Tag Archives: developing
#431999 Brain-Like Chips Now Beat the Human ...
Move over, deep learning. Neuromorphic computing—the next big thing in artificial intelligence—is on fire.
Just last week, two studies individually unveiled computer chips modeled after information processing in the human brain.
The first, published in Nature Materials, found a perfect solution to deal with unpredictability at synapses—the gap between two neurons that transmit and store information. The second, published in Science Advances, further amped up the system’s computational power, filling synapses with nanoclusters of supermagnetic material to bolster information encoding.
The result? Brain-like hardware systems that compute faster—and more efficiently—than the human brain.
“Ultimately we want a chip as big as a fingernail to replace one big supercomputer,” said Dr. Jeehwan Kim, who led the first study at MIT in Cambridge, Massachusetts.
Experts are hopeful.
“The field’s full of hype, and it’s nice to see quality work presented in an objective way,” said Dr. Carver Mead, an engineer at the California Institute of Technology in Pasadena not involved in the work.
Software to Hardware
The human brain is the ultimate computational wizard. With roughly 100 billion neurons densely packed into the size of a small football, the brain can deftly handle complex computation at lightning speed using very little energy.
AI experts have taken note. The past few years saw brain-inspired algorithms that can identify faces, falsify voices, and play a variety of games at—and often above—human capability.
But software is only part of the equation. Our current computers, with their transistors and binary digital systems, aren’t equipped to run these powerful algorithms.
That’s where neuromorphic computing comes in. The idea is simple: fabricate a computer chip that mimics the brain at the hardware level. Here, data is both processed and stored within the chip in an analog manner. Each artificial synapse can accumulate and integrate small bits of information from multiple sources and fire only when it reaches a threshold—much like its biological counterpart.
Experts believe the speed and efficiency gains will be enormous.
For one, the chips will no longer have to transfer data between the central processing unit (CPU) and storage blocks, which wastes both time and energy. For another, like biological neural networks, neuromorphic devices can support neurons that run millions of streams of parallel computation.
A “Brain-on-a-chip”
Optimism aside, reproducing the biological synapse in hardware form hasn’t been as easy as anticipated.
Neuromorphic chips exist in many forms, but often look like a nanoscale metal sandwich. The “bread” pieces are generally made of conductive plates surrounding a switching medium—a conductive material of sorts that acts like the gap in a biological synapse.
When a voltage is applied, as in the case of data input, ions move within the switching medium, which then creates conductive streams to stimulate the downstream plate. This change in conductivity mimics the way biological neurons change their “weight,” or the strength of connectivity between two adjacent neurons.
But so far, neuromorphic synapses have been rather unpredictable. According to Kim, that’s because the switching medium is often comprised of material that can’t channel ions to exact locations on the downstream plate.
“Once you apply some voltage to represent some data with your artificial neuron, you have to erase and be able to write it again in the exact same way,” explains Kim. “But in an amorphous solid, when you write again, the ions go in different directions because there are lots of defects.”
In his new study, Kim and colleagues swapped the jelly-like switching medium for silicon, a material with only a single line of defects that acts like a channel to guide ions.
The chip starts with a thin wafer of silicon etched with a honeycomb-like pattern. On top is a layer of silicon germanium—something often present in transistors—in the same pattern. This creates a funnel-like dislocation, a kind of Grand Canal that perfectly shuttles ions across the artificial synapse.
The researchers then made a neuromorphic chip containing these synapses and shot an electrical zap through them. Incredibly, the synapses’ response varied by only four percent—much higher than any neuromorphic device made with an amorphous switching medium.
In a computer simulation, the team built a multi-layer artificial neural network using parameters measured from their device. After tens of thousands of training examples, their neural network correctly recognized samples 95 percent of the time, just 2 percent lower than state-of-the-art software algorithms.
The upside? The neuromorphic chip requires much less space than the hardware that runs deep learning algorithms. Forget supercomputers—these chips could one day run complex computations right on our handheld devices.
A Magnetic Boost
Meanwhile, in Boulder, Colorado, Dr. Michael Schneider at the National Institute of Standards and Technology also realized that the standard switching medium had to go.
“There must be a better way to do this, because nature has figured out a better way to do this,” he says.
His solution? Nanoclusters of magnetic manganese.
Schneider’s chip contained two slices of superconducting electrodes made out of niobium, which channel electricity with no resistance. When researchers applied different magnetic fields to the synapse, they could control the alignment of the manganese “filling.”
The switch gave the chip a double boost. For one, by aligning the switching medium, the team could predict the ion flow and boost uniformity. For another, the magnetic manganese itself adds computational power. The chip can now encode data in both the level of electrical input and the direction of the magnetisms without bulking up the synapse.
It seriously worked. At one billion times per second, the chips fired several orders of magnitude faster than human neurons. Plus, the chips required just one ten-thousandth of the energy used by their biological counterparts, all the while synthesizing input from nine different sources in an analog manner.
The Road Ahead
These studies show that we may be nearing a benchmark where artificial synapses match—or even outperform—their human inspiration.
But to Dr. Steven Furber, an expert in neuromorphic computing, we still have a ways before the chips go mainstream.
Many of the special materials used in these chips require specific temperatures, he says. Magnetic manganese chips, for example, require temperatures around absolute zero to operate, meaning they come with the need for giant cooling tanks filled with liquid helium—obviously not practical for everyday use.
Another is scalability. Millions of synapses are necessary before a neuromorphic device can be used to tackle everyday problems such as facial recognition. So far, no deal.
But these problems may in fact be a driving force for the entire field. Intense competition could push teams into exploring different ideas and solutions to similar problems, much like these two studies.
If so, future chips may come in diverse flavors. Similar to our vast array of deep learning algorithms and operating systems, the computer chips of the future may also vary depending on specific requirements and needs.
It is worth developing as many different technological approaches as possible, says Furber, especially as neuroscientists increasingly understand what makes our biological synapses—the ultimate inspiration—so amazingly efficient.
Image Credit: arakio / Shutterstock.com Continue reading
#431967 Will the Next Cold War Be Powered by ...
As tensions between the U.S. and Russia escalate, both sides are developing technological capabilities, including artificial intelligence that could be used in conflict. Continue reading
#431920 If We Could Engineer Animals to Be as ...
Advances in neural implants and genetic engineering suggest that in the not–too–distant future we may be able to boost human intelligence. If that’s true, could we—and should we—bring our animal cousins along for the ride?
Human brain augmentation made headlines last year after several tech firms announced ambitious efforts to build neural implant technology. Duke University neuroscientist Mikhail Lebedev told me in July it could be decades before these devices have applications beyond the strictly medical.
But he said the technology, as well as other pharmacological and genetic engineering approaches, will almost certainly allow us to boost our mental capacities at some point in the next few decades.
Whether this kind of cognitive enhancement is a good idea or not, and how we should regulate it, are matters of heated debate among philosophers, futurists, and bioethicists, but for some it has raised the question of whether we could do the same for animals.
There’s already tantalizing evidence of the idea’s feasibility. As detailed in BBC Future, a group from MIT found that mice that were genetically engineered to express the human FOXP2 gene linked to learning and speech processing picked up maze routes faster. Another group at Wake Forest University studying Alzheimer’s found that neural implants could boost rhesus monkeys’ scores on intelligence tests.
The concept of “animal uplift” is most famously depicted in the Planet of the Apes movie series, whose planet–conquering protagonists are likely to put most people off the idea. But proponents are less pessimistic about the outcomes.
Science fiction author David Brin popularized the concept in his “Uplift” series of novels, in which humans share the world with various other intelligent animals that all bring their own unique skills, perspectives, and innovations to the table. “The benefits, after a few hundred years, could be amazing,” he told Scientific American.
Others, like George Dvorsky, the director of the Rights of Non-Human Persons program at the Institute for Ethics and Emerging Technologies, go further and claim there is a moral imperative. He told the Boston Globe that denying augmentation technology to animals would be just as unethical as excluding certain groups of humans.
Others are less convinced. Forbes’ Alex Knapp points out that developing the technology to uplift animals will likely require lots of very invasive animal research that will cause huge suffering to the animals it purports to help. This is problematic enough with normal animals, but could be even more morally dubious when applied to ones whose cognitive capacities have been enhanced.
The whole concept could also be based on a fundamental misunderstanding of the nature of intelligence. Humans are prone to seeing intelligence as a single, self-contained metric that progresses in a linear way with humans at the pinnacle.
In an opinion piece in Wired arguing against the likelihood of superhuman artificial intelligence, Kevin Kelly points out that science has no such single dimension with which to rank the intelligence of different species. Each one combines a bundle of cognitive capabilities, some of which are well below our own capabilities and others which are superhuman. He uses the example of the squirrel, which can remember the precise location of thousands of acorns for years.
Uplift efforts may end up being less about boosting intelligence and more about making animals more human-like. That represents “a kind of benevolent colonialism” that assumes being more human-like is a good thing, Paul Graham Raven, a futures researcher at the University of Sheffield in the United Kingdom, told the Boston Globe. There’s scant evidence that’s the case, and it’s easy to see how a chimpanzee with the mind of a human might struggle to adjust.
There are also fundamental barriers that may make it difficult to achieve human-level cognitive capabilities in animals, no matter how advanced brain augmentation technology gets. In 2013 Swedish researchers selectively bred small fish called guppies for bigger brains. This made them smarter, but growing the energy-intensive organ meant the guppies developed smaller guts and produced fewer offspring to compensate.
This highlights the fact that uplifting animals may require more than just changes to their brains, possibly a complete rewiring of their physiology that could prove far more technically challenging than human brain augmentation.
Our intelligence is intimately tied to our evolutionary history—our brains are bigger than other animals’; opposable thumbs allow us to use tools; our vocal chords make complex communication possible. No matter how much you augment a cow’s brain, it still couldn’t use a screwdriver or talk to you in English because it simply doesn’t have the machinery.
Finally, from a purely selfish point of view, even if it does become possible to create a level playing field between us and other animals, it may not be a smart move for humanity. There’s no reason to assume animals would be any more benevolent than we are, having evolved in the same ‘survival of the fittest’ crucible that we have. And given our already endless capacity to divide ourselves along national, religious, or ethnic lines, conflict between species seems inevitable.
We’re already likely to face considerable competition from smart machines in the coming decades if you believe the hype around AI. So maybe adding a few more intelligent species to the mix isn’t the best idea.
Image Credit: Ron Meijer / Shutterstock.com Continue reading
#431872 AI Uses Titan Supercomputer to Create ...
You don’t have to dig too deeply into the archive of dystopian science fiction to uncover the horror that intelligent machines might unleash. The Matrix and The Terminator are probably the most well-known examples of self-replicating, intelligent machines attempting to enslave or destroy humanity in the process of building a brave new digital world.
The prospect of artificially intelligent machines creating other artificially intelligent machines took a big step forward in 2017. However, we’re far from the runaway technological singularity futurists are predicting by mid-century or earlier, let alone murderous cyborgs or AI avatar assassins.
The first big boost this year came from Google. The tech giant announced it was developing automated machine learning (AutoML), writing algorithms that can do some of the heavy lifting by identifying the right neural networks for a specific job. Now researchers at the Department of Energy’s Oak Ridge National Laboratory (ORNL), using the most powerful supercomputer in the US, have developed an AI system that can generate neural networks as good if not better than any developed by a human in less than a day.
It can take months for the brainiest, best-paid data scientists to develop deep learning software, which sends data through a complex web of mathematical algorithms. The system is modeled after the human brain and known as an artificial neural network. Even Google’s AutoML took weeks to design a superior image recognition system, one of the more standard operations for AI systems today.
Computing Power
Of course, Google Brain project engineers only had access to 800 graphic processing units (GPUs), a type of computer hardware that works especially well for deep learning. Nvidia, which pioneered the development of GPUs, is considered the gold standard in today’s AI hardware architecture. Titan, the supercomputer at ORNL, boasts more than 18,000 GPUs.
The ORNL research team’s algorithm, called MENNDL for Multinode Evolutionary Neural Networks for Deep Learning, isn’t designed to create AI systems that cull cute cat photos from the internet. Instead, MENNDL is a tool for testing and training thousands of potential neural networks to work on unique science problems.
That requires a different approach from the Google and Facebook AI platforms of the world, notes Steven Young, a postdoctoral research associate at ORNL who is on the team that designed MENNDL.
“We’ve discovered that those [neural networks] are very often not the optimal network for a lot of our problems, because our data, while it can be thought of as images, is different,” he explains to Singularity Hub. “These images, and the problems, have very different characteristics from object detection.”
AI for Science
One application of the technology involved a particle physics experiment at the Fermi National Accelerator Laboratory. Fermilab researchers are interested in understanding neutrinos, high-energy subatomic particles that rarely interact with normal matter but could be a key to understanding the early formation of the universe. One Fermilab experiment involves taking a sort of “snapshot” of neutrino interactions.
The team wanted the help of an AI system that could analyze and classify Fermilab’s detector data. MENNDL evaluated 500,000 neural networks in 24 hours. Its final solution proved superior to custom models developed by human scientists.
In another case involving a collaboration with St. Jude Children’s Research Hospital in Memphis, MENNDL improved the error rate of a human-designed algorithm for identifying mitochondria inside 3D electron microscopy images of brain tissue by 30 percent.
“We are able to do better than humans in a fraction of the time at designing networks for these sort of very different datasets that we’re interested in,” Young says.
What makes MENNDL particularly adept is its ability to define the best or most optimal hyperparameters—the key variables—to tackle a particular dataset.
“You don’t always need a big, huge deep network. Sometimes you just need a small network with the right hyperparameters,” Young says.
A Virtual Data Scientist
That’s not dissimilar to the approach of a company called H20.ai, a startup out of Silicon Valley that uses open source machine learning platforms to “democratize” AI. It applies machine learning to create business solutions for Fortune 500 companies, including some of the world’s biggest banks and healthcare companies.
“Our software is more [about] pattern detection, let’s say anti-money laundering or fraud detection or which customer is most likely to churn,” Dr. Arno Candel, chief technology officer at H2O.ai, tells Singularity Hub. “And that kind of insight-generating software is what we call AI here.”
The company’s latest product, Driverless AI, promises to deliver the data scientist equivalent of a chessmaster to its customers (the company claims several such grandmasters in its employ and advisory board). In other words, the system can analyze a raw dataset and, like MENNDL, automatically identify what features should be included in the computer model to make the most of the data based on the best “chess moves” of its grandmasters.
“So we’re using those algorithms, but we’re giving them the human insights from those data scientists, and we automate their thinking,” he explains. “So we created a virtual data scientist that is relentless at trying these ideas.”
Inside the Black Box
Not unlike how the human brain reaches a conclusion, it’s not always possible to understand how a machine, despite being designed by humans, reaches its own solutions. The lack of transparency is often referred to as the AI “black box.” Experts like Young say we can learn something about the evolutionary process of machine learning by generating millions of neural networks and seeing what works well and what doesn’t.
“You’re never going to be able to completely explain what happened, but maybe we can better explain it than we currently can today,” Young says.
Transparency is built into the “thought process” of each particular model generated by Driverless AI, according to Candel.
The computer even explains itself to the user in plain English at each decision point. There is also real-time feedback that allows users to prioritize features, or parameters, to see how the changes improve the accuracy of the model. For example, the system may include data from people in the same zip code as it creates a model to describe customer turnover.
“That’s one of the advantages of our automatic feature engineering: it’s basically mimicking human thinking,” Candel says. “It’s not just neural nets that magically come up with some kind of number, but we’re trying to make it statistically significant.”
Moving Forward
Much digital ink has been spilled over the dearth of skilled data scientists, so automating certain design aspects for developing artificial neural networks makes sense. Experts agree that automation alone won’t solve that particular problem. However, it will free computer scientists to tackle more difficult issues, such as parsing the inherent biases that exist within the data used by machine learning today.
“I think the world has an opportunity to focus more on the meaning of things and not on the laborious tasks of just fitting a model and finding the best features to make that model,” Candel notes. “By automating, we are pushing the burden back for the data scientists to actually do something more meaningful, which is think about the problem and see how you can address it differently to make an even bigger impact.”
The team at ORNL expects it can also make bigger impacts beginning next year when the lab’s next supercomputer, Summit, comes online. While Summit will boast only 4,600 nodes, it will sport the latest and greatest GPU technology from Nvidia and CPUs from IBM. That means it will deliver more than five times the computational performance of Titan, the world’s fifth-most powerful supercomputer today.
“We’ll be able to look at much larger problems on Summit than we were able to with Titan and hopefully get to a solution much faster,” Young says.
It’s all in a day’s work.
Image Credit: Gennady Danilkin / Shutterstock.com Continue reading