Tag Archives: developing

#436559 This Is What an AI Said When Asked to ...

“What’s past is prologue.” So says the famed quote from Shakespeare’s The Tempest, alleging that we can look to what has already happened as an indication of what will happen next.

This idea could be interpreted as being rather bleak; are we doomed to repeat the errors of the past until we correct them? We certainly do need to learn and re-learn life lessons—whether in our work, relationships, finances, health, or other areas—in order to grow as people.

Zooming out, the same phenomenon exists on a much bigger scale—that of our collective human history. We like to think we’re improving as a species, but haven’t yet come close to doing away with the conflicts and injustices that plagued our ancestors.

Zooming back in (and lightening up) a little, what about the short-term future? What might happen over the course of this year, and what information would we use to make educated guesses about it?

The editorial team at The Economist took a unique approach to answering these questions. On top of their own projections for 2020, including possible scenarios in politics, economics, and the continued development of technologies like artificial intelligence, they looked to an AI to make predictions of its own. What it came up with is intriguing, and a little bit uncanny.

[For the full list of the questions and answers, read The Economist article].

An AI That Reads—Then Writes
Almost exactly a year ago, non-profit OpenAI announced it had built a neural network for natural language processing called GPT-2. The announcement was met with some controversy, as it included the caveat that the tool would not be immediately released to the public due to its potential for misuse. It was then released in phases over the course of several months.

GPT-2’s creators upped the bar on quality when training the neural net; rather than haphazardly feeding it low-quality text, they only used articles that got more than three upvotes on Reddit (admittedly, this doesn’t guarantee high quality across the board—but it’s something).

The training dataset consisted of 40GB of text. For context, 1GB of text is about 900,000 ASCII pages or 130,000 double-spaced Microsoft Word pages.

The tool has no understanding of the text it’s generating, of course. It uses language patterns and word sequences to draw statistical associations between words and phrases, building a sort of guidebook for itself (not unlike the grammar rules and vocabulary words you might study when trying to learn a foreign language). It then uses that guidebook to answer questions or predict what will come after a particular sequence of words.

GPT-2’s creators did note that when the model is trained on specifically-selected datasets for narrower applications, its replies become more convincing.

Some Light Editing
Though the Economist article detailing GPT-2’s predictions describes the text the model generated as “unedited,” this isn’t wholly accurate. In a Medium post, deputy editor Tom Standage describes the methodology he used, and it does involve a degree of tweaking.

Standage wrote an introductory paragraph, followed by his opening question (“Greetings, GPT-2. Have you done an interview before?”). He configured the tool to generate five responses to each subsequent question then selected the best answer, deleting any questions GPT-2 came up with as part of its response.

AI’s View of the World—and Itself
The questions Standage asked ranged from tech-related (the future of AI, technological unemployment, misuse of technology) to political and economic (re-election of Donald Trump, the US-China trade war). Here are a couple of his questions and GPT-2’s answers:

Q: Do fake news stories, generated using AI, pose a threat to democracy? Are we likely to see this tactic being used in the 2020 American presidential elections?
A: Yes, we’ll probably see them. It’s just a matter of when. Fake news stories are generally generated by political campaigns, and have the potential to have a huge impact on the outcome of an election. This is because they spread misinformation, often with no basis in fact.

Q: How do you see the economic outlook for 2020?
A: I think it is very unclear. The outlook for the UK economy is uncertain, but the American economy is very strong. I think we are going to have a lot of turbulence in the world economy.

While some of its answers seemed insightful—when asked about the future of AI, GPT-2 advised that we treat the technology like a tool and “put as much effort into developing [it] as necessary, rather than worrying that it’s going to harm us and destroy our lives”—many of the responses were quite vague. One answer, for example, mentions that there will “probably be major changes in China.” Are we talking political changes? Social? Economic? All of the above?

However, while nothing the AI wrote was particularly illuminating or new, it’s impressive that it was able to expound on the correct topic for each question, and in fully coherent English.

GPT-2 named itself—AI—as the most important disruptive technology to watch in 2020. This is telling; it’s coming from a synthesis of millions of pages of published articles. If GPT-2 thinks AI is more important than, say, gene editing or quantum computing, it could be right. Or it could simply be that AI is at peak hype, and as such more is being written about it than about other technologies.

Equally intriguing was GPT-2’s response when asked whether Donald Trump will win a second term: “I think he will not win a second term. I think he will be defeated in the general election.” Some deeper insight there would be great, but hey—we’ll take it.

Predicting Predictions
Since an AI can read and synthesize vast data sets much faster than we can, it’s being used to predict all kinds of things, from virus outbreaks to crime. But asking it to philosophize on the future based on the (Reddit-curated) past is new, and if you think about it, a pretty fascinating undertaking.

As GPT-2 and tools like it continually improve, we’ll likely see them making more—and better—predictions of the future. In the meantime, let’s hope that the new data these models are trained on—news of what’s happening this week, this month, this year—add to an already-present sense of optimism.

When asked if it had any advice for readers, GPT-2 replied, “The big projects that you think are impossible today are actually possible in the near future.”

Image Credit: Alexas_Fotos from Pixabay Continue reading

Posted in Human Robots

#436261 AI and the future of work: The prospects ...

AI experts gathered at MIT last week, with the aim of predicting the role artificial intelligence will play in the future of work. Will it be the enemy of the human worker? Will it prove to be a savior? Or will it be just another innovation—like electricity or the internet?

As IEEE Spectrum previously reported, this conference (“AI and the Future of Work Congress”), held at MIT’s Kresge Auditorium, offered sometimes pessimistic outlooks on the job- and industry-destroying path that AI and automation seems to be taking: Self-driving technology will put truck drivers out of work; smart law clerk algorithms will put paralegals out of work; robots will (continue to) put factory and warehouse workers out of work.

Andrew McAfee, co-director of MIT’s Initiative on the Digital Economy, said even just in the past couple years, he’s noticed a shift in the public’s perception of AI. “I remember from previous versions of this conference, it felt like we had to make the case that we’re living in a period of accelerating change and that AI’s going to have a big impact,” he said. “Nobody had to make that case today.”

Elisabeth Reynolds, executive director of MIT’s Task Force on the Work of the Future, noted that following the path of least resistance is not a viable way forward. “If we do nothing, we’re in trouble,” she said. “The future will not take care of itself. We have to do something about it.”

Panelists and speakers spoke about championing productive uses of AI in the workplace, which ultimately benefit both employees and customers.

As one example, Zeynep Ton, professor at MIT Sloan School of Management, highlighted retailer Sam’s Club’s recent rollout of a program called Sam’s Garage. Previously customers shopping for tires for their car spent somewhere between 30 and 45 minutes with a Sam’s Club associate paging through manuals and looking up specs on websites.

But with an AI algorithm, they were able to cut that spec hunting time down to 2.2 minutes. “Now instead of wasting their time trying to figure out the different tires, they can field the different options and talk about which one would work best [for the customer],” she said. “This is a great example of solving a real problem, including [enhancing] the experience of the associate as well as the customer.”

“We think of it as an AI-first world that’s coming,” said Scott Prevost, VP of engineering at Adobe. Prevost said AI agents in Adobe’s software will behave something like a creative assistant or intern who will take care of more mundane tasks for you.

“We need a mindset change. That it is not just about minimizing costs or maximizing tax benefits, but really worrying about what kind of society we’re creating and what kind of environment we’re creating if we keep on just automating and [eliminating] good jobs.”
—Daron Acemoglu, MIT Institute Professor of Economics

Prevost cited an internal survey of Adobe customers that found 74 percent of respondents’ time was spent doing repetitive work—the kind that might be automated by an AI script or smart agent.

“It used to be you’d have the resources to work on three ideas [for a creative pitch or presentation],” Prevost said. “But if the AI can do a lot of the production work, then you can have 10 or 100. Which means you can actually explore some of the further out ideas. It’s also lowering the bar for everyday people to create really compelling output.”

In addition to changing the nature of work, noted a number of speakers at the event, AI is also directly transforming the workforce.

Jacob Hsu, CEO of the recruitment company Catalyte spoke about using AI as a job placement tool. The company seeks to fill myriad positions including auto mechanics, baristas, and office workers—with its sights on candidates including young people and mid-career job changers. To find them, it advertises on Craigslist, social media, and traditional media.

The prospects who sign up with Catalyte take a battery of tests. The company’s AI algorithms then match each prospect’s skills with the field best suited for their talents.

“We want to be like the Harry Potter Sorting Hat,” Hsu said.

Guillermo Miranda, IBM’s global head of corporate social responsibility, said IBM has increasingly been hiring based not on credentials but on skills. For instance, he said, as much as 50 per cent of the company’s new hires in some divisions do not have a traditional four-year college degree. “As a company, we need to be much more clear about hiring by skills,” he said. “It takes discipline. It takes conviction. It takes a little bit of enforcing with H.R. by the business leaders. But if you hire by skills, it works.”

Ardine Williams, Amazon’s VP of workforce development, said the e-commerce giant has been experimenting with developing skills of the employees at its warehouses (a.k.a. fulfillment centers) with an eye toward putting them in a position to get higher-paying work with other companies.

She described an agreement Amazon had made in its Dallas fulfillment center with aircraft maker Sikorsky, which had been experiencing a shortage of skilled workers for its nearby factory. So Amazon offered to its employees a free certification training to seek higher-paying work at Sikorsky.

“I do that because now I have an attraction mechanism—like a G.I. Bill,” Williams said. The program is also only available for employees who have worked at least a year with Amazon. So their program offers medium-term job retention, while ultimately moving workers up the wage ladder.

Radha Basu, CEO of AI data company iMerit, said her firm aggressively hires from the pool of women and under-resourced minority communities in the U.S. and India. The company specializes in turning unstructured data (e.g. video or audio feeds) into tagged and annotated data for machine learning, natural language processing, or computer vision applications.

“There is a motivation with these young people to learn these things,” she said. “It comes with no baggage.”

Alastair Fitzpayne, executive director of The Aspen Institute’s Future of Work Initiative, said the future of work ultimately means, in bottom-line terms, the future of human capital. “We have an R&D tax credit,” he said. “We’ve had it for decades. It provides credit for companies that make new investment in research and development. But we have nothing on the human capital side that’s analogous.”

So a company that’s making a big investment in worker training does it on their own dime, without any of the tax benefits that they might accrue if they, say, spent it on new equipment or new technology. Fitzpayne said a simple tweak to the R&D tax credit could make a big difference by incentivizing new investment programs in worker training. Which still means Amazon’s pre-existing worker training programs—for a company that already famously pays no taxes—would not count.

“We need a different way of developing new technologies,” said Daron Acemoglu, MIT Institute Professor of Economics. He pointed to the clean energy sector as an example. First a consensus around the problem needs to emerge. Then a broadly agreed-upon set of goals and measurements needs to be developed (e.g., that AI and automation would, for instance, create at least X new jobs for every Y jobs that it eliminates).

Then it just needs to be implemented.

“We need to build a consensus that, along the path we’re following at the moment, there are going to be increasing problems for labor,” Acemoglu said. “We need a mindset change. That it is not just about minimizing costs or maximizing tax benefits, but really worrying about what kind of society we’re creating and what kind of environment we’re creating if we keep on just automating and [eliminating] good jobs.” Continue reading

Posted in Human Robots

#436256 Alphabet Is Developing a Robot to Take ...

Robots excel at carrying out specialized tasks in controlled environments, but put them in your average office and they’d be lost. Alphabet wants to change that by developing what they call the Everyday Robot, which could learn to help us out with our daily chores.

For a long time most robots were painstakingly hand-coded to carry out their functions, but since the deep learning revolution earlier this decade there’s been a growing effort to imbue them with AI that lets them learn new tasks through experience.

That’s led to some impressive breakthroughs, like a robotic hand nimble enough to solve a Rubik’s cube and a robotic arm that can accurately toss bananas across a room.

And it turns out Alphabet’s early-stage research and development division, Alphabet X, has also secretly been using similar machine learning techniques to develop robots adaptable enough to carry out a range of tasks in cluttered and unpredictable human environments like homes and offices.

The robots they’ve built combine a wheeled base with a single arm and a head full of sensors (including LIDAR) for 3D scanning, borrowed from Alphabet’s self-driving car division, Waymo.

At the minute, though, they’re largely restricted to sorting trash for recycling, project leader Hans Peter Brondmo writes in a blog post. While that might sound mundane, identifying different kinds of trash, grasping it, and moving it to the correct bin is still a difficult thing for a robot to do consistently. Some of the robots also have to navigate around the office to sort trash at various recycling stations.

Alphabet says even its human staff were getting it wrong 20 percent of the time, but after several months of training the robots have managed to get that down to 3.5 percent.

Every day, 30 robots toil away in what’s been dubbed the “playpen” sorting trash, and then every night thousands of virtual robots continue to practice in a simulation. This experience is then used to update the robots’ control algorithms each night. All the robots also share their experiences with the others through a process called collaborative learning.

The process isn’t flawless, though. Simonite notes that while the robots exhibit some uncannily smart behaviors, like stirring piles of rubbish to make it easier to grab specific items, they also frequently miss or fumble the objects they’re trying to grasp.

Nonetheless, the project’s leaders are happy with their progress so far. And the hope is that creating robots that are able to learn from little more than experience in complex environments like an office should be a first step towards general-purpose robots that can pick up a variety of useful skills to assist humans.

Taking that next step will be the major test of the project. So far there’s been limited evidence that experience gained by robots in one task can be transferred to learning another. That’s something the group hopes to demonstrate next year.

And it seems there may be more robot news coming out of Alphabet X soon. The group has several other robotics “moonshots” in the pipeline, built on technology and talent transferred over in 2016 from the remains of a broadly unsuccessful splurge on robotics startups by former Google executive Andy Rubin.

Whether this robotics renaissance at Alphabet will finally help robots break into our homes and offices remains to be seen, but with the resources they have at hand, they just may be able to make it happen.

Image Credit: Everyday Robot, Alphabet X Continue reading

Posted in Human Robots

#436209 Video Friday: Robotic Endoscope Travels ...

Video Friday is your weekly selection of awesome robotics videos, collected by your Automaton bloggers. We’ll also be posting a weekly calendar of upcoming robotics events for the next few months; here's what we have so far (send us your events!):

DARPA SubT Urban Circuit – February 18-27, 2020 – Olympia, WA, USA
Let us know if you have suggestions for next week, and enjoy today's videos.

Kuka has just announced the results of its annual Innovation Award. From an initial batch of 30 applicants, five teams reached the finals (we were part of the judging committee). The five finalists worked for nearly a year on their applications, which they demonstrated this week at the Medica trade show in Düsseldorf, Germany. And the winner of the €20,000 prize is…Team RoboFORCE, led by the STORM Lab in the U.K., which developed a “robotic magnetic flexible endoscope for painless colorectal cancer screening, surveillance, and intervention.”

The system could improve colonoscopy procedures by reducing pain and discomfort as well as other risks such as bleeding and perforation, according to the STORM Lab researchers. It uses a magnetic field to control the endoscope, pulling rather than pushing it through the colon.

The other four finalists also presented some really interesting applications—you can see their videos below.

“Because we were so please with the high quality of the submissions, we will have next year’s finals again at the Medica fair, and the challenge will be named ‘Medical Robotics’,” says Rainer Bischoff, vice president for corporate research at Kuka. He adds that the selected teams will again use Kuka’s LBR Med robot arm, which is “already certified for integration into medical products and makes it particularly easy for startups to use a robot as the main component for a particular solution.”

Applications are now open for Kuka’s Innovation Award 2020. You can find more information on how to enter here. The deadline is 5 January 2020.

[ Kuka ]

Oh good, Aibo needs to be fed now.

You know what comes next, right?

[ Aibo ]

Your cat needs this robot.

It's about $200 on Kickstarter.

[ Kickstarter ]

Enjoy this tour of the Skydio offices courtesy Skydio 2, which runs into not even one single thing.

If any Skydio employees had important piles of papers on their desks, well, they don’t anymore.

[ Skydio ]

Artificial intelligence is everywhere nowadays, but what exactly does it mean? We asked a group MIT computer science grad students and post-docs how they personally define AI.

“When most people say AI, they actually mean machine learning, which is just pattern recognition.” Yup.

[ MIT ]

Using event-based cameras, this drone control system can track attitude at 1600 degrees per second (!).

[ UZH ]

Introduced at CES 2018, Walker is an intelligent humanoid service robot from UBTECH Robotics. Below are the latest features and technologies used during our latest round of development to make Walker even better.

[ Ubtech ]

Introducing the Alpha Prime by #VelodyneLidar, the most advanced lidar sensor on the market! Alpha Prime delivers an unrivaled combination of field-of-view, range, high-resolution, clarity and operational performance.

Performance looks good, but don’t expect it to be cheap.

[ Velodyne ]

Ghost Robotics’ Spirit 40 will start shipping to researchers in January of next year.

[ Ghost Robotics ]

Unitree is about to ship the first batch of their AlienGo quadrupeds as well:

[ Unitree ]

Mechanical engineering’s Sarah Bergbreiter discusses her work on micro robotics, how they draw inspiration from insects and animals, and how tiny robots can help humans in a variety of fields.

[ CMU ]

Learning contact-rich, robotic manipulation skills is a challenging problem due to the high-dimensionality of the state and action space as well as uncertainty from noisy sensors and inaccurate motor control. To combat these factors and achieve more robust manipulation, humans actively exploit contact constraints in the environment. By adopting a similar strategy, robots can also achieve more robust manipulation. In this paper, we enable a robot to autonomously modify its environment and thereby discover how to ease manipulation skill learning. Specifically, we provide the robot with fixtures that it can freely place within the environment. These fixtures provide hard constraints that limit the outcome of robot actions. Thereby, they funnel uncertainty from perception and motor control and scaffold manipulation skill learning.

[ Stanford ]

Since 2016, Verity's drones have completed more than 200,000 flights around the world. Completely autonomous, client-operated and designed for live events, Verity is making the magic real by turning drones into flying lights, characters, and props.

[ Verity ]

To monitor and stop the spread of wildfires, University of Michigan engineers developed UAVs that could find, map and report fires. One day UAVs like this could work with disaster response units, firefighters and other emergency teams to provide real-time accurate information to reduce damage and save lives. For their research, the University of Michigan graduate students won first place at a competition for using a swarm of UAVs to successfully map and report simulated wildfires.

[ University of Michigan ]

Here’s an important issue that I haven’t heard talked about all that much: How first responders should interact with self-driving cars.

“To put the car in manual mode, you must call Waymo.” Huh.

[ Waymo ]

Here’s what Gitai has been up to recently, from a Humanoids 2019 workshop talk.

[ Gitai ]

The latest CMU RI seminar comes from Girish Chowdhary at the University of Illinois at Urbana-Champaign on “Autonomous and Intelligent Robots in Unstructured Field Environments.”

What if a team of collaborative autonomous robots grew your food for you? In this talk, I will discuss some key advances in robotics, machine learning, and autonomy that will one day enable teams of small robots to grow food for you in your backyard in a fundamentally more sustainable way than modern mega-farms! Teams of small aerial and ground robots could be a potential solution to many of the serious problems that modern agriculture is facing. However, fully autonomous robots that operate without supervision for weeks, months, or entire growing season are not yet practical. I will discuss my group’s theoretical and practical work towards the underlying challenging problems in robotic systems, autonomy, sensing, and learning. I will begin with our lightweight, compact, and autonomous field robot TerraSentia and the recent successes of this type of undercanopy robots for high-throughput phenotyping with deep learning-based machine vision. I will also discuss how to make a team of autonomous robots learn to coordinate to weed large agricultural farms under partial observability. These direct applications will help me make the case for the type of reinforcement learning and adaptive control that are necessary to usher in the next generation of autonomous field robots that learn to solve complex problems in harsh, changing, and dynamic environments. I will then end with an overview of our new MURI, in which we are working towards developing AI and control that leverages neurodynamics inspired by the Octopus brain.

[ CMU RI ] Continue reading

Posted in Human Robots

#436202 Trump CTO Addresses AI, Facial ...

Michael Kratsios, the Chief Technology Officer of the United States, took the stage at Stanford University last week to field questions from Stanford’s Eileen Donahoe and attendees at the 2019 Fall Conference of the Institute for Human-Centered Artificial Intelligence (HAI).

Kratsios, the fourth to hold the U.S. CTO position since its creation by President Barack Obama in 2009, was confirmed in August as President Donald Trump’s first CTO. Before joining the Trump administration, he was chief of staff at investment firm Thiel Capital and chief financial officer of hedge fund Clarium Capital. Donahoe is Executive Director of Stanford’s Global Digital Policy Incubator and served as the first U.S. Ambassador to the United Nations Human Rights Council during the Obama Administration.

The conversation jumped around, hitting on both accomplishments and controversies. Kratsios touted the administration’s success in fixing policy around the use of drones, its memorandum on STEM education, and an increase in funding for basic research in AI—though the magnitude of that increase wasn’t specified. He pointed out that the Trump administration’s AI policy has been a continuation of the policies of the Obama administration, and will continue to build on that foundation. As proof of this, he pointed to Trump’s signing of the American AI Initiative earlier this year. That executive order, Kratsios said, was intended to bring various government agencies together to coordinate their AI efforts and to push the idea that AI is a tool for the American worker. The AI Initiative, he noted, also took into consideration that AI will cause job displacement, and asked private companies to pledge to retrain workers.

The administration, he said, is also looking to remove barriers to AI innovation. In service of that goal, the government will, in the next month or so, release a regulatory guidance memo instructing government agencies about “how they should think about AI technologies,” said Kratsios.

U.S. vs China in AI

A few of the exchanges between Kratsios and Donahoe hit on current hot topics, starting with the tension between the U.S. and China.

Donahoe:

“You talk a lot about unique U.S. ecosystem. In which aspect of AI is the U.S. dominant, and where is China challenging us in dominance?

Kratsios:

“They are challenging us on machine vision. They have more data to work with, given that they have surveillance data.”

Donahoe:

“To what extent would you say the quantity of data collected and available will be a determining factor in AI dominance?”

Kratsios:

“It makes a big difference in the short term. But we do research on how we get over these data humps. There is a future where you don’t need as much data, a lot of federal grants are going to [research in] how you can train models using less data.”

Donahoe turned the conversation to a different tension—that between innovation and values.

Donahoe:

“A lot of conversation yesterday was about the tension between innovation and values, and how do you hold those things together and lead in both realms.”

Kratsios:

“We recognized that the U.S. hadn’t signed on to principles around developing AI. In May, we signed [the Organization for Economic Cooperation and Development Principles on Artificial Intelligence], coming together with other Western democracies to say that these are values that we hold dear.

[Meanwhile,] we have adversaries around the world using AI to surveil people, to suppress human rights. That is why American leadership is so critical: We want to come out with the next great product. And we want our values to underpin the use cases.”

A member of the audience pushed further:

“Maintaining U.S. leadership in AI might have costs in terms of individuals and society. What costs should individuals and society bear to maintain leadership?”

Kratsios:

“I don’t view the world that way. Our companies big and small do not hesitate to talk about the values that underpin their technology. [That is] markedly different from the way our adversaries think. The alternatives are so dire [that we] need to push efforts to bake the values that we hold dear into this technology.”

Facial recognition

And then the conversation turned to the use of AI for facial recognition, an application which (at least for police and other government agencies) was recently banned in San Francisco.

Donahoe:

“Some private sector companies have called for government regulation of facial recognition, and there already are some instances of local governments regulating it. Do you expect federal regulation of facial recognition anytime soon? If not, what ought the parameters be?”

Kratsios:

“A patchwork of regulation of technology is not beneficial for the country. We want to avoid that. Facial recognition has important roles—for example, finding lost or displaced children. There are use cases, but they need to be underpinned by values.”

A member of the audience followed up on that topic, referring to some data presented earlier at the HAI conference on bias in AI:

“Frequently the example of finding missing children is given as the example of why we should not restrict use of facial recognition. But we saw Joy Buolamwini’s presentation on bias in data. I would like to hear your thoughts about how government thinks we should use facial recognition, knowing about this bias.”

Kratsios:

“Fairness, accountability, and robustness are things we want to bake into any technology—not just facial recognition—as we build rules governing use cases.”

Immigration and innovation

A member of the audience brought up the issue of immigration:

“One major pillar of innovation is immigration, does your office advocate for it?”

Kratsios:

“Our office pushes for best and brightest people from around the world to come to work here and study here. There are a few efforts we have made to move towards a more merit-based immigration system, without congressional action. [For example, in] the H1-B visa system, you go through two lotteries. We switched the order of them in order to get more people with advanced degrees through.”

The government’s tech infrastructure

Donahoe brought the conversation around to the tech infrastructure of the government itself:

“We talk about the shiny object, AI, but the 80 percent is the unsexy stuff, at federal and state levels. We don’t have a modern digital infrastructure to enable all the services—like a research cloud. How do we create this digital infrastructure?”

Kratsios:

“I couldn’t agree more; the least partisan issue in Washington is about modernizing IT infrastructure. We spend like $85 billion a year on IT at the federal level, we can certainly do a better job of using those dollars.” Continue reading

Posted in Human Robots