouraged to register their interest on the website now to access the information packs and software at http://www.roboticsweek.uk/schoolrobotchallenge.htm
The first Surgical Robot Challenge attracted participation from the world’s leading institutions, with top robotics research teams travelling to the UK to demonstrate their outstanding innovations during last year’s competition finals. The 2017 competition is now open for entry, and any international researchers interested in participating in this prestigious challenge can download all the competition information at http://www.roboticsweek.uk/surgicalrobotchallenge.htm
The second Autonomous Driving Challenge is also launched today. This is an international competition to inspire the next generation of designers and engineers, and involves designing your own vehicle and teaching it to drive autonomously. The challenge is open to everyone: children and adults, amateurs and professionals.
Commenting on today’s official launch, Professor Guang-Zhong Yang PhD, FREng, Director and Co-founder of the Hamlyn Centre for Robotic Surgery, at Imperial College London and Chair of the UK-RAS Network, said: “We have been delighted with the response to UK Robotics Week, which looks set to become one of the key highlights in the science and technology calendar. This is a unique opportunity to celebrate the UK’s technology leadership in robotics and autonomous systems, and for individuals and institutions to get involved – hands-on – with robotics development.”
Professor Philip Nelson, Chief Executive of EPSRC, added: “From inspiring the nation’s budding engineers in STEM subjects to engaging people of all ages in a national debate about the contribution robotic technology can make to society and our economy, we’re looking forward to creating even more of a buzz with UK Robotics Week this year, and shining an even bigger spotlight on the fantastic robotics innovation being driven from the UK.”
For full information about all the activities planned for UK Robotics Week, please visit the website: www.roboticsweek.uk and follow UK Robotics Week on Twitter (@ukroboticsweek)
About the EPSRC UK-RAS Network (http://www.uk-ras.org) : The EPSRC UK Robotics and Autonomous Systems Network (UK-RAS Network) is dedicated to robotics innovation across the UK, with a mission to provide academic leadership in Robotics and Autonomous Systems (RAS), expand collaboration with industry, and integrate and coordinate activities at eight Engineering and Physical Sciences Research Council (EPSRC) funded RAS capital facilities and Centres for Doctoral Training (CDTs) across the country.
PRESS CONTACT:
Nicky Denovan
EvokedSet
Email: nicky[@]evokedset[dot]com
Mobile: +44 (0)7747 017654
The post UK Robotics Week To Return – 24th June to 30th June 2017 appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428367 Fusion for Energy signs multi-million ...

Fusion for Energy signs multi-million deal with Airbus Safran Launchers, Nuvia Limited and Cegelec CEM to develop robotics equipment for ITER
The contract for a value of nearly 100 million EUR is considered to be the single biggest robotics deal to date in the field of fusion energy. The state of the art equipment will form part of ITER, the world’s largest experimental fusion facility and the first in history to produce 500 MW. The prestigious project brings together seven parties (China, Europe, Japan, India, the Republic of Korea, the Russian Federation and the USA) which represent 50% of the world’s population and 80% of the global GDP.
The collaboration between Fusion for Energy (F4E), the EU organisation managing Europe’s contribution to ITER, with a consortium of companies consisting of Airbus Safran Launchers (France-Germany), Nuvia Limited (UK) and Cegelec CEM (France), companies of the VINCI Group, will run for a period of seven years. The UK Atomic Energy Authority (UK), Instituto Superior Tecnico (Portugal), AVT Europe NV (Belgium) and Millennium (France) will also be part of this deal which will deliver remotely operated systems for the transportation and confinement of components located in the ITER vacuum vessel.
The contract carries also a symbolic importance marking the signature all procurement packages managed by Europe in the field of remote handling. Carlo Damiani, F4E’s Project Manager for ITER Remote Handling Systems, explained that “F4E’s stake in ITER offers an unparalleled opportunity to companies and laboratories to develop expertise and an industrial culture in fusion reactors’ maintenance.”
Cut-away image of the ITER machine showing the casks at the three levels of the ITER machine. ITER IO © (Remote1 web). Photo Credit: f4e.europa.euIllustration of lorry next to an ITER cask. F4E © (Remote 2 web). Photo Credit: f4e.europa.euAerial view of the ITER construction site, October 2016. F4E © (ITER site aerial Oct). Photo Credit: f4e.europa.eu

Why ITER requires Remote Handling?
Remote handling refers to the high-tech systems that will help us maintain and repair the ITER machine. The space where the bulky equipment will operate is limited and the exposure of some of the components to radioactivity, prohibit any manual intervention inside the vacuum vessel.

What will be delivered through this contract?
The transfer of components from the ITER vacuum vessel to the Hot Cell building, where they will be deposited for maintenance, will need to be carried out with the help of massive double-door containers known as casks. According to current estimates, 15 of these casks will need to be manufactured and in their largest configuration they will measure 8.5 m x 3.7 m x 2.6 m approaching 100 tonnes when transporting the heaviest components. These enormous “boxes”, resembling to a conventional lorry container, will be remotely operated as they move between the different levels and buildings of the machine. Apart from the transportation and confinement of components, the ITER Cask and Plug Remote Handling System will also ensure the installation of the remote handling equipment entering into the vacuum vessel to pick up the components to be removed. The technologies underpinning this system will encompass a variety of high-tech skills and comply with nuclear safety requirements. A proven manufacturing experience in similar fields and the development of bespoke systems to perform mechanical transfers will be essential.

Background information
MEMO: Fusion for Energy signs multi-million deal with Airbus Safran Launchers, Nuvia Limited and Cegelec CEM to develop robotics equipment for ITER
Multimedia
To see how the ITER Remote Handling System will operate click on clip 1 and clip 2
To see the progress of the ITER construction site click here
To take a virtual tour on the ITER construction site click here

Image captions
Cut-away image of the ITER machine showing the casks at the three levels of the ITER machine. ITER IO © (Remote1 web)

Illustration of lorry next to an ITER cask. F4E © (Remote 2 web)

Aerial view of the ITER construction site, October 2016. F4E © (ITER site aerial Oct)

The consortium of companies
The consortium combines the space expertise of Airbus Safran Launchers, adapted to this extreme environment to ensure safe conditions for the ITER teams; with Nuvia comes a wealth of nuclear experience dating back to the beginnings of the UK Nuclear industry. Nuvia has delivered solutions to some of the world’s most complex nuclear challenges; and with Cegelec CEM as a specialist in mechanical projects for French nuclear sector, which contributes over 30 years in the nuclear arena, including turnkey projects for large scientific installations, as well as the realisation of complex mechanical systems.

Fusion for Energy
Fusion for Energy (F4E) is the European Union’s organisation for Europe’s contribution to ITER.
One of the main tasks of F4E is to work together with European industry, SMEs and research organisations to develop and provide a wide range of high technology components together with engineering, maintenance and support services for the ITER project.
F4E supports fusion R&D initiatives through the Broader Approach Agreement signed with Japan and prepares for the construction of demonstration fusion reactors (DEMO).
F4E was created by a decision of the Council of the European Union as an independent legal entity and was established in April 2007 for a period of 35 years.
Its offices are in Barcelona, Spain.
http://www.fusionforenergy.europa.eu
http://www.youtube.com/user/fusionforenergy
http://twitter.com/fusionforenergy
http://www.flickr.com/photos/fusionforenergy

ITER
ITER is a first-of-a-kind global collaboration. It will be the world’s largest experimental fusion facility and is designed to demonstrate the scientific and technological feasibility of fusion power. It is expected to produce a significant amount of fusion power (500 MW) for about seven minutes. Fusion is the process which powers the sun and the stars. When light atomic nuclei fuse together form heavier ones, a large amount of energy is released. Fusion research is aimed at developing a safe, limitless and environmentally responsible energy source.
Europe will contribute almost half of the costs of its construction, while the other six parties to this joint international venture (China, Japan, India, the Republic of Korea, the Russian Federation and the USA), will contribute equally to the rest.
The site of the ITER project is in Cadarache, in the South of France.
http://www.iter.org

For Fusion for Energy media enquiries contact:
Aris Apollonatos
E-mail: aris.apollonatos@f4e.europa.eu
Tel: + 34 93 3201833 + 34 649 179 42
The post Fusion for Energy signs multi-million deal to develop robotics equipment for ITER appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428357 UV Disinfection robot

Tech-Link Healthcare Systems partners with Blue Ocean Robotics Introducing UV-Disinfection Robot
Singapore, 1 November 2016 – The rise of robots have steered Tech-Link Healthcare Systems, a design and integrator of healthcare automation systems to offer solutions beyond automated storage and material handling systems. With a vision of providing holistic solutions for healthcare organisations, Tech-Link extends its capabilities by offering UV disinfection robot solutions via a strategic partnership with Danish robotics company, Blue Ocean Robotics to battle against Hospital Acquired Infections (HAIs).Singapore’s labour intensive healthcare environment and the unknown impact of HAIs in the developed city-state had beckoned Tech-Link Healthcare Systems to offer solutions in the area of disinfection. We recognised the rise in demand for robots to collaborate with humans and have identified this need for customers. Introducing robotic technologies as part of our suite of solutions is the company’s mission to innovate the way healthcare organisations work and enhance their customers’ experience.Tech-Link’s partnership with Blue Ocean Robotics affirms both companies’ efforts in reaching out to new markets with technology and solutions to ease manpower crunch, deliver greater value and improve the quality of healthcare services. As an official sales partner, we bring together Blue Ocean Robotics’ expertise in automating disinfection procedures to promote safer, efficient and more productive work environment.
“Tech-Link looks forward to developing reliable healthcare solutions with hardware and latest technologies from Blue Ocean Robotics for our customers in Singapore and abroad.” said Director of Tech-Link Healthcare Systems, Tan Hock Seng. “Our similar beliefs in the Blue Ocean strategy synergise the collaboration to improve the quality of healthcare services through robotics.” he added.“We are very excited about our new sales partner Tech-Link Healthcare Systems, since it is of great importance for Blue Ocean Robotics to expand our sales of new technologies beyond Denmark’s borders. Blue Ocean Robotics focuses on creating new markets for robots. This includes both the development of new technologies and the creation of new markets for revolutionary robot solutions. We welcome Tech-Link Healthcare Systems with open arms and look forward to a fruitful collaboration in the years ahead.” said Claus Risager, Rune K. Larsen & John Erland Østergaard, Partners and Co-CEOs, Blue Ocean Robotics.
UV-Disinfection RobotThe UV-Disinfection Robot – also called UV-DR – is an autonomous disinfection robot for hospitals, production lines and pharmaceutical companies. The robot is used primarily in, but not limited to the cleaning cycle with the aim of reducing spread of HAIs, infectious diseases, viruses, bacteria and other types or harmful organic materials.UV-DR is a mobile robot that can drive autonomously while emitting concentrated UV-C light onto pre-defined infectious hotspots in patient rooms and other hospital environments, thus disinfecting and killing bacteria and virus on all exposed surfaces. An exposure time of ten minutes is estimated to kill up to 99% of bacteria such as Clostridium Difficile.

About Tech-Link Healthcare Systems Pte LtdTech-Link Healthcare Systems is a subsidiary of Tech-Link Storage Engineering established in Singapore since 2015. The company designs and provides innovative solutions for the healthcare sector, focusing on advanced and emerging solutions to support healthcare organisations in optimising available resources and services. Tech-Link Healthcare Systems design and implement automated material handling systems to enhance secured material transport and logistics storage management in hospitals and other healthcare facilities. As a complete solution provider, the company also provides consultancy in systems design to streamline and automate processes as well as integrated video solutions within healthcare facilities.About Tech-Link Storage Engineering Pte LtdTech-Link Storage Engineering is a group of companies established in Singapore with more than 25 years of principal activities in procurement, manufacturing and marketing of storage, distribution and materials handling products and systems. From its domain expertise in storage and racking systems, Tech-Link is also involved in R&D, system design, supply and implementation of logistics supply chain automation systems. The business expanded its global capabilities in the area of planning and consultancy to provide solutions for Built-to-Suit industrial developments and Healthcare logistics systems.
Tech-Link is an ISO 9001:2008 and OHSAS 18001:2007 certified company for Quality Management System and Occupational, Health and Safety System.Visit www.techlinkstorageengineering.comAbout Blue Ocean RoboticsBlue Ocean Robotics is an international company group with presence across the globe including America, Europe, Asia and Australia. The robotics company has its headquarter in the city of Odense (www.odenserobotics.dk) in Denmark. Blue Ocean Robotics applies robot technology to create solutions and innovation for end-users and new businesses in partnerships.Visit www.blue-ocean-robotics.com
Here is a video showing the robot in action:

The post UV Disinfection robot appeared first on Roboticmagazine. Continue reading

Posted in Human Robots

#428173 Next-Gen Robotics & Automation: ...

PRESS RELEASE:

The fall in price of next-generation robots from hundreds to tens of thousands of pounds means that the business case just became stronger for automotive vehicle and parts manufacturers to implement robotic solutions across individual manufacturing lines.

Challenges and pitfalls remain though, with nearly 76% of the target audience lacking clarity on robotic capabilities and implementation best practice. From how to prepare process for automation, to the individual capabilities of each type of robot for individual production lines, OEMs need to know the next best step.

This year’s must attend Next-Generation Robotics & Automation: Automotive Manufacturing Europe 2016 Summit will be the only event focused on robotic upgrade and innovation, specifically for the automotive industry.

Co-located with our UK flagship Joining, Forming & Manufacturing Technologies Summit, on 29th-30th November, at the VOX in Birmingham, this must attend event addresses how to retain cutting edge in automotive manufacturing and the tactics needed to get next-generation robots right, first time.

Reasons To Attend:

The Only European Robotics Event Dedicated To The Automotive Industry

Discuss selection and implementation challenges specific to your sector:

8+ Robotic Capabilities Case Studies – Comprehensive access to exclusive manufacturer perspectives on Next-Generation Robotic applications – direct from the plant

5 Process Specific Breakout Groups – Grapple with application, maintenance & selection considerations particular to your production process: Body Shop, Paint Shop, Power Train & Final Assembly

4 Robot-Type Deep Dive Discussion Groups – Discuss with peers the capabilities and attributes of each specific next-generation robot type to address their relevance to your needs: Zero Speed Monitoring, Power & Force Limited, Speed & Separation & Hand Guided Robots

Strategic & Technical Focus – A blended programme offers access to business case and strategic considerations, as well as tactical robotic application techniques
Speakers Include:

Willem Grobler, Technology Project Leader, BMW
Rich McDonnell, Senior Manufacturing Manager TS-22,
Jaguar XE & F-Pace Body Construction, Jaguar Land Rover
Dan Lämkull , Methods Developer, Volvo Car Corporation
Ali Ackay, Control Technologies & Robotics – Manufacturing Engineering Development, Daimler AG & Mercedes-Benz Trucks

Register today to profit from the Super Early Bird Discount, and reserve your place at the innovation hub of the European Automotive sector in time!
The post Next-Gen Robotics & Automation: Automotive Manufacturing Europe 2016 appeared first on Roboticmagazine. Continue reading

Posted in Human Robots